

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Core Mathematics 34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WMA02_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol√ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1.(a)	$R = \sqrt{34}$	Cao (Must be exact but score when first seen and ignore decimal value (5.83))	B1
	$\tan \alpha = \pm \frac{5}{3}, \tan \alpha = \pm \frac{5}{3}, \tan \alpha = \pm \frac{5}{\sqrt{34}}, \sin \alpha = \pm \pm \pm \frac{5}{\sqrt{34}}, \sin \alpha = \pm \pm \frac{5}{\sqrt{34}}, \sin \alpha = \pm \pm \pm \frac{5}{\sqrt{34}}, \sin \alpha = \pm \pm \pm \frac{5}{\sqrt{34}}, \sin \alpha = \pm \pm$	$\alpha = \pm \frac{5}{\sqrt{34}} \text{ or } \pm \frac{3}{\sqrt{34}} \Rightarrow \alpha =$) So their R	M1
	$\alpha = 59.04^{\circ}$	awrt 59.04°	A1
7)			(3)
(b)	$\sqrt{34}\cos(\theta - 59.04) = 2 \Rightarrow \cos(\theta - 59.04) = \frac{2}{\sqrt{34}}(0.343)$ Attempts to use part (a) "\sqrt{34}"\cos(\theta - "59.04") = 2 and proceeds to $\cos(\theta \pm "59.04") = K, K , 1$ May be implied by \theta - "59.04" = 69.94\(^0\) or \theta - "59.04"\cos^{-1}\left(\frac{2}{\text{their}\sqrt{34}}\right) The \theta - "59.04" must be seen here or implied later		
	$\theta_1 - 59.04 = 69.94 \Rightarrow \theta_1 = \text{awrt } 129.0^\circ$		A1
	$\theta_2 \pm 59.04 = 360 - 6$ Correct attempt at a second It is dependent upon having Usually for θ -their $59.04 = 36$	solution in the range. scored the previous M.	d M1
	θ ₂ = 349.1°	awrt 349.1°	A1
	For solutions in (b) that are otherwise fully co- deduct the fina		
			(4)
(c)	θ + their 59.04 = $\cos^{-1}\left(\frac{2}{\text{their }\sqrt{34}}\right) \Rightarrow \theta = \dots$		
	Allow θ – their 59.04 = $\cos^{-1} \left(\frac{2}{\text{their} \sqrt{34}} \right)$ Evidence that use is being made of parts (a) be implied by the use of the	and (b) to obtain a value for θ . This can	M1
	$\theta = 10.9^{\circ}$	awrt 10.9	A1
			(2)
			(9 marks)

Question Number	Scheme	Notes	Marks
2	$\frac{\mathrm{d}\left(4x\sin x\right)}{\mathrm{d}x} = 4x\cos x + 4\sin x$	Applies product rule to $4x \sin x$ to give $\frac{d(4x \sin x)}{dx} = \pm 4x \cos x + 4 \sin x$	M1
	$\frac{\mathrm{d}\left(\pi y^2\right)}{\mathrm{d}y} = 2\pi y \frac{\mathrm{d}y}{\mathrm{d}x}$	Applies chain rule to πy^2 to give $\frac{d(\pi y^2)}{dy} = Ay \frac{dy}{dx}$	M1
	•	$5x + 4\sin x = 2\pi y \frac{dy}{dx} + 2$ fferentiation. oe $\sin x dx = 2\pi y dy + 2 dx$	A1
		nore any spurious " $\frac{dy}{dx}$ = "	
		using explicit differentiation: $x \sin x - 2x)^{\frac{1}{2}}$	
	$\frac{dy}{dx} = \left(\frac{1}{2\sqrt{\pi}}\right) (4x\sin x - 2x)^{-\frac{1}{2}} (4x\cos x + 4\sin x - 2)$ $M1: \frac{d(4x\sin x)}{dx} = \pm 4x\cos x + 4\sin x \text{ (as before)}$ $M1: (4x\sin x - 2x)^{\frac{1}{2}} \to k(4x\sin x - 2x)^{-\frac{1}{2}}$		M1 M1
	Allow omission of π and sign errors when rearranging for the M marks		
	$\frac{dy}{dx} = \frac{1}{2\sqrt{\pi}} (4x \sin x - 2x)^{-\frac{1}{2}} (4x \cos x + 4\sin x - 2) \text{ oe}$		A1
	$x = \frac{\pi}{2}, y = 1$ $\Rightarrow 4 = 2\pi \frac{dy}{dx} + 2 \Rightarrow \frac{dy}{dx} = \dots \left(\frac{1}{\pi}\right)$	Uses $x = \frac{\pi}{2}$ and $y = 1$ to obtain a value for $\frac{dy}{dx}$ (may be implied). For implicit differentiation, there must be a dy/dx and there must be x 's and y 's. Explicit differentiation just requires use of $x = \frac{\pi}{2}$.	M1
	Uses normal gradient $-1 / \frac{dy}{dx}$ and $x = \frac{\pi}{2}$ Must use $-1 / \left(\frac{dy}{dx} \right)$ and $x = \frac{\pi}{2}$	$y = "-\pi" x + c \Rightarrow c = 1 + \frac{\pi^2}{2}$ $y = \pi y = 1$ to find equation of normal. $y = \pi y = 1$ must be correctly placed. Set reach as far as $x = \pi y = 1$.	M1
	$y - 1 = -\pi \left(x - \frac{\pi}{2} \right) \text{ oe}$	Allow 3sf or more decimal equivalent answers e.g. $y = -3.14x + 5.93$, $y-1 = -3.14(x-1.57)$ etc.	A1cso
			(6 marks)

