WMA02

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Core Mathematics C34 (WMA02/01)

WMA02

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WMA02_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

This resource was created and owned by Pearson Edexcel

WMA02

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

This resource was created and owned by Pearson Edexcel General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes...

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

www.mystudybro.com

Mathematics C34

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WMA02

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \ne 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

		whed by Pearson Edexcel	
Number	(Mark Scheme) This resource was created and c Scheme	Notes	Marks
1. (i)	$\left\{ \int \frac{2x^2 + 5x + 1}{x^2} \mathrm{d}x = \right\}$	$\left. \begin{array}{c} 2 + \frac{5}{x} + \frac{1}{x^2} \mathrm{d}x \end{array} \right\}$	
		At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	$=2x+5\ln kx-\frac{1}{x}\left\{+c\right\}$	At least 2 out of the 3 terms are correct. e.g. 2 of $2x, -\frac{1}{x}, 5 \ln kx$	A1
	Where $k \neq 0$ (k is usually 1)	$2x + 5 \ln kx - \frac{1}{x}$ with or without + c all on one line and apply isw once seen.	A1
		Do not allow $+\frac{1}{-x}$ for $-\frac{1}{x}$	
		. •	[3
-	(i) Alternative b	y parts 1:	
		•	
	$\left\{ \int (2x^2 + 5x + 1)x^{-2} dx = -\frac{1}{x} (2x^2 + 5x + 1)x^{-2} dx \right\} = -\frac{1}{x} (2x^2 + 5x + 1)x^{-2} + \frac{1}{x} (2x^2 + $	$\left\{ \frac{1}{x} + 5x + 1 + \int \frac{1}{x} (4x + 5) dx \right\}$	
		At least one of either $\pm \frac{A}{x} \rightarrow \pm \alpha \ln kx$ or	M1
	$\left\{ \int \left(2x^2 + 5x + 1\right)x^{-2} dx = -\frac{1}{x} \left(2x^2 + 5x + 1\right)x^{-2} dx \right\}$ $= -2x - 5 - \frac{1}{x} + 4x + 5\ln kx \left\{ + c \right\}$		M1
		At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	$= -2x - 5 - \frac{1}{x} + 4x + 5\ln kx \ \{+c\}$	At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero. At least 2 out of the 3 terms are correct.	
	$= -2x - 5 - \frac{1}{x} + 4x + 5\ln kx \ \{+c\}$ $= 2x - 5 - \frac{1}{x} + 5\ln kx \ \{+c\}$	At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero. At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5 \ln kx$ $2x - 5 - \frac{1}{x} + 5 \ln kx$ with or without $+ c$ Or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+ c$ all	
	$= -2x - 5 - \frac{1}{x} + 4x + 5\ln kx \ \{+c\}$	At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero. At least 2 out of the 3 terms are correct. At least 2 of $2x, -\frac{1}{x}, 5 \ln kx$ $2x - 5 - \frac{1}{x} + 5 \ln kx$ with or without $+ c$	Al

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

- ast i apoi	(many contents)	a and owned by I carson Edexoci	
	(i) Alterna	ative by parts II:	
	$\left\{ \int (2x^2 + 5x + 1)x^{-2} dx = x^{-2} \left(\frac{2x^3}{3} \right)^{-2} \right\}$	$\int_{0}^{3} + \frac{5x^{2}}{2} + x + \int_{0}^{3} 2x^{-3} \left(\frac{2x^{3}}{3} + \frac{5x^{2}}{2} + x \right) dx$	
	$= \frac{2x}{3} + \frac{5}{2} + \frac{1}{x} + \frac{4x}{3} + 5\ln kx - \frac{2}{x} \left\{ + c \right\}$	At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	3 2 x 3 x ,	At least 2 out of the 3 terms are correct. At least 2 of $2x$, $-\frac{1}{x}$, $5 \ln kx$	A1
	$= 2x + \frac{5}{2} - \frac{1}{x} + 5\ln kx \ \{+c\}$ Where $k \neq 0$ (k is usually 1)	$2x + \frac{5}{2} - \frac{1}{x} + 5 \ln kx \text{ with or without } + c$ or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+ c$ all on one line and apply isw once seen. Do not allow $+ \frac{1}{-x}$ for $-\frac{1}{x}$	A1
	(°) A14	4.	
$\left\{ ,\right\}$	(i) Alternat $\int \frac{2x^2 + 5x + 1}{x^2} dx = \int 2 + \frac{5x + 1}{x^2} dx = \int 2 + (\frac{5x + 1}{x^2}) dx = \int 2 + (\frac{5x + 1}$		
		At least one of either $\pm \frac{A}{x} \to \pm \alpha \ln kx$ or $\pm \frac{B}{x^2} \to \pm \beta x^{-1}$; A, B, α, β non zero.	M1
	$=2x-5-\frac{1}{x}+5\ln kx \ \{+c\}$	At least 2 out of the 3 terms are correct. At least 2 of $2x$, $-\frac{1}{x}$, $5 \ln kx$	A1
		$2x - 5 - \frac{1}{x} + 5 \ln kx \left\{ + c \right\} \text{ with or without } + c$ or $2x + 5 \ln kx - \frac{1}{x}$ with or without $+ c$ all on one line and apply isw once seen. Do not allow $+ \frac{1}{-x}$ for $-\frac{1}{x}$	A1
		**	

Summer	T 2018	www.mystudybro.com watne	ematics C34
Past:Paper	(Mark Schen	This resource was created and owned by Pearson Edexcel	WMA02
		$\left\{ \mathbf{I} = \int x \cos 2x \mathrm{d}x \right\}, \left\{ \begin{aligned} u &= x & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1 \\ \frac{\mathrm{d}v}{\mathrm{d}x} &= \cos 2x \Rightarrow v = \frac{1}{2}\sin 2x \end{aligned} \right\}$	
	$\pm \lambda x \sin 2x \pm \mu \int \sin 2x \{dx\}$ BUT if the parts formula is quoted incorrectly score M0	M1	
		$= \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x \left\{ dx \right\}$ $\frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x \left\{ dx \right\}$ simplified or un-simplified	A1
		$= \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x \left\{+c\right\}$ $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x \text{ with or without } + \frac{1}{2}x\sin 2x - \left(-\frac{1}{4}\cos 2x\right) \text{ is A0}$	A1
			[3
	3.7 .	Question 1 Notes	
	Note	The $5\ln x$ can appear in different correct forms e.g. $5\ln 5x$ or $2.5\ln x^2$ etc. and allow e.g. $5\ln kx $	modulus signs
(i)	Note	There are no marks for attempts at $\frac{\int 2x^2 + 5x + 1 dx}{\int x^2 dx}$	
(ii)	Note	There are no marks for attempts at $\int x \cos x dx$	

Mathematics C34

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme Notes		
2.	$x = \frac{3}{2}t - 5$, $y = 4$	$1 - \frac{6}{t}, t \neq 0$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{2}, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$	Both $\frac{dx}{dt} = \frac{3}{2}$ or $\frac{dt}{dx} = \frac{2}{3}$ and $\frac{dy}{dt} = 6t^{-2}$ $\frac{dy}{dt}$ can be simplified or un-simplified. Note: This mark can be implied.	B1
	So, $\frac{dy}{dx} = \frac{6t^{-2}}{\left(\frac{3}{2}\right)} \left\{ = 4t^{-2} \right\}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	$\left\{ \text{When } t = 3, \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{9}$	4 9	A1 cao
(b)			[3]
(b)	• $t = \frac{x+5}{\left(\frac{3}{2}\right)} \implies y = 4 - \frac{6}{\left(\frac{x+5}{\left(\frac{3}{2}\right)}\right)}$	An attempt to eliminate <i>t</i> .	M1
		Achieves a correct equation in x and y only.	A1 o.e.
	$\Rightarrow y = 4 - \frac{9}{x+5}$		
	$\Rightarrow y = \frac{4(x+5)-9}{x+5}$		
	$\Rightarrow y = \frac{4x + 11}{x + 5}$	$\underline{a=4}$ and $\underline{b=11}$ or $\frac{4x+11}{x+5}$	A1
	$x \neq -5$ or $k = -5$	Do not isw so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.	B1
	A74 4* 4	6 (1)	[4]
	Alternative 1		
	$y = \frac{ax+b}{x+5} \Rightarrow 4 - \frac{6}{t} = \frac{6}{x+5}$	$=\frac{a(1.3t-3)+b}{1.5t-5+5}$	
	$\Rightarrow 4 - \frac{6}{t} = \frac{1.5at - 5a + b}{1.5t} \Rightarrow 6t - 9 = 1.5at - 5a + b$ $\Rightarrow 6t = 1.5at \text{ or } -9 = -5a + b$	Substitutes for x and y and "compares coefficients" for term in t or constant term	M1
	a = 4 or $b = 11$	Correct value for a or b	A1
	a = 4 and $b = 11$	Correct values for a and b	A1
	$x \neq -5$ or $k = -5$	Do not isw so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.	B1
			[4]
			7

