

## Mark Scheme (Results) January 2010

GCE

Core Mathematics C3 (6665)



Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code US022710 All the material in this publication is copyright © Edexcel Ltd 2010



## January 2010 6665 Core Mathematics C3 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                           | Marks          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Q1                 | $\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$                                                                                                                                                                                            |                |
|                    | $=\frac{x+1}{3(x^2-1)}-\frac{1}{3x+1}$                                                                                                                                                                                           |                |
|                    | $= \frac{x+1}{3(x+1)(x-1)} - \frac{1}{3x+1}$ $x^{2} - 1 \rightarrow (x+1)(x-1) \text{ or}$ $3x^{2} - 3 \rightarrow (x+1)(3x-3) \text{ or}$ $3x^{2} - 3 \rightarrow (3x+3)(x-1)$ seen or implied anywhere in candidate's working. | Award<br>below |
|                    | $=\frac{1}{3(x-1)} - \frac{1}{3x+1}$                                                                                                                                                                                             |                |
|                    | $= \frac{3x + 1 - 3(x - 1)}{3(x - 1)(3x + 1)}$ Attempt to combine.                                                                                                                                                               | M1             |
|                    | or $\frac{3x+1}{3(x-1)(3x+1)} - \frac{3(x-1)}{3(x-1)(3x+1)}$ Correct result.                                                                                                                                                     | A1             |
|                    | Decide to award M1 here!!                                                                                                                                                                                                        | M1             |
|                    | Either $\frac{4}{3(x-1)(3x+1)}$<br>= $\frac{4}{3(x-1)(3x+1)}$ or $\frac{4}{3(x-1)(3x+1)}$ or $\frac{4}{(3x-3)(3x+1)}$<br>or $\frac{4}{9x^2-6x-3}$                                                                                | A1 aef         |
|                    |                                                                                                                                                                                                                                  | [4]            |

| Question<br>Number | Scheme                                                                                                                                                                                          |                                                                                                                                                                                                                                                 | Marks                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Q2                 | $f(x) = x^3 + 2x^2 - 3x - 11$                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                        |
| (a)                | $f(x) = 0 \implies x^3 + 2x^2 - 3x - 11 = 0$ $\implies x^2(x+2) - 3x - 11 = 0$                                                                                                                  | Sets $f(x) = 0$ (can be implied)<br>and takes out a factor<br>of $x^2$ from $x^3 + 2x^2$ ,<br>or x from $x^3 + 2x$ (slip).                                                                                                                      | M1                     |
|                    | $\Rightarrow x^{2}(x+2) = 3x + 11$ $\Rightarrow \qquad x^{2} = \frac{3x + 11}{x+2}$                                                                                                             |                                                                                                                                                                                                                                                 |                        |
|                    | $\Rightarrow \qquad x = \sqrt{\left(\frac{3x+11}{x+2}\right)}$                                                                                                                                  | then rearranges to give the quoted result on the question paper.                                                                                                                                                                                | A1 AG<br>(2)           |
| (b)                | Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ , $x_1 = 0$                                                                                                        |                                                                                                                                                                                                                                                 |                        |
|                    | $x_2 = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$                                                                                                                                           | An attempt to substitute $x_1 = 0$ into<br>the iterative formula.<br>Can be implied by $x_2 = \sqrt{5.5}$<br><i>or 2.35</i> or awrt 2.345                                                                                                       | M1                     |
|                    | $x_2 = 2.34520788$<br>$x_3 = 2.037324945$<br>$x_4 = 2.058748112$                                                                                                                                | Both $x_2 = awrt \ 2.345$<br>and $x_3 = awrt \ 2.037$<br>$x_4 = awrt \ 2.059$                                                                                                                                                                   | A1<br>A1<br>(3)        |
| (c)                | Let $f(x) = x^3 + 2x^2 - 3x - 11 = 0$                                                                                                                                                           |                                                                                                                                                                                                                                                 |                        |
|                    | f(2.0565) = −0.013781637<br>f(2.0575) = 0.0041401094<br>Sign change (and f(x) is continuous) therefore a root α is<br>such that $\alpha \in (2.0565, 2.0575) \Rightarrow \alpha = 2.057$ (3 dp) | Choose suitable interval for <i>x</i> ,<br>e.g. [2.0565, 2.0575] or tighter<br>any one value awrt 1 sf<br>both values correct awrt 1sf,<br>sign change and conclusion<br>As a minimum, both values must<br>be correct to 1 sf, candidate states | M1<br>dM1<br>A1<br>(3) |
|                    |                                                                                                                                                                                                 | "change of sign, hence root".                                                                                                                                                                                                                   | [8]                    |

