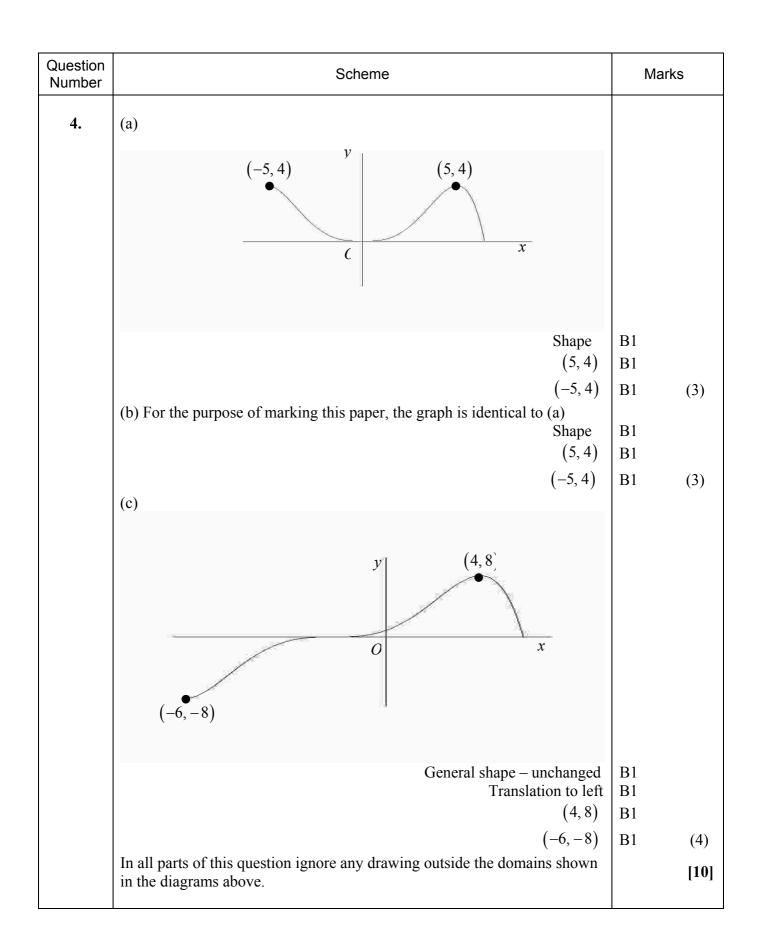


Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6665/01)


Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

January 2008 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1.	$x^{2}-1 \qquad \frac{2x^{2} - 1}{2x^{4} - 3x^{2} + x + 1}$ $2x^{4} - 2x^{2}$ $-x^{2} + x + 1$ $\frac{-x^{2} + 1}{x}$ $a = 2 \text{ stated or implied}$ $2x^{2} - 1 + \frac{x}{x^{2} - 1}$ $a = 2, b = 0, c = -1, d = 1, e = 0$ $d = 1 \text{ and } b = 0, e = 0 \text{ stated or implied}$	M1 A1 A1 [4]
2. (a)	$\frac{dy}{dx} = 2e^{2x}\tan x + e^{2x}\sec^2 x$ $\frac{dy}{dx} = 0 \implies 2e^{2x}\tan x + e^{2x}\sec^2 x = 0$ $2\tan x + 1 + \tan^2 x = 0$ $(\tan x + 1)^2 = 0$ $\tan x = -1 \bigstar \qquad \qquad$	[4] M1 A1+A1 M1 A1 (6) M1 A1 (2) [8]