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Alternative 2	for (b):		
	$4t-6$ $3(4t-6)$ $3(4t-6)$ $4\times \frac{3t}{2}-9$ $4(x+5)-9$				
		$y = \frac{4t - 6}{t} = \frac{3(4t - 6)}{2\frac{3t}{2}} = \frac{3(4t - 6)}{2(x + 5)} = \frac{4 \times \frac{3t}{2} - 9}{(x + 5)} = \frac{4(x + 5) - 9}{(x + 5)}$ M1			
	M1: Obtains y in terms of x				
		A1: Correct unsimpli	fied expression		
		$\Rightarrow y = \frac{4x + 11}{x + 5}$	$\underline{a=4}$ and $\underline{b=11}$ or $\frac{4x+11}{x+5}$	A1	
		Do not isw so if they have $x \neq -5$, $k \neq -5$ score B0 i.e. penalise contradictory statements.			
				[4]	
		Quest	ion 2 Notes		
2. (a)	Note M1 can also be obtained by substituting $t = 3$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then dividing their values the correct way round.				
		Some candidates may use the Cart	esian form in (a) possibly having done (b) first.	. E.g.	
		$y = \frac{4x+11}{x+5} \Rightarrow \frac{dy}{dx} = \frac{4(x+5)}{(x+1)}$	$\frac{-4x-11}{(-5)^2} \left(= \frac{9}{(x+5)^2} \right) t = 3 \Rightarrow x = \frac{9}{2} - 5 = -\frac{1}{2}$		
	Note	\Rightarrow	$\frac{dy}{dx} = \frac{9}{\left(-\frac{1}{2} + 5\right)^2} = \frac{4}{9}$		
		derivative. Then M1 for a complete me and A1 for The marks for obtaining the Cartesi	to find the Cartesian equation and then B1 for the thod attempting the derivative and substituting at 4/9 as in the main scheme. It is an equation can score in (b) provided their Cartesian equation (b). (i.e. if they do (a) first)	f for x or t	
			-		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C34

Question Number	Scheme	Scheme Notes		Marks	
3.	$f(x) = 2^{x-1} - 4 + 1.5x, x \in \mathbb{R}; x_{n+1} = \frac{1}{3} (8 - 2^{x_n}), x_0 = 1.6$				
(a)	$0 = 2^{x-1} - 4 + 1.5x \implies 1.5x = 4 - 2^{x-1} \text{ or } 4$	Sets $f(x) = 0$ and makes $1.5x$ (or kx) the subject of the formula using correct processing so allow sign errors only.	M1		
	$\Rightarrow x = \frac{2}{3}(4 - 2^{x - 1}) \Rightarrow x = \frac{1}{3}(8 - 2^{x}) \text{ (*)}$ or $\Rightarrow x = \frac{(4 - 2^{x - 1})}{1.5} \Rightarrow x = \frac{1}{3}(8 - 2^{x}) \text{ (*)}$ $\Rightarrow x = \frac{4 - 2^{x - 1}}{1.5} \Rightarrow x = \frac{1}{3}(8 - 2^{x}) \text{ (*)}$ $\Rightarrow x = \frac{1}{3}(8 - 2^{x}) \text{ by cso with at least one intermediate step.}$ Do not accept recovery from earlier errors for the A mark. Note that the "= 0" must be seen at some point for this mark even if only from f(x) = 0 at the start.				
	Special case: Starts with $1.5x = 4 - 2^{x-1}$ and	nd completes	method with no $f(x) = 0$ is M1A0		
				[2]	
	Alternative wo	rking backw	ards:		
	$x = \frac{1}{3} (8 - 2^{x}) \Rightarrow 3x = 8 - 2^{x} \Rightarrow 2^{x} - 8 - \Rightarrow 2^{x} - 2^{x} \Rightarrow 2^{x} \Rightarrow 2^{x} \Rightarrow 2^{x} \Rightarrow 2^{x} \Rightarrow 2$		Multiplies by 3 and collects terms to one side or collects terms to one side and multiplies by 3	M1	
	$2^{x} - 8 + 3x = 0 \Rightarrow 2^{x-1} - 4 + 1.5x =$	0	Obtains $2^{x-1} - 4 + 1.5x = 0$ by cso.	A1	
				[2]	
(b)	$x_1 - \frac{1}{3}(6 - 2)$		ag $x_0 = 1.6$ into $\frac{1}{3} (8 - 2^{x_0})$. be implied by $x_1 = \text{awrt } 1.66$	M1	
	$x_1 = 1.656$, $x_2 = 1.616$	$x_1 = \text{awrt } 1.65$	6 and $x_2 = \text{awrt } 1.616$	A1	
	$x_3 = 1.645$	$x_3 = 1.645$ on	ly (not awrt)	A1 cao	
	Mark their values in the order given i.e.	assume their	first calculated value is x_1 etc.		
(-)	£(1,6225) 0,001,00005			[3]	
(c)	f(1.6325) = -0.00100095	Chooses a sui	table interval for x , which is within		
	$01aw1t-1\times10$		5 and either side of 1.63288 and	M1	
	f(1.6335) = 0.00157396	attempts to ev	aluate $f(x)$ for both values.		
	orawrt 1×10^{-3} orawrt 2×10^{-3}				
	Sign change (negative, positive) (and $f(x)$ is continuous) therefore root ($\alpha = 1.633$)		nes correct awrt (or truncated) change and a conclusion	A1 cso	
				[2]	
				7	

Summer 2018

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Question 3 Notes			
3. (a)	M1	There are other methods for obtaining the printed equation but the M1 scores for setting $f(x) = 0$ and making kx the subject of the formula using correct processing e.g.		
		$0 = 2^{x-1} - 4 + 1.5x \Rightarrow \frac{2^x}{2} - 4 + 1.5x = 0 \Rightarrow 3x = 8 - 2^x \text{ M1}$		
		$\Rightarrow x = \frac{1}{3} \left(8 - 2^x \right) $ (*) A1		
		$0 = 2^{x-1} - 4 + 1.5x \implies 2^x - 8 + 3x = 0 \implies 3x = 8 - 2^x M1$		
		$\Rightarrow x = \frac{1}{3} \left(8 - 2^x \right) $ (*) A1		
3. (c)	A1	Correct solution only. Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1sf along with		
		a reason and conclusion. Reference to change of sign or $f(1.6325) \times f(1.6335) < 0$ or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must be a conclusion, e.g. $\partial = 1.633$ (3 dp). Ignore the presence or absence of any reference to continuity.		
	Note	A minimal acceptable reason and conclusion could be "change of sign, so true" In part (c), candidates can construct their proof using a narrower range than [1.6325, 1.6335] which contains the root 1.632888767		