Question Number	Scheme	Notes	Marks
3(a)	$(1+ax)^{-3} = 1 + (-3)(ax) + \frac{(-3)(-4)(-4)}{2!}$		
	Uses the binomial expansion with $n = -3$ and $x' = ax$. Minimum for M1 is $1 + (-3)(ax)$ but can be scored for a correct 3^{rd} or 4^{th}		M1
	term e.g. $\frac{(-3)(-4)}{2!}(ax)^2$ or $\frac{(-3)(-4)(-5)}{3!}(ax)^3$		
	$=1-3ax+6a^2x^2-10a^3x^3+$	A1: Three of the four terms correct and simplified	
	or = $1 - 3ax + 6(ax)^2 - 10(ax)^3 +$	A1: All four terms correct and simplified and seen in part (a).	A1A1
			(3)
(b)	$f(x) = \frac{2+3x}{(1+ax)^3} = (2+3x)$	$(1 - 3ax + 6a^2x^2 - 10a^3x^3)$	
	from part (a). This may be implied 'invisible' brackets around $2 + 3x$	$a^2x^2 - 10a^3x^3$) using their expansion by their expansion. Do not condone for part(a) unless their presence is	M1
		ecover in (b) from missing brackets in becoming a^2x^2	
		$\frac{2a^2 - 9a}{(a^2 - b^2)^2} + (18a^2 - 20a^3)x^3$	
	$12a^2 - 9a = 3$	Multiplies out and sets their coefficient of x^2 (which comes from exactly 2 terms from their expansion – the two terms may have been combined earlier) = 3.	dM1
	$4a^2 - 3a - 1 = (4a + 1)(a - 1) \Rightarrow a = \dots$		
	Correct method of solving a 3TQ. If working is shown see general guidance for correct methods. If no working is shown then you may need to check their values if their quadratic is incorrect.		
	$a = -\frac{1}{4}$	Cao. Accept equivalent answers but must come from the correct quadratic and must be clearly identified.	A1
		1	(4)
(c)	$18\left(-\frac{1}{4}\right)^2 - 20\left(-\frac{1}{4}\right)^3$	Subs their $a = -\frac{1}{4}$ (positive or negative) into their coefficient of x^3 (which comes from exactly 2 terms from their expansion)	M1
	Coefficient of x^3 is $\frac{23}{16}$	Cao. Allow $\frac{23}{16}x^3$	A1
			(2)
			9 marks

Question Number	Scheme	Notes	Marks
4 (a)	$x^{2} + x - 12 \overline{\smash{\big)}\ x^{4} + x^{3} - 7x^{2} + 8x - 48}$		
	$x^4 + x^3 - 12x^2$		
		$5x^2 + 8x - 48$	
		$\underline{5x^2 + 5x - 60}$	M1A1
	3x+12		
	M1: Divides $x^4 + x^3 - 7x^2 + 8x - 48$ by $x^2 + x - 12$ to get a quadratic quotient and a remainder of the form $\alpha x + \beta$ where α and β are not both zero A1: Correct quotient and remainder		
	$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} = x^2 + 5 + \frac{3(x+4) \text{ or } 3x + 12}{(x+4)(x-3)}$		M1
	Writes their answer as $\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} = \text{Their Quotient} + \frac{\text{Their Remainder}}{(x+4)(x-3)}$ $= x^2 + 5 + \frac{3}{(x-3)} \text{ or states } A = 5, B = 3$		1011
	$\equiv x^2 + 5 + \frac{3}{(x-3)}$	or states $A = 5$, $B = 3$	A1
			(4)

Alternatives to part (a) by dividing by linear factors	
M1: Divides by $(x-3)$ first then divides by $(x+4)$:	
$(x^4 + x^3 - 7x^2 + 8x - 48) \div (x - 3) : Q_1 = x^3 + 4x^2 + 5x + 23, R_1 = 21$	
$(x^3 + 4x^2 + 5x + 23) \div (x+4) : Q_2 = x^2 + 5, R_2 = 3$	M1A1
For the M1, first division requires Q_1 to be a cubic and R_1 a constant and the second division to give a quadratic Q_2 and constant R_2 A1: Correct quotients and remainders	
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{(x+4)(x-3)} = x^2 + 5 + \frac{3}{x+4} + \frac{21}{(x-3)(x+4)}$	M1
Writes their answer as $Q_2 + \frac{R_2}{x+4} + \frac{R_1}{(x-3)(x+4)}$	1411
$\equiv x^2 + 5 + \frac{3}{(x-3)}$ or states $A = 5, B = 3$	A1
M1: Divides by $(x + 4)$ first then divides by $(x - 3)$:	
$(x^4 + x^3 - 7x^2 + 8x - 48) \div (x + 4) : Q_1 = x^3 - 3x^2 + 5x - 12, R_1 = 0$	
$(x^3 - 3x^2 + 5x - 12) \div (x - 3) : Q_2 = x^2 + 5, R_2 = 3$	M1A1
For the M1, first division requires Q_1 to be a cubic and R_1 a constant and the second division to give a quadratic Q_2 and constant R_2 A1: Correct quotients and remainders	
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{(x+4)(x-3)} = x^2 + 5 + \frac{3}{x-3}(+0)$	M1
Writes their answer as $Q_2 + \frac{R_2}{x-3} + \frac{R_1}{(x-3)(x+4)}$	1411
$\equiv x^2 + 5 + \frac{3}{(x-3)}$ or states $A = 5, B = 3$	A1

	Alternative by comparing coefficients		
	$x^4 + x^3 - 7x^2 + 8x - 48 \equiv (x^2 + A)(x^2 + x - 12) + B(x + 4)$ Multiplies through by $(x^2 + x - 12)$ to obtain correct lhs and one of		
	$(x^2 + A)(x^2 + x - 12)$ or $B(x + 4)$ on the rhs	M1	
	If $(x^2 + A)(x^2 + x - 12)$ is expanded, must see both		
	$x^{2}(x^{2}+x-12)+A(x^{2}+x-12)$		
	2 correct equations e.g. $x^2 \Rightarrow A - 12 = -7$, $x \Rightarrow A + B = 8$, const $\Rightarrow -12A + 4B = -48$	A1	
	A = 5, B = 3 M1: Solves to obtain one of A or B A1: Both values correct	M1A1	
	Alternative by substitution		
	$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} \equiv x^2 + A + \frac{B}{x - 3}$ $x = 0 \Rightarrow 4 = A - \frac{B}{3}, x = 1 \Rightarrow \frac{45}{10} = 1 + A - \frac{B}{2}$ M1: Substitutes 2 values for x A1: 2 correct equations Multiplying through before substitution must satisfy the condition for multiplying through in the previous alternative.	M1A1	
	A = 5, B = 3 M1: Solves to obtain one of A or B A1: Both values correct		