| Question<br>Number | Scheme                                                                |                                                                                                                              | Marks |
|--------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|
| Q3 (a)             | $5\cos x - 3\sin x = R\cos(x + \alpha), R > 0, 0 < x < \frac{\pi}{2}$ |                                                                                                                              |       |
|                    | $5\cos x - 3\sin x = R\cos x\cos \alpha - R\sin x\sin \alpha$         |                                                                                                                              |       |
|                    | Equate $\cos x$ : $5 = R \cos \alpha$                                 |                                                                                                                              |       |
|                    | Equate $\sin x$ : $3 = R \sin \alpha$                                 | $r^{2}$ $r^{2}$ $r^{2}$                                                                                                      |       |
|                    | $R = \sqrt{5^2 + 3^2}; = \sqrt{34} \{= 5.83095\}$                     | $R^2 = 5^2 + 3^2$<br>$\sqrt{34}$ or awrt 5.8                                                                                 |       |
|                    |                                                                       | $\tan \alpha = \pm \frac{3}{5}$ or $\tan \alpha = \pm \frac{5}{3}$ or                                                        | M1    |
|                    | $\tan \alpha = \frac{3}{5} \Rightarrow \alpha = 0.5404195003^{c}$     | $\sin \alpha = \pm \frac{3}{\text{their } R}$ or $\cos \alpha = \pm \frac{5}{\text{their } R}$                               |       |
|                    |                                                                       | $\alpha = \text{awrt } 0.54 \text{ or}$<br>$\alpha = \text{awrt } 0.17\pi \text{ or } \alpha = \frac{\pi}{\text{awrt } 5.8}$ | A1    |
|                    | Hence, $5\cos x - 3\sin x = \sqrt{34}\cos(x + 0.5404)$                | awit 5.6                                                                                                                     |       |
| (b)                | $5\cos x - 3\sin x = 4$                                               |                                                                                                                              | (4)   |
|                    | $\sqrt{34}\cos(x+0.5404) = 4$                                         |                                                                                                                              |       |
|                    | $\cos(x+0.5404) = \frac{4}{\sqrt{34}} \{= 0.68599\}$                  | $\cos(x \pm \text{their } \alpha) = \frac{4}{\text{their } R}$                                                               | M1    |
|                    | $(x + 0.5404) = 0.814826916^{\circ}$                                  | For applying $\cos^{-1}\left(\frac{4}{\text{their }R}\right)$                                                                | M1    |
|                    | $x = 0.2744^{\circ}$                                                  | awrt 0.27 <sup>c</sup>                                                                                                       | A1    |
|                    | $(x + 0.5404) = 2\pi - 0.814826916^{\circ} \{ = 5.468358^{\circ} \}$  | $2\pi$ – their 0.8148                                                                                                        | ddM1  |
|                    | $x = 4.9279^{c}$                                                      | awrt 4.93°                                                                                                                   | A1    |
|                    | Hence, $x = \{0.27, 4.93\}$                                           |                                                                                                                              |       |
|                    |                                                                       |                                                                                                                              | (5)   |
|                    |                                                                       |                                                                                                                              | [9]   |

**Part** (b): If there are any EXTRA solutions inside the range  $0 \le x < 2\pi$ , then withhold the final accuracy mark if the candidate would otherwise score all 5 marks. Also ignore EXTRA solutions outside the range  $0 \le x < 2\pi$ .