Su	ım	m	۸r	2	Λ4	o
Ðι	ш	ш	er	Z	υı	О

www.mystudybro.com

Mathematics	C34
Matriciliatios	U U-

Sullille		www.iiiystuuyb			
Question Number	(Mark Sch	eme) This resource was created and own Scheme	ned by	Notes	WMA02 Marks
4. (a)	(1+px)	$e^{-4} = 1 + (-4)(px) + \frac{(-4)(-5)}{2!}(px)^2 + \frac{(-4)(-5)}{3!}(px)^2$	5)(-6)	$(px)^3 + \dots$ see notes	M1
		$= 1 - 4px + 10p^2x^2 - 20p^3x^3 + \dots$	Th sir	aree of the four terms correct and mplified.	A1
		or = $1 - 4(px) + 10(px)^2 - 20(px)^3 + \dots$	isv	If four terms correct and simplified and w once a correct answer is seen. ust be seen in part (a).	A1
				Tunka	[3]
(b)	$\left\{ f(x) = \frac{3+4x}{(1+px)^4} = \right\} (3+4x)(1-4px+10p^2x^2-20p^3x^3+) =$ Attempts to expand $(3+4x) \times$ their part (a) expansion.			M1	
	There	should be evidence of at least $(3 \times \text{ one term fr})$			
		Note: $f(x) = 3 + (4 - 12p)x + (30p^2 - 12p)x + (30p^2$	16 <i>p</i>) <i>x</i>	$^{2} + (40p^{2} - 60p^{3})x^{3} + \dots$	
	= 3 -	$\frac{12px + 30p^{2}x^{2}}{\Rightarrow} - 60p^{3}x^{3} + 4x - 16px^{2} + 40p$ \Rightarrow $"30p^{2} - 16p" = 2"(4 - 12p)"$ Or $or 2"(30p^{2} - 16p)" = "(4 - 12p)"$	$x^{2}x^{3}$	Dependent on the previous M mark Multiplies out to give exactly two terms in x and exactly 2 terms in x^2 and attempts one coefficient = twice the other. This mark can be implied by later working. Allow x 's to be present for this mark	dM1
		$30p^2 - 16p = 2(4 - 12p)$	Cor	rect equation with no x's	A1
	15 _p	$30p^{2} + 8p - 8 = 0$ $(p-4)(3p+2) = 0 \text{ or } (5p-2)(6p+4) = 0 \implies 0$ or $(p^{2} + 4p - 4 = 0 \implies (5p-2)(3p+2) = 0 \implies p = 0$		Dependent on the 1 st M mark Correct method for solving a 3TQ leading to at least one value. If working is shown see general guidance for solving 3TQs. If no working is shown then you may need to check to see if their 3TQ solves correctly.	dM1
	$\left\{\right\}$	$\left\{p = \frac{2}{5}, -\frac{2}{3} \Rightarrow \text{As } p > 0, \text{ then}\right\} p = \frac{2}{5}$	<i>p</i> =	$\frac{2}{5}$ only.	A1
			_		[5]
(c)		$40\left(\frac{2}{5}\right)^2 - 60\left(\frac{2}{5}\right)^3$	their	stitutes their $p = \frac{2}{5}$ from part (b) into r coefficient of x^3 (which comes from ctly 2 terms from their expansion)	M1
		Coefficient of x^3 is $\frac{64}{25}$	Allo	ow $\frac{64}{25}$ or $2\frac{14}{25}$. Condone 2.56. ow $\frac{64}{25}x^3$, $2\frac{14}{25}x^3$, 2.56 x^3 If 2 answers are offered, score A0	A1
					[2]
					10
1 (a)	N/1	Question Uses the binomial expansion with $n = -4$ at			
4. (a)	M1 Note	Oses the binomial expansion with $n = -4$ at M1 can be given for either $1 + (-4)(px)$ or			
(b)	Note	Allow recovery in part (b) from missing brace			2.

Summer	•	udybro.com Mathemat			
Question Number	(Mark Scheme) This resource was created ar Scheme	nd owned by Pearson Edexcel Notes	WMA02 Marks		
5.	$f: x \to e^{2x} - 5, x \in \mathbb{R}; g:$	$g: x \to \ln(3x-1), x \in \mathbb{R}, x > \frac{1}{3}$			
(i) (a)	$y = e^{2x} - 5 \implies x = e^{2y} - 5$ $x + 5 = e^{2y} \implies \ln(x + 5) = 2y$	Attempt to make <i>x</i> (or swapped <i>y</i>) the subject using correct processing so allow sign errors only.	M1		
	$(y =) \frac{1}{2} \ln(x+5) \left\{ \left(f^{-1} : x \to \right) \frac{1}{2} \ln(x+5) \right\}$ Domain: $x > -5$ or $(-5, \infty)$	$\frac{1}{2}\ln(x+5) \text{ or } \frac{1}{2}\ln x+5 \text{ or } \ln(x+5)^{\frac{1}{2}}.$ Correct expression ignoring how it is referenced but must be in terms of <i>x</i> . Do not allow $\ln(x+5).\frac{1}{2}$ or e.g. $\ln x+5$ or $\ln(x+5)$ unless the correct answer is seen previously or subsequently. $x > -5 \text{ or } (-5, \infty) \text{ Condone domain } > -5$	Al		
	Domain: $x > -3$ or $(-3, \infty)$	$x > -3$ or $(-3, \infty)$ Condone domain > -3	B1 [3]		
(b)	$fg(3) = e^{2\ln(3(3)-1)} - 5$ (NB fg(x) = 9x ² - 6x - 4)	g goes into f and $x = 3$ is substituted into the result or finds $g(3) \{= \ln 8\}$ and substitutes into f	M1		
	$\left\{ = e^{2\ln 8} - 5 = 64 - 5 \right\} = 59$	59 cao	A1		
(")()			[2]		
(ii)(a)	y • a	A shape with the vertex on the positive x -axis (with no significant asymmetry about the vertical through the vertex). The left hand branch must extend into the second quadrant. Do not allow a "y" shape unless the part below the x -axis is dotted or "crossed out" States $(0, a)$ and $(\frac{1}{4}a, 0)$	B1		
	$\begin{array}{c c} & & & \\ \hline \end{array}$	or $\frac{1}{4}a$ marked in the correct position on the x-axis and a marked in the correct position on the y-axis. Other points marked on the axes can be ignored.	B1		
(b)	$\left\{4x - a = 9a \Longrightarrow\right\} x = \frac{10a}{4} \left\{\text{or } x = \frac{5a}{2}\right\}$	$x = \frac{10a}{4} \text{ or } x = \frac{9a+a}{4} \text{ or } x = \frac{5a}{2}$ (may be implied)	[2] B1		
	-(4x - a) = 9a or $4x - a = -9a$	Attempt at the "second" solution. Accept $-(4x - a) = 9a$ or $4x - a = -9a$ or $-4x = 8a$. Do not condone (unless recovered) invisible brackets in this case.	M1		
	x = -2a	x = -2a Substitutes at least one of their x values	A1		
	$\left\{x = \frac{5}{2}a \Longrightarrow\right\} \left \frac{5}{2}a - 6a\right + 3\left \frac{5}{2}a\right ; = 11a$	from solutions of $ 4x - a = 9a$ where $x < 6a$ into $ x - 6a + 3 x $ and finds at	M1		
	${x = -2a \Rightarrow} -2a - 6a + 3 -2a ; = 14a$	least one value for $\begin{vmatrix} x - 6a \end{vmatrix} + 3 \begin{vmatrix} x \end{vmatrix}$ Must apply the modulus. Both 11 <i>a</i> and 14 <i>a</i> and no other answers	A1		
		Dom 114 and 144 and no other answers	[5]		
			12		

Summer 2018

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 5 Notes
		The values of x might be found by squaring: $ 4x - a = 9a \Rightarrow 16x^2 - 8ax + a^2 = 81a^2 \Rightarrow 16x^2 - 8ax - 80a^2 = 0$
(b)	Note	$16x^2 - 8ax - 80a^2 = 0 \Rightarrow x = \frac{5a}{2}, -2a$ Score as follows: B1 for a correct 3 term quadratic (terms collected after squaring)
		M1: Solves their 3 term quadratic (usual rules)
		A1: $x = \frac{5a}{2}, -2a$

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA02

Mar

Question Number	Scheme		Notes	
6.	$\sqrt{5}\cos q$ -	$2\sin q$	$^{\circ}$ $R\cos(q+a)$	
(a)	R=3		B1	
	42		$R = 3, \mathbf{cao} \ (\pm 3 \text{ is B0}) \ (\sqrt{9} \text{ is B0})$ $= \pm \frac{\sqrt{5}}{2} \implies \alpha = \dots$ $\Rightarrow \text{ or } \pm \frac{\sqrt{5}}{3} \implies \alpha = \dots, \text{ where "3" is their } R.)$	M1
	$\alpha = 0.7297276562 \Rightarrow \alpha = 0.7297 \text{ (4 sf)}$		Anything that rounds to 0.7297 (Degrees is 41.81 and scores A0)	A1
	{Note: $\sqrt{5}\cos q$ -	- 2sin <i>q</i>	$7 = 3\cos(q + 0.7297)\}$	[3]
(b)	$\sqrt{5}\cos$	s <i>q</i> - 2s	$\sin q = 0.5$	
	Attempts to use part (a) "3" $\cos(\theta \pm "0.7297") = 0.5$			
	$3\cos(\theta + 0.7297) = 0.5$	9and p	roceeds to $\cos(\theta \pm 0.7297) = K$, $ K < 1$	
			e implied by $\theta \pm "0.7297" = 1.4033$	M1
	$\Rightarrow \cos(\theta + 0.7297) = \frac{0.5}{3}$	or $\theta \pm "0.7297" = \cos^{-1} \left(\frac{0.5}{\text{their } 3} \right) (=1.4033)$		
	$\theta_1 = 0.673648 \Rightarrow \theta_1 = 0.674 (3 \text{ sf})$	Anything that rounds to 0.674		A1
	θ + "0.7207" - " 1.4022" → θ -	dependent on the previous M mark Correct attempt at a second solution in the range. Usually given for: θ_2 + their $0.7297 = -$ their $1.4033 \Rightarrow \theta_2 =$		dM1
	$\theta_2 = -2.133048 \Rightarrow \theta_2 = -2.13 (3 \text{ sf})$	Anything that rounds to -2.13		A1
	For solutions in (b) that are otherwise fu	ully cor	rrect, if there are extra answers in the range,	
			al A mark.	
		_	in (a) and (b) allow awrt 38.6° and awrt – 122° will be lost in part (a)	
	•		•	[4]
(c)	$f(x) = A\left(\sqrt{5}\cos\theta - 2\sin\theta\right)$	$\operatorname{in} \theta + 1$	$B, \theta \in \mathbb{R}; -15 \leqslant f(x) \leqslant 33$	
	`	,	$+0.730) + B \leqslant 33$	
	Note that part (c) is	s now 1	marked as B1M1A1A1	
	B = 9		Correct value for <i>B</i>	B1
	$\begin{bmatrix} 3A + B = 33 \\ -3A + B = -15 \end{bmatrix} \text{ or } \begin{bmatrix} 3A + B = -15 \\ -3A + B = 33 \end{bmatrix}$	5	Writes down at least one pair of simultaneous equations (or inequalities) of the form $ RA + B = 33 $ $ -RA + B = -15 $ or $ RA + B = -15 $ $ -RA + B = 33 $ and finds at least one value for A	M1
	A = 8 or $A = -8$		One correct value for A	A1
	A = 8 and $A = -8$		Both values correct	A1
				[4]
				11