Question Number	Scheme	Marks
3.	(a) $f(2) = 0.38 \dots$ $f(3) = -0.39 \dots$ Change of sign (and continuity) \Rightarrow root in (2, 3) * cso (b) $x_1 = \ln 4.5 + 1 \approx 2.50408$ $x_2 \approx 2.50498$	M1 A1 (2) M1 A1
	$x_{3} \approx 2.50518$ (c) Selecting [2.5045, 2.5055], or appropriate tighter range, and evaluating at both ends. $f(2.5045) \approx 6 \times 10^{-4}$ $f(2.5055) \approx -2 \times 10^{-4}$ Change of sign (and continuity) \Rightarrow root $\in (2.5045, 2.5055)$ \Rightarrow root = 2.505 to 3 dp * cso	A1 (3) M1 A1 (2)
	Note: The root, correct to 5 dp, is 2.50524	[7]

Question Number	Scheme		Marks	
5.	(a) 1000	B1	(1)	
	(b) $1000 e^{-5730c} = 500$	M1		
	$e^{-5730c} = \frac{1}{2}$	A1		
	$-5730c = \ln\frac{1}{2}$	M1		
	c = 0.000121 cao	A1	(4)	
	(c) $R = 1000 e^{-22920c} = 62.5$ Accept 62-63	M1 A1	(2)	
	(d) $R = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ Shape 1000 Shape 1000	B1 B1	(2) [9]	

Question Number	Scheme	Marks
6.	(a) $\cos(2x+x) = \cos 2x \cos x - \sin 2x \sin x$ $= (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x$ $= (2\cos^2 x - 1)\cos x - 2(1 - \cos^2 x)\cos x \text{ any correct expression}$ $= 4\cos^3 x - 3\cos x$	M1 M1 A1 A1 (4)
	(b)(i) $\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = \frac{\cos^2 x + (1+\sin x)^2}{(1+\sin x)\cos x}$ $= \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1+\sin x)\cos x}$	M1 A1
	$=\frac{2(1+\sin x)}{(1+\sin x)\cos x}$	M1
	$=\frac{2}{\cos x}=2\sec x \bigstar \qquad \qquad$	A1 (4)
	(c) $\sec x = 2 \text{ or } \cos x = \frac{1}{2}$	M1
	$x = \frac{\pi}{3}, \frac{5\pi}{3}$ accept awrt 1.05, 5.24	A1, A1 (3) [11]
7.	(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 2x - 8\sin 2x$	M1 A1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 = 6$	B1
	$y-4 = -\frac{1}{6}x$ or equivalent	M1 A1 (5)
	(b) $R = \sqrt{3^2 + 4^2} = 5$	M1 A1
	$\tan \alpha = \frac{4}{3}, \ \alpha \approx 0.927$ awrt 0.927	M1 A1 (4)
	 (c) sin(2x + their α) = 0 x = -2.03, -0.46, 1.11, 2.68 First A1 any correct solution; second A1 a second correct solution; third A1 all four correct and to the specified accuracy or better. Ignore the <i>y</i>-coordinate. 	M1 A1 A1 A1 (4) [13]

Question Number	Scheme	Marks	
8.	(a) $x = 1 - 2y^3 \implies y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$	M1 A1 (2)	
	$f^{-1}: x \mapsto \left(\frac{1-x}{2}\right)^{\frac{1}{3}}$ Ignore domain		
	(b) $gf(x) = \frac{3}{1-2x^3} - 4$ = $\frac{3-4(1-2x^3)}{1-2x^3}$	M1 A1 M1	
	$=\frac{8x^3-1}{1-2x^3} \bigstar $ cso	A1 (4)	
	$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$ Ignore domain		
	(c) $8x^3 - 1 = 0$ Attempting solution of numerator = 0 $x = \frac{1}{2}$ Correct answer and no additional answers	M1	
	2	A1 (2)	
	(d) $\frac{dy}{dx} = \frac{(1-2x^3) \times 24x^2 + (8x^3-1) \times 6x^2}{(1-2x^3)^2}$	M1 A1	
	$=\frac{18x^{2}}{\left(1-2x^{3}\right)^{2}}$	Al	
	Solving their numerator = 0 and substituting to find y .	M1	
	x = 0, y = -1	A1 (5) [13]	