			1
(b)	$g'(x) = 2x - \frac{3}{(x-3)^2}$	M1: $x^2 + A + \frac{B}{x - 3} \rightarrow 2x \pm \frac{B}{(x - 3)^2}$ A1: $x^2 + A + \frac{B}{x - 3} \rightarrow 2x - \frac{B}{(x - 3)^2}$ Follow through their <i>B</i> or the letter <i>B</i> or a made up <i>B</i> .	M1A1ft
	Spacia	l Case:	
	If they write $g(x)$ as $x^2 + 5 + \frac{3x + 12}{(x-3)}$	and correctly attempt to differentiate	
	as $2x$ + the quotient rule on $\frac{3x+12}{(x-3)}$	then the M mark is available but not	
		ent rule and the numerator must be a pression.	
	$g'(4) = 2 \times 4 - \frac{3}{(4-3)^2} (=5)$		M1
	Uses $m = g'(4) = (5)$ with $(4, g(4))$	(1) = (4, 24) to form eqn of tangent	
	y-24=5(x-4)	Correct method of finding an equation of the tangent. The gradient must be $g'(4)$ and the point must be an attempt on $(4, g(4))$	M1
	y = 5x + 4	Cso. This mark may be withheld for an incorrect "A" earlier or any incorrect work leading to a correct gradient.	A1
			(5)
			(9 marks)
	Alternative to part	(b) for first 3 marks	
	$g'(x) = \frac{\left(x^2 + x - 12\right)\left(4x^3 + 3x^2 - 14x - \frac{x^2}{4x^2}\right)}{\left(x^2 - \frac{x^2}{4x^2}\right)}$	$+8)-(x^4+x^3-7x^2+8x-48)(2x+1)$	
	(x^2)	$(x^2+x-12)^2$	
	M1: Correct use of the quotient ru	lle – there must be evidence of the	M1A1
	application of $\frac{vu'-uv'}{v^2}$ or this formula quoted and attempted.		
	Al: Correc	t derivative	
	$g'(4) = \frac{8 \times 256 - 192 \times 9}{8^2} (= 5)$	Substitutes $x = 4$ into their derivative	M1

Question Number	Scheme	Notes	Marks
	Note that 2^x can be replaced by $e^{x \ln x}$		
	"dx" throughout		
5		M1: Integrates by parts the right way around to obtain an expression	
	2x 2x	of the form $ax2^x - \int b2^x dx$.	
	$\int x2^{x} dx = x \frac{2^{x}}{\ln 2} - \int \frac{2^{x}}{\ln 2} dx$	Allow $a = 1$ and/or $b = 1$.	M1A1
		$A1: x \frac{2^x}{\ln 2} - \int \frac{2^x}{\ln 2} dx$	
		(Does not need to be seen all on one line)	
		dM1: Completes to obtain an	
	$\int_{-2^x} dx = 2^x = 2^x$	expression of the form $-k2^x$	D 51 A 1
	$\int x 2^x dx = x \frac{2^x}{\ln 2} - \frac{2^x}{(\ln 2)^2}$	A1: $x \frac{2^x}{\ln 2} - \frac{2^x}{(\ln 2)^2}$	dM1A1
	$\left[x\frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}\right]_{0}^{2} = \left(\frac{2 \times 2^{2}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}\right)$		
	Uses the limits 0 and 2 and su		
	F(0) may be implied by e.g. $\frac{1}{(\ln 2)^2}$		ddM1
	But $\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{(\ln 2)^2}\right) - (0)$ or just $\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{(\ln 2)^2}\right)$ is ddM0		
	$\left(=\frac{8}{\ln 2} - \frac{4}{(\ln 2)}\right)$	$\frac{1}{(\ln 2)^2} + \frac{1}{(\ln 2)^2}$	
		Correct simplified fraction. Allow equivalent simplified forms	
	$= \frac{8 \ln 2 - 3}{(\ln 2)^2}$	e.g. $\frac{\ln 256 - 3}{(\ln 2)^2}, \frac{\ln 2^8 - 3}{(\ln 2)^2}$	A1
		Allow denominator as (ln2)(ln2) and ln ² 2 but not as ln2 ²	
			(6 marks)

Alternative by	substitution:	
$u = 2^x \Rightarrow \int x 2^x dx = \int \frac{\ln u}{\ln 2} \cdot u \cdot \frac{1}{u \ln 2} du = \int \frac{\ln u}{(\ln 2)^2} du$		
$\int \frac{\ln u}{(\ln 2)^2} du = \frac{1}{(\ln 2)^2} \left(u \ln u - \int du \right)$	M1: Integrates by parts the right way around to obtain an expression of the form $au \ln u - \int b du$. Allow $a = 1$ and/or $b = 1$. A1: $\frac{1}{(\ln 2)^2} \left(u \ln u - \int du \right)$	M1A1
$\int \frac{\ln u}{(\ln 2)^2} du = \frac{1}{(\ln 2)^2} (u \ln u - u)$	dM1: Completes to obtain an expression of the form ku A1: $\frac{1}{(\ln 2)^2}(u \ln u - u)$	dM1A1
$\left[\frac{1}{(\ln 2)^2}(u\ln u - u)\right]_1^4 = \frac{1}{(\ln 2)^2}(4\ln 4 - 4) - (\ln 1 - 1)$ Uses the limits 1 and 4 and subtracts the right way round.		M1
Correct simplified fraction. Allow equivalent simplified forms $e.g. \frac{\ln 256 - 3}{(\ln 2)^2}, \frac{\ln 2^8 - 3}{(\ln 2)^2},$ Allow denominator as (ln2)(ln2) and ln ² 2 but not as ln2 ²		A1