Sum	mar	204	0
Julii	me	Z U I	0

www.mystudybro.com

Mathematics C34

(c) Alt 1	(iviark Schen	B=9	Correct value for B	BI
		(2)(A)(3) = 3315	$(2)(A)$ (their R) = 33 – -15 \Rightarrow $A =$	M1
		A = 8 or $A = -8$	One correct value for A	A1
		A = 8 and $A = -8$	Both values correct	A1
				[4
(c) Alt 2		$B = \frac{33 - 15}{2} = 9$	Correct value for B	B1
		$3A = 33 - 9 \Rightarrow A = 8$	(their R) $A = 33$ – their $B \Rightarrow A =$	M1
		A = 8 or $A = -8$	One correct value for A	A1
		A = 8 and $A = -8$	Both values correct	A1
				[4
			Question 6 Notes	
(c)	Note	The M mark may be implied by	correct answers so obtaining A = 8 implies M1A	1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	(Mark Scrien	e) This resource was created and		VVIVIAUZ
Question Number		Scheme	Notes	Marks
7.		$V = \frac{1}{3}\rho h^2 (90 - h) = 30\rho$		
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 60\rho h - \rho h^2$	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}=\right\}\pm\partial h\pm bh^2,\ \partial\neq0,\ b\neq0$	M1
		$dh = dh = \rho h$	$60ph - ph^2$ Can be simplified or un-simplified.	A1
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\times\right.$	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \left\{ 60\rho h - \rho h^2 \right\} \frac{\mathrm{d}h}{\mathrm{d}t} = 18$	$0 \qquad \left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 180$	
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\right\}$	$\left\{ \frac{V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \right\} \frac{\mathrm{d}h}{\mathrm{d}t} = 180 \times \frac{1}{60\pi h - \pi}$	or $180 \div \text{their } \frac{dV}{dh}$ This is for a correct application of the chain rule and not for just quoting a correct chain rule.	M1
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\}$	When $h = 15$, $= \begin{cases} \frac{1}{60\rho(15) - \rho(15)^2} \times 180 & \left\{ = \frac{4}{15\rho} \right\} \end{cases}$	Dependent on the previous M mark. Substitutes $h = 15$ into an expression which is a result of a quotient (or their rearranged quotient) of their $\frac{dV}{dh}$ and 180. May be implied by awrt 0.08 or 0.09.	dM1
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}=0.0\right\}$	$0848826 \Rightarrow \begin{cases} \frac{dh}{dt} = \underline{0.085} \text{ (cm s}^{-1}) (2 \text{ s}^{-1}) \end{cases}$	4	A1 cao
			•	[5]
				5
		Alternative Method	_	
		Product rule: $\begin{cases} u = \frac{1}{3} \\ \frac{du}{dh} = \frac{2}{3} \end{cases}$	$ \begin{array}{ll} \mathcal{O}h^2 & v = 90 - h \\ \mathcal{O}h & \frac{\mathrm{d}v}{\mathrm{d}h} = -1 \end{array} $	
	$\mathrm{d}V$		$\frac{dV}{dh} = \begin{cases} \pm \alpha h(90 - h) \pm \beta h^2(-1), & \alpha \neq 0, \beta \neq 0 \\ \text{an be simplified or un-simplified.} \end{cases}$	M1
	d <i>h</i>	3	$\frac{2}{3}\rho h(90 - h) + \frac{1}{3}\rho h^2(-1)$ an be simplified or un-simplified.	A1
		17.7	stion 7 Notes	
7.	Note	$\frac{dV}{dh}$ does not have to be explicitly starthat they are differentiating their V .	ted for the 1st M1 and/or the 1st A1 but it should be	oe clear
	Note	$V = \frac{1}{3}\pi h^2 (90 - h) \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{2}{3}\pi h($	90 - h) scores M0A0 even though it satisfies the	ne
1		conditions for the derivative.		

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Pasi Paper	(Mark Scheme) This resource was created a	and owned by Fearson Edexcer	VVIVIAU2	
Question Number	Scheme	Notes	Marks	
8.	$l_1: \mathbf{r} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ l_2: \mathbf{r} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}; \ \text{Let } \theta = \text{acute angle between } PQ \text{ and } l_1.$			
(a)	i : $1 + \lambda = 6 + \mu$ (1)			
	$\mathbf{j}: -3 + 2\lambda$	$=4 + \mu$ (2)		
	$\mathbf{k}: 2+3\lambda =$	$=1-\mu$ (3)		
	(1) and (2) yields $l = 2$, $m = -3$ (1) and (3) yields $l = 1$, $l = -4$	Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$	M1	
	(2) and (3) yields $/ = 1.2, m = -4.6$	/ and m are both correct	A1	
	Checking (3): $8 \neq 4$ Checking (2): $-1 \neq 0$	Attempts to show a contradiction	M1	
	Checking (1): $2.2 \neq 1.4$ l_1 and l_2 do not intersect.	Correct comparison and a conclusion. Accept "do not meet" and accept "are skew". Requires all previous work to be correct.	A1	
	Allow a calculation that gives	"8 = 4 so the lines do not meet"		
			[4]	
	Alternative	e for part (a):		
		Attempts to solve a pair of equations to find at least one of either $/ =$ or $m =$	M1	
	(1) and (2) yields / = 2, m = -3 (1) and (3) yields / = 1, m = -4	Shows any two of (1) and (2) yielding / = 2 (1) and (3) yielding / = 1 (2) and (3) yielding / = 1.2		
	(2) and (3) yields $l = 1.2$, $m = -4.6$	or shows any two of	A1	
		 (1) and (2) yielding m = -3 (1) and (3) yielding m = -4 (2) and (3) yielding m = -4.6 		
	T 0 0 1	Attempts to show a contradiction	M1	
	E.g. So $2 \neq 1$ l_1 and l_2 do not intersect.	Correct comparison and a conclusion. Accept "do not meet" and accept "are skew". Requires all previous work to be correct.	A1	
			[4]	

www.mystudybro.com

Mathematics C34

[5]

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WMA02 **(b)** $\begin{bmatrix} -3 \\ 2 \end{bmatrix}, \overrightarrow{OQ} = \begin{bmatrix} \\ \end{bmatrix}$ Full method of finding PQ or QPwhere P and Q have been found M1 by using $\lambda = 0$ in l_1 and $\mu = -1$ in $\left(\overrightarrow{PQ} = \right) \begin{pmatrix} 5\\3\\2 \end{pmatrix} - \begin{pmatrix} 1\\-3\\2 \end{pmatrix} = \begin{pmatrix} 4\\6\\0 \end{pmatrix} \text{ or } \left(\overrightarrow{QP} = \right) \begin{pmatrix} -4\\-6\\0 \end{pmatrix}$ Correct \overline{PO} or \overline{OP} . Also allow for direction, **A**1 $\mathbf{d}_{PO} = 2\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}$ and allow coordinates e.g. (4, 6, 0)Realisation that the dot product is required between $\mathbf{d}_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \mathbf{d}_{PQ} = \begin{pmatrix} 4 \\ 6 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 6 \\ 0 \end{pmatrix}$ M1 and their \overrightarrow{PQ} or \overrightarrow{QP} Dependent on the previous M mark. An attempt to apply the dot product formula between $\cos q = \pm \left[\frac{(1)(4) + (2)(6) + (3)(0)}{\sqrt{(1)^2 + (2)^2 + (3)^2} \cdot \sqrt{(4)^2 + (6)^2 + (0)^2}} \right]$ dM1 and their \overline{PO} or \overline{OP} $\pm A$ 3 $\cos \theta = \frac{16}{\sqrt{14} \sqrt{52}} \Rightarrow \theta = 53.62985132... = 53.63 \text{ (2 dp)}$ Anything that rounds to 53.63 Α1

Summer 2018

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(c)	d .	t trigonometric equation involving d . e.g. $\frac{d}{\text{their } PQ} = \sin q$, o.e.	M1
	${d = \sqrt{52}\sin 53.63 \Rightarrow} d = 5.8064 = 5.81 (3sf)$	Anything that rounds to 5.81	A1
			[2]
	Alternative for part (c): (Let <i>M</i> be the po	pint on l_1 closest to Q)	
	$\overrightarrow{OM} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Rightarrow \overrightarrow{QM} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$ $\begin{pmatrix} \lambda - 4 \\ 2\lambda - 6 \\ 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 0 \Rightarrow \lambda - 4 + 4\lambda - 12 + 9\lambda = 0$ $\begin{pmatrix} \lambda - 4 \\ 2\lambda - 6 \\ 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \lambda - 4 + 4\lambda - 12 + 9\lambda = 0 \Rightarrow \lambda = \frac{8}{7}$ $\lambda = \frac{8}{7} \Rightarrow \overrightarrow{QM} = \frac{1}{7} \begin{pmatrix} -20 \\ -26 \\ 24 \end{pmatrix} \Rightarrow \overrightarrow{QM} = \frac{1}{49} \sqrt{20^2 + 26^2 + 24^2}$	Applies a complete and correct method that leads to an expression for the shortest distance	M1
	$=\sqrt{\frac{236}{7}}=5.81$	Anything that rounds to 5.81	A1
			[2]
			11

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme	Notes	Marks
9.		$f(x) = \frac{12}{(2x - 1)^2}$	$\frac{1}{1}, 1 \leqslant x \leqslant 5; \ y = \frac{4}{3}$	
			$(2x-1)^{-2} \to \pm / (2x-1)^{-1} \text{ or } \pm / u^{-1}$ where $u = 2x \pm 1; \lambda \neq 0$	M1
(a)	$\left\{ \int \frac{1}{(2x)^n} dx \right\} = \left\{ \int \frac{1}{(2x)^n$	$\left. \frac{1}{(-1)^2} \mathrm{d}x \right\} = \frac{(2x-1)^{-1}}{(-1)(2)} \left\{ +c \right\}$	$\left(\frac{(2x-1)^{-1}}{(-1)(2)}\right) \text{ or } -\frac{1}{2(2x-1)} \text{ oe with or without } +c.$	A1
			Can be simplified or un-simplified.	[2]
(b)		$\rho \int \left(\frac{12}{2x-1}\right)^2 \mathrm{d}x$	For $\pi \int \left(\frac{12}{2x-1}\right)^2 dx$ or $\pi \int \frac{144}{(2x-1)^2} dx$ Ignore limits and dx .	B1
			Can be implied and the π may be recovered later.	
		$V_1 = 1$	$44p\left[\frac{-1}{2(2x-1)}\right]_{1}^{5}$	
	1	((1) (1))	Applies x-limits of 5 and 1 to an expression of the form $\pm \beta (2x-1)^{-1}$; $\beta \neq 0$ and subtracts the correct way round.	M1
	$=144(\pi)$	$\left(\left(\frac{-1}{2(2(5)-1)} \right) - \left(\frac{-1}{2(2(1)-1)} \right) \right)$	way round. Correct expression for the integrated volume with or without the π . Can be simplified or un-simplified. Can be implied by 64 or 64 ρ .	A1
		$\left\{ =-72\left(\pi \right. \right.$	$\left(\frac{1}{9}-1\right)=64(\pi)$	
	Note: π	$\int_{1}^{5} \left(\frac{12}{2x-1}\right)^{2} dx \text{ or } \int_{1}^{5} \left(\frac{12}{2x-1}\right)^{2} dx$	evaluated directly as 64π or 64 with no incorrect	
		working seen scores M	1A1 (presumably on a calculator)	
			Attempts to use the formula pr^2h with numerical r and h with at least one of $r = \frac{4}{3}$ or $h = 4$ correct	M1
	$\left\{ V_{ m cylir} ight.$	$\left\{ -\frac{4}{3} \right\}^2 (4) \left\{ = \frac{64}{9} \rho \right\}$	or attempts $\pi \int_{1}^{5} \left(\frac{4}{3}\right)^{2} dx$ or $\pi \int_{0}^{5} \left(\frac{4}{3}\right)^{2} dx$	M1
			Correct expression for $V_{ m cylinder}$	
			$p\left(\frac{4}{3}\right)^2$ (4) or $\frac{64}{9}p$ implies this mark	A1
	$\left\{ \operatorname{Vol}(R) \right\}$	$(1 = 64p - \frac{64p}{9}) \Rightarrow Vol(R) = \frac{5}{4}$	$\frac{12}{9}p$ $\frac{512}{9}p$ or $56\frac{8}{9}p$	A1
				[6]
			Question 9 Notes	8
9. (b)	Note	See extra notes below for how t	o mark attempts at $\pi \int_{1}^{5} \left(\left(\frac{12}{2x-1} \right) - \left(\frac{4}{3} \right) \right)^{2} dx$	
	Note	An acceptable approach is π \int_{1}^{π}	$\int_{0}^{5} \left(\left(\frac{12}{2x-1} \right)^{2} - \left(\frac{4}{3} \right)^{2} \right) dx$	

This resource was created and owned by Pearson Edexcel

WMA02

Attempts at
$$\pi \int_{1}^{5} \left(\left(\frac{12}{2x-1} \right) - \left(\frac{4}{3} \right) \right)^{2} dx$$
:

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x - 1} - \frac{4}{3} \right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x - 1)^{2}} - \frac{32}{2x - 1} + \frac{16}{9} \right) dx$$

B1 for the embedded $\rho \int \left(\frac{12}{2x-1}\right)^2 dx$ (π may be recovered later)

$$= \pi \left[-\frac{72}{2x - 1} - 16\ln(2x - 1) + \frac{16}{9}x \right]_{1}^{5}$$
$$= \pi \left[\left(-\frac{72}{9} - 16\ln 9 + \frac{80}{9} \right) - \left(-72 + \frac{16}{9} \right) \right]$$

M1A1 for the embedded $-\frac{72}{9} - (-72)$ or $\left(-\frac{72}{9} - (-72)\right)\pi$ $\left(=\frac{640}{9}\pi - 48\ln 9\right)$

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x - 1} - \frac{4}{3} \right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x - 1)^{2}} + \frac{16}{9} \right) dx$$

B1 for the embedded $\rho \int \left(\frac{12}{2x-1}\right)^2 dx$ (π may be recovered later)

$$= \pi \left[-\frac{72}{2x - 1} + \frac{16}{9} x \right]_{1}^{5}$$
$$= \pi \left[\left(-\frac{72}{9} + \frac{80}{9} \right) - \left(-72 + \frac{16}{9} \right) \right]$$

M1A1 for the embedded $-\frac{72}{9}-(-72)$ or $\left(-\frac{72}{9}-(-72)\right)\pi$ $\left(=\frac{640}{9}\pi\right)$

$$V = \pi \int_{1}^{5} \left(\frac{12}{2x - 1} - \frac{4}{3} \right)^{2} dx = \pi \int_{1}^{5} \left(\frac{144}{(2x - 1)^{2}} - \frac{16}{9} \right) dx$$

B1 for the embedded $\rho \int \left(\frac{12}{2x-1}\right)^2 dx$ (π may be recovered later)

$$= \pi \left[-\frac{72}{2x - 1} - \frac{16}{9} x \right]_{1}^{5}$$
$$= \pi \left[\left(-\frac{72}{9} - \frac{80}{9} \right) - \left(-72 - \frac{16}{9} \right) \right]$$

M1A1 for the embedded $-\frac{72}{9} - (-72)$ or $\left(-\frac{72}{9} - (-72)\right)\pi$ $\left(=\frac{512}{9}\pi\right)$