Question Number	Scheme		Notes	Marks
6(a)(i)			V shape with vertex on x-axis but not at the origin.	B1
	(0,a) $(a,0)$		Correct V shape with (0, a) or just a and (a, 0) or just a marked in the correct places. Left branch must cross or touch the y-axis. Allow coordinates the wrong way round if marked in the correct place.	B1
	_			(2)
(a)(ii)			Their part (i) translated down (by any amount) but clearly not left or right, or the correct shape i.e. a V with the vertex in 4 th quadrant.	B1ft
(0,	(a-b) $a-b$ $a+b$		A y-intercept of $a - b$ on the positive y-axis or intercepts of $a - b$ and $a + b$ on the positive x-axis with $a + b$ to the right of $a - b$	B1
			A fully correct diagram.	B1
				(3)
(b)	$x - a - b = \frac{1}{2}x \Rightarrow x = \dots$ or $-x + a - b = \frac{1}{2}x \Rightarrow x = \dots$		Solves $x - a - b = \frac{1}{2}x$ or solves $-x + a - b = \frac{1}{2}x \text{ as far as } x = \dots$	M1
	1		Allow $<$ or $>$ for $=$.	
	$x - a - b = \frac{1}{2}x \Rightarrow x = \dots$ and $-x + a - b = \frac{1}{2}x \Rightarrow x = \dots$		Solves $x - a - b = \frac{1}{2}x$ and solves $-x + a - b = \frac{1}{2}x$ as far as $x = \dots$ Allow < or > for =.	M1
	_	ddM1· C	hooses inside region.	
			w alternatives e.g.	
			b) and $x > \frac{2}{3}(a-b)$,	
			3	
	$\frac{2}{3}(a-b) < x < 2(a+b)$		$b) \cap x > \frac{2}{3}(a-b),$	ddM1A1
		`), $2(a+b)$ but not	
		x < 2(a +	b), $x > \frac{2}{3}(a-b)$	
			3	(4)
				(9 marks)

Attempts at squaring in (b)		
$\left(x-a\right)^2 = \left(\frac{1}{2}x+b\right)^2$		
$(x-a)^2 = \left(\frac{1}{2}x+b\right)^2 \Rightarrow 3x^2 - 4x(2a+b) + 4(a^2 - b^2) = 0$ Squares both sides and obtains 3TQ = 0		M1
$x = \frac{4(2a+b) \pm 4(a+2b)}{6}$ $\left(=2(a+b), \frac{2}{3}(a-b)\right)$	Attempt to solve 3TQ applying usual rules	M1
$\frac{2}{3}(a-b) < x < 2(a+b)$	ddM1: Chooses inside region. Dependent on both previous M marks. A1: Allow alternatives e.g. $x < 2(a+b)$ and $x > \frac{2}{3}(a-b)$, $\left(\frac{2}{3}(a-b), 2(a+b)\right)$ but not $x < 2(a+b)$, $x > \frac{2}{3}(a-b)$ Expressions must have just one term in a and one term in b .	ddM1A1

Question Number	Scheme	Notes	Marks
7 (a)	Strip width = 1	May be implied by their trapezium rule.	B1
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{15}} + 2 \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} \right) \right)$ $\approx \frac{1}{2} (0.33 + 0.25 + 2 (0.30 + 0.27))$	M1: Correct structure for the <i>y</i> values. Look for (<i>y</i> at <i>x</i> = 2) + (<i>y</i> at <i>x</i> = 5) + 2(sum of other <i>y</i> values). A1: Correct numerical expression. If decimals are used, look for awrt 1dp initially, however a correct final answer would imply this mark.	M1 A1
	Awrt 0.875		A1
			(4)
	May use separate		
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{11}} \right) + \frac{1}{2} \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} \right) + \frac{1}{2} \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{15}} \right)$		
	B1: Strip width = 1		
	M1: Correct structure for the y values as above		
	A1: Correct expression as described above A1: Awrt 0.875		
(b)			
	$\int \frac{1}{\sqrt{2r+5}} dr = (2r+5)^{\frac{1}{2}}$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = k(2x+5)^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = (2x+5)^{\frac{1}{2}}$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (2(5)+5)^{\frac{1}{2}} - (2(2)+5)^{\frac{1}{2}}$	Substitutes 5 and 2 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of 5 and 2 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}\left(=\sqrt{15}-3\right)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
			(4)

	Alternative to (b) by subs	titution $u = 2x + 5$	
	$u = 2x + 5 \Longrightarrow \int \frac{1}{\sqrt{2x+5}} dx = \int \frac{1}{\sqrt{u}} \frac{1}{2} du$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u^{\frac{1}{2}}$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes 15 and 9 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of 15 and 9 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}\left(=\sqrt{15}-3\right)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
	Alternative to (b) by substi	tution $u = (2x+5)^{\frac{1}{2}}$	
	$u = (2x+5)^{\frac{1}{2}} \Longrightarrow \int \frac{1}{u} \cdot u \mathrm{d}u = \int u \mathrm{d}u$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes $\sqrt{15}$ and 3 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of $\sqrt{15}$ and 3 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
(c)	$\pm (\operatorname{correct}(a) - \operatorname{correct}(b)) = \pm 0.002$ or $\pm \frac{\operatorname{correct}(a) - \operatorname{correct}(b)}{\operatorname{correct}(b)} \times 100 = \pm 0.2\%$	Finds the magnitude of the error and writes as ± 0.002 or $\pm 2 \times 10^{-3}$ or $\pm 0.2\%$ Or finds the percentage error and writes as $\pm 0.2\%$	B1
			(1) (9 marks)

Question Number	Scheme		Marks
8 (a)	$\sin 2x - \tan x = 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for sin2x	M1
	$\equiv \frac{2\sin x \cos x \cos x}{\cos x} - \frac{\sin x}{\cos x}$	Obtains common denominator. This is NOT dependent upon the previous M so accept expressions like, $\sin 2x - \tan x = \sin 2x - \frac{\sin x}{\cos x}$ $= \frac{\sin 2x \cos x - \sin x}{\cos x}$	M1
	$\equiv \frac{2\cos^2 x \sin x - \sin x}{\cos x}$	Correct fraction with just $\sin x$ and $\cos x$	A1
	$\equiv \frac{(2\cos^2 x - 1)\sin x}{\cos x} \equiv \cos 2x \tan x^*$	Uses a correct identity for cos2 <i>x</i> and completes correctly with no errors. An error could be for example, mixed variables used or loss of an <i>x</i> along the way.	A1*
			(4)
	Alternative 1 f	or (a)	
	$\sin 2x - \tan x = 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for sin2x	M1
	$\frac{\sin x}{\cos x} \left(2\cos^2 x - 1 \right)$	M1: Takes out a factor of $\frac{\sin x}{\cos x}$ A1: Correct expression	M1A1
	$= \tan x \cos 2x^*$	Completes correctly with no errors.	A1*
	Alternative 2 f	or (a)	
	$2\sin x \cos x - \frac{\sin x}{\cos x} \equiv \frac{\sin x}{\cos x} (\cos^2 x - \sin^2 x)$	Uses a correct identity for $\sin 2x$	M1
	$2\sin x \cos^2 x - \sin x \equiv \sin x \left(\cos^2 x - \sin^2 x\right)$	Multiplies both sides by cos <i>x</i>	M1
	$2\cos^2 x - 1 \equiv \left(\cos^2 x - \sin^2 x\right)$	Correct identity	A1
	This is true*	Conclusion provided	A1*
	Alternative 3 f	or (a)	
	$\tan x \cos 2x = \frac{\sin x}{\cos x} \left(2\cos^2 x - 1 \right)$	Uses a correct identity for $\cos 2x$	M1
	$\equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	M1: Multiplies out A1: Correct expression	M1A1
	$\equiv \sin 2x - \tan x^*$	A1: Obtains lhs with no errors	A1*

	9 (b)(!)	$\sin 2\theta - \tan \theta = \sqrt{3}\cos 2\theta \Rightarrow \tan \theta \cos 2\theta = \sqrt{3}\cos 2\theta$		
$\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$ $\tan\theta = \frac{\pi}$	8(b)(i)	$\sin 2\theta - \tan \theta = \sqrt{3}\cos 2\theta$		
$\cos 2\theta = 0 \Rightarrow \theta = \frac{\pi}{4} \text{ (awrt 0.785)}$ $A1: \theta = \frac{\pi}{4} \text{ Accept awrt 0.785. Ignore solutions outside the range but withhold the A mark for extra solutions in range.}$ $\tan (\theta + 1)\cos(2\theta + 2) - \sin(2\theta + 2) = 2 \Rightarrow \tan(\theta + 1) = -2$ $M1: \tan(\theta + 1) = \pm 2$ $\Rightarrow \theta = \arctan(-2) - 1$ $\Rightarrow \theta = \arctan(-2) - 1$ $\Rightarrow \theta = \arctan(-2) - 1$ $\Rightarrow \theta = 1.03$ $\Rightarrow \theta = 1.03$ $\tan \theta + 1 = 1.03$ $\cos 2\theta = \frac{\pi}{4} \text{ Accept awrt 0.785. Ignore solutions outside the range but withhold the A mark for A1}$		$\tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (\text{awrt } 1.05)$	A1: $\theta = \frac{\pi}{3}$ Accept awrt 1.05. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	M1A1
(b)(ii) M1: $\tan(\theta+1) = \pm 2$ M1 $\Rightarrow \theta = \arctan(-2) - 1$ Correct order of operations i.e. $\theta = \arctan(\pm 2) - 1 \text{. This may be implied by } \theta = -2.1$ $\Rightarrow \theta = 1.03$ $\Rightarrow \theta = 1.03$ awrt $\theta = 1.03$. Ignore solutions outside the range but withhold the A mark for A1		$\cos 2\theta = 0 \Rightarrow \theta = \frac{\pi}{4} \text{ (awrt 0.785)}$	A1: $\theta = \frac{\pi}{4}$ Accept awrt 0.785. Ignore solutions outside the range but withhold the A mark for extra solutions	M1A1
(b)(ii) M1: $\tan(\theta+1) = \pm 2$ M1 $\Rightarrow \theta = \arctan(-2) - 1$ Correct order of operations i.e. $\theta = \arctan(\pm 2) - 1 \text{. This may be implied by } \theta = -2.1$ $\Rightarrow \theta = 1.03$ $\Rightarrow \theta = 1.03$ awrt $\theta = 1.03$. Ignore solutions outside the range but withhold the A mark for A1	_			
M1: $\tan(\theta+1) = \pm 2$ Correct order of operations i.e. $\theta = \arctan(\pm 2) - 1. \text{ This may be implied by } \theta = -2.1$ $\Rightarrow \theta = 1.03$ $\Rightarrow \theta = 1.03$ $\tan(\theta+1) = \pm 2$ $\theta = \arctan(\pm 2) - 1. \text{ This may be implied by } \theta = -2.1$ $\Rightarrow \theta = 1.03. \text{ Ignore solutions outside the range but withhold the A mark for } A1$	(k)(#)	$\tan(\theta+1)\cos(2\theta+2) - \sin(2\theta+2) = 2 \Rightarrow \tan(\theta+1) = -2$		M1
$\Rightarrow \theta = \arctan(-2) - 1$ $\theta = \arctan(\pm 2) - 1. \text{ This may be implied by } \theta = -2.1$ $\Rightarrow \theta = 1.03$	(D)(II)	M1: $\tan(\theta + 1) = \pm 2$		IVII
$\Rightarrow \theta = 1.03$ the range but withhold the A mark for A1		$\Rightarrow \theta = \arctan(-2) - 1$	$\theta = \arctan(\pm 2) - 1$. This may be implied	dM1
		$\Rightarrow \theta = 1.03$	the range but withhold the A mark for	A1
				(7)
				(11 marks)

Question Number	S	Scheme	Marks
9.(a)	$t = 0 \Rightarrow P = \frac{9000}{3+7} = 900$	M1: Sets $t = 0$, may be implied by $e^0 = 1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900. A1: 900	M1A1
			(2)
(b)	$t \to \infty P \to \frac{9000}{3} = 3000$	Sight of 3000	B1
			(1)
(c)	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	Correct equation with $t = 4$ and $P = 2500$	B1
	$e^{4k} = \frac{17500}{1500} = (awrt 11.7 or 11.6)$ or $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1: Rearranges the equation to make $e^{\pm 4k}$ the subject. They need to multiply by the $3e^{4k} + 7$ term, and collect terms in e^{4k} or e^{-4k} reaching $e^{\pm 4k} = C$ where C is a constant. A1: Achieves intermediate answer of $e^{4k} = \frac{17500}{1500} = (awrt 11.7 \text{ or } 11.6) \text{ or } e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1A1
	$k = \frac{1}{4} \ln \left(\frac{35}{3} \right) $ or awrt 0.614	d M1: Proceeds from $e^{\pm 4k} = C$, $C > 0$ by correctly taking ln's and then making k the subject of the formula. Award for e.g. $e^{4k} = C \Rightarrow 4k = \ln(C) \Rightarrow k = \frac{\ln(C)}{4}$ A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	d M1A1
			(5)
	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	correct work in (c): Correct equation with $t = 4$ and $P = 2500$	B1
	$7500e^{4k} + 17500 = 9000e^{4k}$		
	$1500e^{4k} = 17500$ $\ln 1500 + \ln e^{4k} = \ln 17500$	M1: Takes In's correctly A1: Correct equation	- M1A1
	$\ln e^{4k} = \ln 17500 - \ln 1500$		
	$4k = \ln 17500 - \ln 1500$ $k = \frac{\ln 17500 - \ln 1500}{4}$	Makes k the subject	M1A1
	$k = \frac{1}{4} \ln \left(\frac{35}{3} \right) $ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