WMA02

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Question Scheme Notes Marks Number C: $xe^{5-2y} - y = 0$ or $\ln x + 5 - 2y - \ln y = 0$; $P(2e^{-1}, 2)$ lies on C. 10. Obtains either **Either** $\pm Ae^{5-2y} \pm Bxe^{5-2y} \frac{dy}{dx} \pm \frac{dy}{dx} (=0)$ • $e^{5-2y} - 2xe^{5-2y} \frac{dy}{dx} - \frac{dy}{dx} (=0)$ or $\pm Ae^{5-2y} \pm By \frac{dy}{dx} \pm \frac{dy}{dx} (=0)$ • $e^{5-2y} - 2y \frac{dy}{dx} - \frac{dy}{dx} (=0)$ or $\pm \frac{A}{x} \pm K \frac{dy}{dx} \pm \frac{B}{y} \frac{dy}{dx} (=0)$ M1 $\bullet \quad \frac{1}{r} - 2\frac{dy}{dr} - \frac{1}{r}\frac{dy}{dr} (=0)$ or $\pm \frac{\mathrm{d}x}{\mathrm{d}x} = \pm A \mathrm{e}^{\pm \alpha \pm 2y} \pm B y \mathrm{e}^{\pm \alpha \pm 2y}$ or $\pm Ae^{\pm 5} = \pm Be^{\pm 2y} \frac{dy}{dx} \pm Kye^{\pm 2y} \frac{dy}{dx}$ • $\frac{dx}{dy} = e^{2y-5} + 2ye^{2y-5}$ $A, B, K \neq 0$; a, b can be 0 • $e^5 = e^{2y} \frac{dy}{dx} + 2ye^{2y} \frac{dy}{dx}$ Correct differentiation. The "= 0" may be **A**1 implied by later work. Ignore any " $\frac{dy}{dx}$ =" in front of their differentiation Uses $P(2e^{-1}, 2)$ and their gradient equation to find a numerical value for $\frac{dy}{dx}$ or $\frac{dx}{dy}$. Could At P, $e^{5-2(2)} - 2(2e^{-1})e^{5-2(2)}\frac{dy}{dx} - \frac{dy}{dx} = 0$ have extra or fewer $\frac{dy}{dx}$ terms and may have M1 \Rightarrow e - 4 $\frac{dy}{dx}$ - $\frac{dy}{dx}$ = 0 \Rightarrow $\frac{dy}{dx}$ = $\frac{e}{5}$ rearranged their expression wrongly before substituting. Accept $\frac{dy}{dx}$ = awrt 0.54 as evidence. Dependent on the previous M $\left\{ m_T = \frac{e}{5} \Rightarrow \right\}$ mark. A correct attempt at an equation of the tangent at the • $y - 2 = \frac{e}{5} \left(x - \frac{2}{e} \right)$ or $x - \frac{2}{e} = 5e^{-1} \left(y - 2 \right)$ point $P(2e^{-1}, 2)$ using their dM1numerical $\frac{dy}{dx}$. If using y = mx + c• $2 = \frac{e}{5}(2e^{-1}) + c \implies c = \frac{8}{5} \implies y = \frac{e}{5}x + \frac{8}{5}$ must reach as far as c = ... $y = 0 \Rightarrow -2 = \frac{e}{5} \left(x - \frac{2}{e} \right) \Rightarrow x = -\frac{8}{e} \left\{ \Rightarrow A \left(-\frac{8}{e}, 0 \right) \right\}$ Finds at least one correct intercept. **A**1 For $-\frac{8}{3}$, allow awrt -2.94. $x = 0 \Rightarrow y - 2 = \frac{e}{5} \left(-\frac{2}{e} \right) \Rightarrow y = \frac{8}{5} \left\{ \Rightarrow B\left(0, \frac{8}{5}\right) \right\}$ Dependent on both previous M marks. Applies $\frac{1}{2}$ (their x_A)(their y_B) where their x_A Area $OAB = \frac{1}{2} \left(\frac{8}{5} \right) \left(\frac{8}{5} \right)$ ddM1 and y_B are **exact**. Condone a method that gives a $=\frac{32}{50}$ or $\frac{32}{5}e^{-1}$ $\frac{32}{5e}$ or $\frac{32}{5}e^{-1}$. Allow 6.4e⁻¹ but not e.g. $\frac{64}{10e}$ A₁ [7] 7 **Ouestion 10 Notes** Accept the alternative notation for the differentiation e.g. $e^{5-2y}dx - 2xe^{5-2y}dy - dy = 0$ Note

Summer 2018 Past Paper (Mail Gener	The 2 nd and 3 rd method marks are available for work in decimals but the fillar method marks are available for work in decimals but the fillar method mark case. WMA02
Note	Accept y' for $\frac{dy}{dx}$

Question Number	Scheme	Notes	Marks
11. (a)	$x = 3\sec q = \frac{3}{\cos q} = 3$	$3(\cos q)^{-1}$	
	$\frac{\mathrm{d}x}{\mathrm{d}q} = -3(\cos q)^{-2}(-\sin q)$	$\frac{\mathrm{d}x}{\mathrm{d}q} = \pm k \Big((\cos q)^{-2} (\sin q) \Big)$	M1
	$\frac{dx}{dq} = \left\{ \frac{3\sin q}{\cos^2 q} \right\} = \underbrace{\left(\frac{3}{\cos q} \right) \left(\frac{\sin q}{\cos q} \right)}_{\text{Or}} = \underbrace{\frac{3\sec q \tan q}{\cos q}}_{\text{O}} *$ $\frac{dx}{d\theta} = \left\{ \frac{3\sin \theta}{\cos^2 \theta} \right\} = \underbrace{\left(\frac{3}{\cos \theta} \right) (\tan \theta)}_{\text{Or}} = \underbrace{\frac{3\sec \theta \tan \theta}{\cos^2 \theta}}_{\text{O}} *$ $\frac{dx}{d\theta} = \left\{ \frac{3\sin \theta}{\cos^2 \theta} \right\} = \underbrace{\left(\frac{3\tan \theta}{\cos \theta} \right)}_{\text{O}} = \underbrace{\frac{3\sec \theta \tan \theta}{\cos \theta}}_{\text{O}} *$	Convincing proof with no notational or other errors such as missing θ 's or missing signs or inconsistent variables. But use of $\cos^{-1}\theta$ as $\frac{1}{\cos\theta}$ is OK. Must see both <u>underlined steps</u> . Allow $3\tan\theta\sec\theta$	A1 *
	If the $\frac{dx}{d\theta}$ is included on the lhs it must be correct but possible if it appears correctly at some		
			[2]
(a) Alt 1	$x = 3\sec q = \frac{3}{\cos q}$ $\left(u = 3 \qquad v = \cos q \right)$		
	$\begin{cases} u = 3 & v = \cos q \\ \frac{\mathrm{d}u}{\mathrm{d}q} = 0 & \frac{\mathrm{d}v}{\mathrm{d}q} = -\sin q \end{cases}$		
	$\frac{\mathrm{d}x}{\mathrm{d}q} = \frac{0(\cos q) - (3)(-\sin q)}{(\cos q)^2}$	Accept $\frac{0 \times (\cos \theta) \pm (3)(\sin \theta)}{(\cos \theta)^2}$ as evidence but if the quotient rule is quoted, it must be correct.	M1
	$\frac{dx}{dq} = \left\{ \frac{3\sin q}{\cos^2 q} \right\} = \underbrace{\left(\frac{3}{\cos q}\right) \left(\frac{\sin q}{\cos q}\right)}_{\text{Or}} = \underbrace{\frac{3\sec q \tan q}{\cos q}}_{\text{V}} *$ $\frac{dx}{d\theta} = \left\{ \frac{3\sin \theta}{\cos^2 \theta} \right\} = \underbrace{\left(\frac{3}{\cos \theta}\right) \left(\tan \theta\right)}_{\text{V}} = \underbrace{\frac{3\sec \theta \tan \theta}{\cos^2 \theta}}_{\text{V}} *$	Convincing proof with no notational or other errors such as missing θ 's. Must see both <u>underlined steps.</u> Allow $3\tan\theta\sec\theta$	A1 *
	If the $\frac{dx}{d\theta}$ is included on the lhs it must be correct but possible if it appears correctly at some		[2]