(1)	r	1. (
(d)	$\frac{dP}{dt} = \frac{(3e^{kt} + 7) \times 9000ke^{kt} - 9}{(3e^{kt} + 7)^2}$	$\left \frac{000e^{kt} \times 3ke^{kt}}{1} \right = \frac{63000ke^{kt}}{1}$	
	$dt \qquad (3e^{\kappa t} + 7)^2$	$\left((3e^{kt}+7)^2 \right)$	
	Differentiates using the		
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{(3e^{kt} + 7) \times P}{(3)^{kt}}$	$e^{kt} - 9000e^{kt} \times Qe^{kt}$	
	dt (3	$e^{kt} + 7)^2$	
	_	r	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9000k\mathrm{e}^{kt} \left(3\mathrm{e}^{kt} + 7\right)^{-1}$	$-9000e^{kt} \left(3e^{kt} + 7\right)^{-2} \times 3ke^{kt}$	
	Differentiates using the	product rule to achieve	M1
	$\frac{\mathrm{d}P}{\mathrm{d}t} = P\mathrm{e}^{kt} \left(3\mathrm{e}^{kt} + 7 \right)^{-1} - 9$	$2000e^{kt} \left(3e^{kt} + 7\right)^{-2} \times Qe^{kt}$	IVII
	0	r	
	$\frac{dP}{dt} = 63000ke^{-kt} \left(3 + 7e^{-kt} \right)^{-2}$		
	Differentiates using the chain rule of	on $P = 9000 (3 + 7e^{-kt})^{-1}$ to achieve	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \pm D\mathrm{e}^{-kt}$	$\left(3+7e^{-kt}\right)^{-2}$	
	Watch for $e^{kt} \rightarrow$	kte^{kt} which is M0	
		Substitutes $t = 10$ and their k to obtain	
	Sub $t=10$ and $t=0$ and dP	a value for $\frac{dP}{dt}$. If the value for $\frac{dP}{dt}$ is	dM1
	Sub $t = 10$ and $k = 0.614 \Rightarrow \frac{dP}{dt} =$	dt incorrect then the substitution of	(A1 on
		t = 10 must be seen explicitly.	Epen)
	d <i>P</i>		
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9$	Awrt 9 (NB $\frac{dP}{dt} = 9.1694$)	A1
			(3)
			(11 marks)

Question Number	Scheme		Marks
10(a)		M1: Curve not a straight line through (0, 0) in quadrants 1 and 3 only.	M1A1
		A1: Grad $\rightarrow 0$ as $x \rightarrow \pm \infty$	MIAI
a >		1	(2)
(b)	$3\arctan(x+1) - \pi = 0$	Substitutes $g(x+1) = \arctan(x+1)$	
	Salctan(x+1)-x=0	in $3g(x+1) - \pi = 0$ and makes	M1
	$\Rightarrow \arctan(x+1) = \frac{\pi}{3}$	$\arctan(x+1)$ the subject. Do not condone missing brackets unless	IVII
	3	later work implies their presence.	
	d	IM1: Takes tan and makes x the subject e.g.	
	a	Allow $x = \sqrt{3} \pm 1$. Note that $\tan\left(\frac{\pi}{3}\right)$ does not	
	$\rightarrow \cdots \leftarrow \leftarrow \begin{pmatrix} \pi \\ \end{pmatrix} \qquad 1 \qquad \sqrt{2} \qquad 1$	need to be evaluated for this mark. May be	dM1A1
		implied by e.g. $x = 0.732$	
		$A1: \sqrt{3}-1$	
			(3)
(c)		$\left(\arctan x - 4 + \frac{1}{2}x\right) \Rightarrow -0.126, +0.405$	M1
		ne sig fig), change of sign + conclusion	
	Allow equivalent statements e this mark may be withheld if	e.g. positive, negative therefore root etc. but there are any contradictory statements e.g. lies between g(5) and g(6)	A1
		to give 0.126, –0.405, allow both marks	
	if a co	onclusion is given.	
(d)		Score for $y = 2$ 2 grates $5 =$	(2)
(u)	$x_1 = 8 - 2 \arctan 5$	Score for $x_1 = 8 - 2 \arctan 5 =$ This may be implied by awrt 5.3 (radians) or awrt -149 (degrees) for	M1
		(ladialis) of awit -149 (degrees) for	
		$x_1 = \text{awrt } 5.253, x_2 = \text{awrt } 5.235$	
	$x_1 = 5.253, x_2 = 5.235$	Ignore any subsequent iterations and ignore labelling if answers are clearly the second and third terms.	A1
		clearly the second and time terms.	(2)
			(9 marks)