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(b)		$y = \frac{\sqrt{x^2 - 9}}{x}, x \geqslant 3; x = 3\sec\theta = 0$	$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec\theta\tan\theta$	
	$\int \frac{\sqrt{x^2 - x}}{x}$	$\frac{-9}{3\sec\theta} dx = \int \frac{\sqrt{((3\sec\theta)^2 - 9)}}{3\sec\theta} 3\sec\theta \tan\theta d\theta$	Full substitution of $\frac{\sqrt{x^2-9}}{x}$ in terms of q and "dx" as their " $\pm k \sec q \tan q$ ". This may be implied if they reach $\pm \lambda \int \tan^2 \theta \{d\theta\}$ with no incorrect working seen.	M1
	Note	: If $\sqrt{x^2-9}$ is simplified incorrectly to $x-3$ the substitution (Approximately substitution)		
		substitution. (Any subsequent n	$\frac{\pm \lambda \int \tan^2 \theta \{ d\theta \}}{(\text{Allow } \pm \lambda \int \tan \theta \tan \theta \{ d\theta \})}$	M1
		$=3\int \tan^2\theta d\theta$	$3\int \tan^2\theta \{d\theta\}$ (Allow $3\int \tan\theta \tan\theta \{d\theta\}$)	A1
		$= (3) \int (\sec^2 \theta - 1) d\theta$	Dependent on the previous M mark applies $\tan^2 q = \sec^2 q - 1$	dM1
		$= (3)(\tan\theta - \theta)$	$k \tan^2 \theta \to k (\tan \theta - \theta)$	A1
		$\begin{cases} \operatorname{Area}(R) = \int_{3}^{6} \frac{\sqrt{(x^2 - 9)}}{x} \mathrm{d}x = 0 \end{cases}$	$= \left[3\tan q - 3q\right]_0^{\frac{\rho}{3}}$	
		$= \left(3\tan\left(\frac{p}{3}\right) - 3\left(\frac{p}{3}\right)\right) - (0)$	Substitutes limits of $\frac{p}{3}$ and 0 into an expression that contains a trigonometric and an algebraic function and subtracts the correct way round. [Note: Limit of 0 can be implied.] If they return to x , they must substitute the limits 6 and 3 and subtract the correct way round having previously obtained a trigonometric and an algebraic function.	M1
		$=3\sqrt{3}-p$	$3\sqrt{3} - \rho$	A1
	$3 \tan \theta -$	$3\theta\Big]_0^{\frac{\pi}{3}} = 3\sqrt{3} - \pi$ can score the final M1A1 but is incorrect, score		
		is incorrect, score	, 1110	[7]
		Question 1	1 Notes	9
11. (a)	Note	$x = \frac{3}{\cos \theta} \Rightarrow x \cos \theta = 3 \Rightarrow \frac{dx}{d\theta} \cos \theta - x \sin \theta$		A1.
(b)	Note	A decimal answer of 2.054559769 (without		

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel **Mathematics C34**

Question Number	Scheme	Notes	Marks
12.	$\cot x - \tan x =$	$\equiv 2\cot 2x$	
(a)	$\cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x}$	Attempts to write both $\cot x$ and $\tan x$ in terms of $\sin x$ and $\cos x$ only	M1
	$= \frac{\cos^2 x}{\sin x \cos x} - \frac{\sin^2 x}{\cos x \sin x} \left(= \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \right)$	Dependent on the previous M mark Attempts to find the same denominator for both fractions	dM1
	$= \frac{\cos 2x}{\frac{1}{2}\sin 2x} \left(= \frac{2\cos 2x}{\sin 2x} \right)$	Dependent on both the previous M marks. Evidence of correctly applying either $\cos 2x = \cos^2 x - \sin^2 x$ or $\sin 2x = 2\sin x \cos x$	ddM1
	$= 2\cot 2x (*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1 *
			[4]
(a) Alt 1	$\cot x - \tan x = \frac{1}{\tan x} - \tan x$	Writes $\cot x$ in terms of $\tan x$	M1
	$\frac{1}{\tan x} - \frac{\tan^2 x}{\tan x} \left(= \frac{1 - \tan^2 x}{\tan x} \right)$	Dependent on the previous M mark Attempts to find the same denominator for both fractions	dM1
	$\frac{2}{\tan 2x}$	Dependent on both the previous M marks. Evidence of correctly applying $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$	ddM1
	$= 2\cot 2x (*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1*
			[4]
(a) Alt 2	$2\cot 2x = \frac{2}{\tan 2x}$	Applies $\cot 2x = \frac{1}{\tan 2x}$	M1
	$= \frac{2}{\frac{2\tan x}{1-\tan^2 x}}$	Dependent on the previous M mark Attempts to apply the double angle formula for $\tan 2x$	dM1
	$=\frac{1-\tan^2 x}{\tan x}=\frac{1}{\tan x}-\tan x$	Dependent on both the previous M marks. Obtains a rational fraction with a single denominator and attempts to split this up into 2 terms	ddM1
	$= \cot x - \tan x (*)$	Correct proof with no notational or other errors such as missing <i>x</i> 's or inconsistent variables.	A1 *
			[4]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(b)		$5 + \cot(\theta - 15^\circ) - \frac{1}{2}$	$\tan\left(\theta - 15^{\circ}\right) = 0$		
		$\Rightarrow 5 + 2\cot() = 0$	Obtains an equation of this form.	M1	
		$\cot() = -\frac{5}{2} \implies \tan() = -\frac{2}{5}$	Obtains an equation of the form $tan() = \pm \frac{2}{5}$	M1	
		$2\theta - 30 = \tan^{-1}\left(-\frac{2}{5}\right)$	Can be implied by e.g. $2\theta - 30 = \text{awrt} - 21.8$ or $2\theta - 30 = \text{awrt} 158.2$	A1	
	θ	= awrt 4.1° or θ = awrt 94.1°	One correct answer e.g. anything that rounds to 4.1 or anything that rounds to 94.1	A1	
	θ=	= awrt 4.1° and θ = awrt 94.1°	Both answers correct. Ignore any extra answers out of range but withhold this mark if there are any extra values in range.	A1	
			1.0		[5]
		Alternative to			
	$5 + \cot() - \tan() = 0 \Rightarrow 5\tan() + 1 - \tan^{2}()$ $\tan^{2}() - 5\tan() - 1 = 0$			M1	
	Multiples through by tan() to obtain a 3TQ in tan()				
-		$\tan() = \frac{5 \pm \sqrt{25 + 4}}{2}$	Solves their 3TQ and proceeds to tan() =	M1	
	($(\theta - 15^{\circ}) = \tan^{-1}\left(\frac{5 \pm \sqrt{25 + 4}}{2}\right)$	Can be implied by e.g. $\theta - 15 = 79.099$ or $\theta - 15 = -10.900$	A1	
	θ	= awrt 4.1° or θ = awrt 94.1°	One correct answer e.g. anything that rounds to 4.1 or anything that rounds to 94.1	A1	
	θ=	= awrt 4.1° and θ = awrt 94.1°	Both answers correct. Ignore any extra answers out of range but withhold this mark if there are any extra values in range.	A1	
					[5]
		Ones	tion 12 Notes	<u> </u>	9
			dates to "meet in the middle" e.g.		
(a)	Note	$lhs = \frac{1}{\tan x} - ta$	$\tan x = \frac{1 - \tan^2 x}{\tan x}$: M1dM1 as in Alt1 $\frac{2}{\tan^2 x}$: ddM1 uses double angle for tan2x on rhs		
		=	$\frac{1 - \tan^2 x}{\tan x}$ so lhs = rhs rect proof with conclusion		

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

- act : apc:					
Question Number	Scheme	Notes	Marks		
13. (a)	$\frac{1}{(4-x)(2-x)} = \frac{A}{(4-x)} + \frac{B}{(2-x)}$ $\Rightarrow 1 \equiv A(2-x) + B(4-x) \Rightarrow A = \dots \text{ or } B = \dots$	Forming a correct identity. For example, $1 \circ A(2-x) + B(4-x) \text{ from}$ $\frac{1}{(4-x)(2-x)} = \frac{A}{(4-x)} + \frac{B}{(2-x)}$ and finds at least one of $A =$ or $B =$	M1		
	$A = -\frac{1}{2}, B = \frac{1}{2}$ giving $\frac{-\frac{1}{2}}{(4-x)} + \frac{\frac{1}{2}}{(2-x)}$	$\frac{-\frac{1}{2}}{(4-x)} + \frac{\frac{1}{2}}{(2-x)}$ or any equivalent form. Cannot be recovered from part (b) and must be stated as partial fractions in (a) and not just the values of the constants.	Al		
	Correct answer in (a)	scores both marks			
			[2]		
(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(4-x)(2-x), \ t \geqslant 0$				
	$\int \frac{1}{(4-x)(2-x)} \mathrm{d}x = \int k \mathrm{d}t$	Separates variables correctly. dx and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.	B1 oe		
	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt \ (+c)$	$\pm \lambda \ln \alpha (4-x) \pm \mu \ln \beta (2-x),$ $\lambda \neq 0, \ \mu \neq 0, \ \alpha \neq 0, \ \beta \neq 0$	M1		
	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt + c$ Or e.g. $\frac{1}{2}\ln(8-2x) - \frac{1}{2}\ln(4-2x) = kt + c$	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt \text{ oe}$ Do not condone missing brackets around the $4-x$ and/or the $2-x$ unless they are implied by subsequent work.	A1		
	$\left\{t = 0, \ x = 0 \Rightarrow\right\} \frac{1}{2}\ln 4 - \frac{1}{2}\ln 2 = 0 + c \right\} \Rightarrow$	$c = \frac{1}{2} \ln 2$ Using both $t = 0$ and $x = 0$ in an integrated equation containing a constant of integration.	M1		
	$\frac{1}{2}\ln(4-x) - \frac{1}{2}\ln(2-x) = kt + \frac{1}{2}\ln 2 \Rightarrow \ln\left(\frac{(4-x)}{2(2-x)}\right) = 2kt$				
	Starting from an equation of the form $\pm / \ln(2 - x) \pm m \ln(b - x) = \pm kt + c$, λ , μ , α , $\beta \ne 0$, and applies a fully correct method to eliminate their logarithms. (Sign errors only). Must have a constant of integration that need not be evaluated.				
	$4 - x = 4e^{2kt} - 2xe^{2kt} \Rightarrow 4 - 4e^{2kt} = x - 2xe^{2kt}$ $\Rightarrow 4 - 4e^{2kt} = x(1 - 2e^{2kt}) \Rightarrow x = \frac{4 - 4e^{2kt}}{1 - 2e^{2kt}} $ (*)	Dependent on the previous M mark A complete correct method of rearranging to make x the subject allowing sign errors only. Must have a constant of integration that need not be evaluated.	dM1		
	1 – 2e	Achieves the given answer with no errors.	A1 *		
1					