Question Number	Scheme	Marks
11 (a)	$\begin{pmatrix} 7\\4\\9 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\4 \end{pmatrix} = \begin{pmatrix} -6\\-7\\3 \end{pmatrix} + \mu \begin{pmatrix} 5\\4\\b \end{pmatrix} \Rightarrow \begin{array}{l} 7+1\lambda = -6+5\mu\\ 4+1\lambda = -7+4\mu \text{ any two of}\\ 9+4\lambda = 3+b\mu \end{array}$ Writes down any two equations for the coordinates of the point of intersection. There must be an attempt to set the coordinates equal but condone slips.	M1
	Full method to find both λ and μ from equations 1 and 2 and uses these values and equation 3 to find a value for b	d M1
	$(1)-(2) \Rightarrow 3=1+\mu \Rightarrow \mu=2$	
	Sub $\mu = 2$ into (1) $\Rightarrow 7 + 1\lambda = -6 + 10 \Rightarrow \lambda = -3$	
	Put values in 3 rd equation $9-12=3+2b \Rightarrow b=-3*$ Completely correct work including $\lambda = -3$, $\mu = 2$ and substitution into both sides of the third equation to give $b=-3$	A1
	Position vector of intersection is $\begin{pmatrix} 7 \\ 4 \\ 9 \end{pmatrix} + -3 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} -6 \\ -7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix}$ Substitutes their value of λ into l_1 to find the coordinates or position vector of the point of intersection. Alternatively substitutes their value of μ into l_2 to find the coordinates or position vector of the point of intersection.	
	May be implied by at least 2 correct coordinates for X Correct coordinates or vector.	
	X = (4, 1, -3) Correct coordinates implies M1A1 Marks for finding the coordinates of X can score anywhere in the	A1
	question.	(5)
	(b) Way 1	
	$\pm \overline{XA} = \pm \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}, \pm \overline{XB} = \pm \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}$ Attempts the difference between the coordinates <i>X</i> and <i>A</i> , <i>X</i> and <i>B</i> . This could be implied by the calculation of the lengths <i>AX</i> and <i>BX</i> . Allow slips but must be subtracting.	M1
	$\pm \overrightarrow{XA}. \pm \overrightarrow{XB} = XA XB \cos\theta \Rightarrow 20 + 16 - 48 = \sqrt{72}\sqrt{200}\cos\theta$	
(b)	M1: Attempt the scalar product of \overline{XA} and \overline{XB} or \overline{AX} and \overline{BX} or \overline{XA} and \overline{BX} or \overline{AX} and \overline{BX}	
	Allow $\cos \theta = \frac{\begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix} \bullet \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}}{\sqrt{72}\sqrt{200}}$ for M1 but not A1 unless the numerator is evaluated	dM1A1
	A1: A correct un-simplified expression $20 + 16 - 48 = \sqrt{72}\sqrt{200}\cos\theta$ oe $\cos\theta = \frac{-12}{\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$ This is a given answer. There must be an intermediate line with $\cos\theta =$ or $\theta =$	A1*
		(4)

	(b) Wa	y 2	
	$\mathbf{d}_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \mathbf{d}_2 = \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix}$	Uses $b = -3$ and the direction vectors or multiples of the direction vectors	M1
	$\mathbf{d}_1.\mathbf{d}_2 = \mathbf{d}_1 \mathbf{d}_2 \cos \theta \Rightarrow 5 +$	$4 - 12 = \sqrt{18}\sqrt{50}\cos\theta$	
	M1: Attempt the scalar produ	ct of the direction vectors	
(b)	Allow $\cos \theta = \frac{\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \\ -3 \end{pmatrix}}{\sqrt{18}\sqrt{50}}$ for M1 but not	A1 unless the numerator is evaluated	dM1A1
	A1: A correct un-simplified expression	on $5 + 4 - 12 = \sqrt{18}\sqrt{50}\cos\theta$ oe	
	$\cos \theta = \frac{-3}{\sqrt{18} \times \sqrt{50}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$	This is a given answer. There must be an intermediate line with $\cos \theta =$ or $\theta =$	A1*

	(b) V	Vay 3	
	$\pm \overrightarrow{XA} = \pm \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}, \pm \overrightarrow{XB} = \pm \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}$	Attempts the difference between the coordinates <i>X</i> and <i>A</i> , <i>X</i> and <i>B</i> . This could be implied by the calculation of the lengths <i>AX</i> and <i>BX</i> . Allow slips but must be subtracting.	M1
(b)	M1: Uses \overline{AB} with a corre	$8^{2} + 6^{2} + 14^{2} = 72 + 200 - 2\sqrt{72}\sqrt{200}\cos\theta$ ect attempt at the cosine rule $+6^{2} + 14^{2} = 72 + 200 - 2\sqrt{72}\sqrt{200}\cos\theta$	dM1A1
	$\cos \theta = \frac{-24}{2\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)$	This is a given answer. There must be	A1*
(c)	$\cos\theta = -\frac{1}{10} \Rightarrow \sin\theta = \frac{\sqrt{99}}{10}$	oe e.g. $\sqrt{\frac{99}{100}}$, $\frac{3\sqrt{11}}{10}$. May be implied by a correct exact area.	B1
	Area of triangle = $\frac{1}{2}XA \times XB \times si$	$\ln \theta A = \frac{1}{2} \times 6\sqrt{2} \times 10\sqrt{2} \times \frac{3\sqrt{11}}{10}$	
	Uses Area of triangle	$= \frac{1}{2} XA \times XB \times \sin \theta$	
	This mark can be scored for e.g. $\frac{1}{2}$ (their	$(XA) \times (\text{their } XB) \times \sin(\cos^{-1}(-\frac{1}{10})) \text{ or }$	M1
	$\frac{1}{2}$ (their XA) × (their X	$(B) \times \sin(95.7391)$	
	Must be using the angle	given by $\cos^{-1}\left(-\frac{1}{10}\right)$	
	$A = 18\sqrt{11}$ oe	Accept for example $A = 9\sqrt{44}, \sqrt{3564}$	A1
	Note that $A = \frac{1}{2} \times 6\sqrt{2} \times 10\sqrt{2} \times \sin(95)$	$(5.7391) = 18\sqrt{11}$ scores all 3 marks	
			(3)
			(12 marks)

Question Number	S	cheme	Marks
12.(a)	$V = \int y^2 dx = \int y^2 \frac{dx}{dt}$	$-dt = \int (2\sin 2t)^2 3\cos t dt$	
	•	$\int y^2 \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$ where $\frac{\mathrm{d}x}{\mathrm{d}t} = \pm k \cos t$	M1A1
	May be implied by e.g. $\int (2\sin 2t)^2 3\cos t$		
	A1: = $\int (2\sin 2t)^2 3\cos t (dt) (dt ca)$	A1: = $\int (2\sin 2t)^2 3\cos t (dt) (dt)$ can be missing as long as the M is scored)	
	$= \int (4\sin t \cos t)^2 3\cos t dt \qquad \text{Uses } \sin 2t = 2\sin t \cos t$		M1
	$x = \frac{3}{2} \Rightarrow t = \frac{\pi}{6}$ or $k = 48$ Correct value for a (must be exact) or a correct value for k		B1
	$V = \int \pi y^2 dx = 48\pi \int_{0}^{\frac{\pi}{6}} \sin^2 t \cos^3 t dt^*$	Achieves printed answer including "d t " (even if lost earlier) with correct limits and 48π in place with no errors. Or achieves the printed answer with the letters a and k and states the correct values of a and k .	A1*
			(5)

(b)	$u = \sin t \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}t} = \cos t$	States $\frac{du}{dt} = \cos t$ or equivalent. May be	B1
	$dt = \sin t \implies dt$	implied.	D1
	M1: Substitutes fully including for d produce an integ A1ft: Fully correct integral in terms ignore inclusion or omission of π so le	$u = k \int u^2 (1 - \sin^2 t) du = k \int u^2 (1 - u^2) du$ t using $u = \sin t$ and $\cos^2 t = \pm 1 \pm \sin^2 t$ to gral just in terms of u . of u - follow through on incorrect k 's and pook for e.g. $k \int u^2 (1 - u^2) du$ or equivalent we the letter k .	M1A1ft
	and ano		
	$=k\left[\frac{u^3}{3}-\frac{u^5}{5}\right]$	Multiplies out to form a polynomial in u and integrates with $u^n \rightarrow u^{n+1}$ for at least one of their powers of u .	M1
	Volume = $48\pi \left[\frac{u^3}{3} - \frac{u^5}{5} \right]_0^{\frac{1}{2}} = \frac{17\pi}{10}$	dM1: All methods must have been scored. It is for using the limits 0 and $\frac{1}{2}$ and subtracting or for using the limits 0 and $\frac{\pi}{6}$ if they return to sin t . However, in both cases the substitution of 0 does not need not be seen. A1: $V = \frac{17\pi}{10}$ oe such as $V = \frac{51\pi}{30}$	dM1A1
	1		(6)
	If $\frac{du}{dt} = -\cos t$ is used, maximum B0M1A0M1M1A0 is possible		
			(11 marks)

Question Number	Scheme	Marks
13(a)	$V = \frac{1}{3}\pi h^{2} (30 - h) = 10\pi h^{2} - \frac{1}{3}\pi h^{3} \Rightarrow \frac{dV}{dh} = 20\pi h - \pi h^{2}$ or $V = \frac{1}{3}\pi h^{2} (30 - h) \Rightarrow \frac{dV}{dh} = \frac{2}{3}\pi h (30 - h) - \frac{1}{3}\pi h^{2}$	M1A1
	M1: Attempts $\frac{dV}{dh}$ either by multiplying out and differentiating each term to give a derivative of the form $\alpha h - \beta h^2$ or by the product rule to give a derivative of the form $\alpha h (30 - h) + \beta h^2$	
	derivative of the form $\alpha h (30 - h) \pm \beta h^2$. A1: Any correct (possibly un-simplified) form for $\frac{dV}{dh}$	
	Uses $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt} \Rightarrow -\frac{1}{10}V = (20\pi h - \pi h^2) \times \frac{dh}{dt}$	M1
	Uses a correct form of the chain rule, e.g. $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ or uses $\frac{dh}{dV} \times \frac{dV}{dt}$ with their $\frac{dV}{dh}$ and $\frac{dV}{dt} = -\frac{1}{10}V$.	
	$\Rightarrow -\frac{1}{10} \times \frac{1}{3} \pi h^2 (30 - h) = \pi h (20 - h) \times \frac{dh}{dt} \left(\Rightarrow \frac{dh}{dt} = \dots \right)$	M1
	Substitutes $V = \frac{1}{3}\pi h^2 (30 - h)$ and rearranges to obtain $\frac{dh}{dt}$ in terms of h	
	This is a given answer. There must have been intermediate lines and correct factorisation and no errors and " $\frac{dh}{dt}$ = "must be seen at some point.	A1*
		(5)
(b)	$\frac{30(20-h)}{h(30-h)} = \frac{A}{h} + \frac{B}{30-h}$ Correct form for the partial fractions	B1
	$30(20-h) \equiv A(30-h) + Bh$ $h = 30 \Rightarrow 30B = -300 \Rightarrow B = -10$ and $h = 0 \Rightarrow 30A = 600 \Rightarrow A = 20$ Attempts to get both constants by a correct method e.g. substituting, comparing coefficients, cover up rule	M1
	$\frac{30(20-h)}{h(30-h)} = \frac{20}{h} - \frac{10}{30-h}$ Correct partial fractions (or states "A" = 20, "B" = -10)	A1
		(3)

(c)	Way 1			
	A correct statement which may be im	$\Rightarrow \int \frac{30(20-h)}{h(30-h)} dh = -1 \int dt$ e implied by subsequent work. Condone provided the intention is clear but the		B1
	$20 \ln h + 10 \ln(30 - h)$	M1: Integrates their partial fractions to obtain $\pm P \ln h \pm Q \ln(30 - h)$ A1: Correct integration for their partial fractions of the form $\frac{A}{h} + \frac{B}{30 - h}$ following through their "A" and "B".		M1A1ft
	$t = 0, h = 10 \Rightarrow c = 20 \ln 10 + 10 \ln 20$	value	itutes $h = 10$ and $t = 0$ to find a for c . NB $c = 76.0$	M1
	Substitutes $h = 5$ and uses their	$h = 5 \Rightarrow t = 20 \ln 10 + 10 \ln 20 - 10 \ln 25 - 20 \ln 5$ utes $h = 5$ and uses their value of c to find a value for t .		ddM1
	t = 11.63 (secs)	Awrt	11.63 only	A1cso
				(6)
	(c) Way 2			(14 marks)
	A correct statement which may be in the omission of "dh" and "dt" provide	t statement which may be implied by subsequent work. Condone sign must be present on one side or the other.		B1
	$20 \ln h + 10 \ln(30 - h)$	M1: Integrates their partial fractions to obtain $\pm P \ln h \pm Q \ln(30 - h)$ A1: Correct integration for their partial fractions of the form $\frac{A}{h} + \frac{B}{30 - h}$ following through their "A" and "B".		M1A1ft
	$(t =) [20 \ln h + 10 \ln(30 - h)]_{5}^{10}$ or $(t =) [20 \ln h + 10 \ln(30 - h)]_{10}^{5}$	or Either states		M1
	$(t =) [20 \ln 10 + 10 \ln 20] - [20 \ln 5 + 10]$	Oln 25] Substitutes $h = 5$ and $h = 10$ to find a value for t .		ddM1
	t = 11.63 Awrt 11.63 only		Awrt 11.63 only	A1cso
				(6)