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C34 WMA02

()			0 1 1 11 11	1		
(c)	$\left\{ \frac{4-x}{4-2x} = e^{2kt} \right\} \Rightarrow e^{2kt} = \frac{4-1}{4-2} \left\{ = \frac{3}{2} \right\}$		Substitutes $x = 1$ leading to	M1		
			e^{2kt} = value Note: $k = 0.1$			
	Anything that rounds to 2.03					
	$t = \frac{1}{2(0.1)}$	$\sin\left(\frac{3}{2}\right) = 2.027325541 \left\{= 2.03 \text{ (s) (3 sf)}\right\}$	Do not apply isw here and do not accept the exact value.	A1		
					[2]	
					11	
		Notes				
	May use an earlier form of their equation to find t when $x = 1$ e.g.					
		$\frac{1}{2}\ln(3) - \frac{1}{2}\ln(1) = 0.1t + \frac{1}{2}\ln 2 \Rightarrow 0.2t = \ln\frac{3}{2}$				
	•	M1: For correct processing leading to kt = value				
(c)	Note	$t = \frac{1}{2(0.1)} \ln\left(\frac{3}{2}\right) = 2.0273$	325541 {= 2.03 (s) $(3$ sf)}			
		A1: Anything t	that rounds to 2.03			
		Do not ap	oply isw here			

Sum		204	O
Sum	mer	Z U1	a

Summer 2018 www.mystudybro.com

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

VI	at	he	m	at	ICS	C3

Question Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcel			
Number	Scheme	Notes	Marks	
14.	(a) $y = \frac{(x^2 - 4)^{\frac{1}{2}}}{x^3}, x > 2;$ (b) $f(x) = \frac{24(x^2 - 4)^{\frac{1}{2}}}{x^3}, x > 2$		
(a)	$u = (x^2 - 4)^{\frac{1}{2}} \qquad v = x^3$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \pm /x(x^2 - 4)^{-\frac{1}{2}}, \ \lambda \neq 0.$ Can be implied.	M1	
	$\frac{du}{dx} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}} \frac{dv}{dx} = 3x^2$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}} \text{un-simplified}$ or simplified. Can be implied.	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}(x^3) - 3x^2(x^2 - 4)^{\frac{1}{2}}}{(x^3)^2}$	Applies $\frac{vu\ell - uv\ell}{v^2}$ with $u = (x^2 - 4)^{\frac{1}{2}}$, $v = x^3$, their $u\ell$ and their $v\ell$.	M1	
	$dx \qquad (x^3)^2$	Correct $\frac{dy}{dx}$, un-simplified or simplified.	A1	
	$= \frac{x^4(x^2-4)^{-\frac{1}{2}}-3x^2(x^2-4)^{\frac{1}{2}}}{x^6}$			
	Either $ \frac{dy}{dx} = \frac{(x^2 - 4)^{-\frac{1}{2}}(x^4 - 3x^2(x^2 - 4))}{x^6} $	Simplifies $\frac{dy}{dx}$ by either correctly taking out a		
	$dx = x^{6}$ or $\frac{dy}{dx} = \frac{x^{2}(x^{2} - 4)^{-\frac{1}{2}} - 3(x^{2} - 4)^{\frac{1}{2}}}{x^{4}}$	factor of $(x^2 - 4)^{-\frac{1}{2}}$ from their numerator or by multiplying numerator and denominator by $(x^2 - 4)^{\frac{1}{2}}$	M1	
	$\frac{dy}{dx} = \frac{x^2 - 3(x^2 - 4)}{x^4(x^2 - 4)^{\frac{1}{2}}} \Rightarrow \frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$	Correct algebra leading to $\frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$ $\left\{ A = -2 \right\}$	A1	
			[6]	
	Alternative by product rule:			
	$u = (x^2 - 4)^{\frac{1}{2}} \qquad \qquad v = x^{-3}$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \pm /x(x^2 - 4)^{-\frac{1}{2}}, \ \lambda \neq 0.$ Can be implied.	M1	
	$\frac{du}{dx} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}} \frac{dv}{dx} = -3x^{-4}$	$(x^2 - 4)^{\frac{1}{2}} \rightarrow \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}$ un-simplified or simplified. Can be implied.	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}(2x)(x^2 - 4)^{-\frac{1}{2}}(x^{-3}) + (-3x^{-4})(x^2 - 4)^{\frac{1}{2}}$	Applies $vu' + uv'$ with $u = (x^2 - 4)^{\frac{1}{2}}$, $v = x^{-3}$, their $u\ell$ and their $v\ell$.	M1	
		Correct $\frac{dy}{dx}$, un-simplified or simplified.	A1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2(x^2 - 4)^{\frac{1}{2}}} - \frac{3(x^2 - 4)^{\frac{1}{2}}}{x^4} = \dots$	Simplifies $\frac{dy}{dx}$ by correctly writing as two fractions and attempts a common denominator	M1	
	$\frac{dy}{dx} = \frac{x^2 - 3(x^2 - 4)}{x^4(x^2 - 4)^{\frac{1}{2}}} \implies \frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$	Correct algebra leading to $\frac{dy}{dx} = \frac{-2x^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}}$ $\left\{ A = -2 \right\}$	A1	
		, ,	[6]	

Summer 2018

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA02

rasirapei	(IVIAIR Schen	ile) This resource was created a	and owned by Fearson Edexcer	VVIVIAU2
(b)	-	$x(x) = \frac{24(-2x^2 + 12)}{x^4(x^2 - 4)^{\frac{1}{2}}} = 0 \Rightarrow$ $4(-2x^2 + 12) = 0 \Rightarrow x^2 = 6$	Sets the numerator of their $\frac{dy}{dx} = 0$ or the numerator of their $f(x) = 0$ and solves to give $x^2 = K$, where $K > 0$	M1
		$\Rightarrow x = \sqrt{6}$ or awrt 2.45	$x = \sqrt{6}$ or awrt 2.45 (Allow $x = \pm \sqrt{6}$ or awrt ± 2.45) (may be implied by their working)	A1
	$f(\sqrt{6}) =$	$\frac{24(6-4)^{\frac{1}{2}}}{\left(\sqrt{6}\right)^3}; = \frac{24\sqrt{2}}{6\sqrt{6}} = \frac{4}{\sqrt{3}} \text{ or } \frac{4}{3}\sqrt{3}$	Dependent on the previous M mark. Substitutes their found x into $f(x)$ or the given	dM1
	(**)	$\left(\sqrt{6}\right)^3$ $6\sqrt{6}$ $\sqrt{3}$ 3	cso leading to $f_{max} = \frac{24\sqrt{2}}{6\sqrt{6}}$ or $\frac{4}{\sqrt{3}}$ or $\frac{4}{3}\sqrt{3}$ (Must be exact here)	A1
	Range	: $0 < f(x) \le \frac{4}{3}\sqrt{3}$ or $0 < y \le \frac{4}{\sqrt{3}}$ Or e.g. $\left(0, \frac{4}{3}\sqrt{3}\right]$	Correct range of y or $f(x)$. Also allow ft on their maximum exact value if both of the M's have been scored. Allow f or "range" for $f(x)$.	A1ft
				[5]
(c)	The function f is many-one		Also accept "the function f is not one-one" or "the inverse is one-many". This mark should be withheld if there are contradictory statements.	B1
				[1]
				12
14 (c)	Note Accept • f is many to one (or 2 values in domain of f map to one in the range) • f is not one to one • f -1 would be one to many • the inverse would be one to many • it would be one to many • it is not one to one • the graph illustrates a many to one function Do NOT allow • it is many to one • You can't reflect in y = x			

Any reference to "it" we must assume refers to the inverse because of the wording in the question