Mathematics C3 6665

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Q4 (i)             | $y = \frac{\ln(x^2 + 1)}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                    | $u = \ln(x^{2}+1) \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2x}{x^{2}+1}$ $\ln(x^{2}+1) \implies \frac{\mathrm{something}}{x^{2}+1}$ $\ln(x^{2}+1) \implies \frac{2x}{x^{2}+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - M1<br>- A1    |
|                    | Apply quotient rule: $\begin{cases} u = \ln(x^2 + 1) & v = x \\ \frac{du}{dx} = \frac{2x}{x^2 + 1} & \frac{dv}{dx} = 1 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|                    | $\frac{dy}{dx} = \frac{\left(\frac{2x}{x^2+1}\right)(x) - \ln(x^2+1)}{x^2}$ Applying $\frac{xu' - \ln(x^2+1)v'}{x^2}$ correctly Correct differentiation with correct bracketing but allow recovery to the second sec | <sup>t</sup> Δ1 |
|                    | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{(x^2+1)} - \frac{1}{x^2}\ln(x^2+1)\right\}$ {Ignore subsequent working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | }               |
| (ii)               | $x = \tan y$ $\tan y \to \sec^2 y \text{ or an attempt t}$ $\frac{dx}{dy} = \sec^2 y$ $\dim y \to \sec^2 y \text{ or an attempt t}$ $\dim y \to \sec^2 y \text{ using either th}$ $\operatorname{quotient rule or product rule}$ $\frac{dx}{dy} = \sec^2 y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e M1*           |
|                    | $\frac{dy}{dx} = \frac{1}{\sec^2 y} \left\{ = \cos^2 y \right\}$ Finding $\frac{dy}{dx}$ by reciprocating $\frac{dx}{dy}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · dM1*          |
|                    | $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$ For writing down or applying the identities $\sec^2 y = 1 + \tan^2 y$ which must be applied/stated completely in the section of the             | ' dM1*          |
|                    | Hence, $\frac{dy}{dx} = \frac{1}{1+x^2}$ , (as required)<br>For the correct proof, leading on from the previous line of working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [9]             |

| Question<br>Number | Scheme                                                                          |     |
|--------------------|---------------------------------------------------------------------------------|-----|
| Q5                 | $y = \ln  x $                                                                   |     |
|                    | Right-hand branch in quadrants 4 and 1.<br>Correct shape.                       | B1  |
|                    | (-1,0) $O$ $(1,0)$ $x$ Left-hand branch in quadrants 2 and 3.<br>Correct shape. | B1  |
|                    | Completely correct sketch and both $(-1, \{0\})$ and $(1, \{0\})$               | B1  |
|                    |                                                                                 | (3) |
|                    |                                                                                 | [3] |

Mathematics C3



| Question<br>Number | Scheme                                                                                                                                                                    |                                                                                                                                                                                       | Marks               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Q7 (a)             | $y = \sec x = \frac{1}{\cos x} = (\cos x)^{-1}$ $\frac{dy}{dx} = -1(\cos x)^{-2}(-\sin x)$                                                                                | $\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \left( (\cos x)^{-2} (\sin x) \right)$                                                                                                         | M1                  |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{\frac{\sin x}{\cos^2 x}\right\} = \left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) = \underbrace{\sec x \tan x}$ | $-1(\cos x)^{-2}(-\sin x) \text{ or } (\cos x)^{-2}(\sin x)$ Convincing proof. Must see both <u>underlined steps</u> .                                                                | A1<br>A1 AG<br>(3)  |
| (b)                | $y = e^{2x} \sec 3x$                                                                                                                                                      |                                                                                                                                                                                       |                     |
|                    | $\begin{cases} u = e^{2x} & v = \sec 3x \\ \frac{du}{dx} = 2e^{2x} & \frac{dv}{dx} = 3\sec 3x \tan 3x \end{cases}$                                                        | Seen<br>or impliedEither $e^{2x} \rightarrow 2e^{2x}$ or<br>$\sec 3x \rightarrow 3\sec 3x \tan 3x$<br>Both $e^{2x} \rightarrow 2e^{2x}$ and<br>$\sec 3x \rightarrow 3\sec 3x \tan 3x$ | M1<br>A1            |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}\sec 3x + 3\mathrm{e}^{2x}\sec 3x\tan 3x$                                                                              | Applies $vu' + uv'$ correctly for their<br>u, u', v, v'<br>$2e^{2x} \sec 3x + 3e^{2x} \sec 3x \tan 3x$                                                                                | M1<br>A1 isw<br>(4) |
| (c)                | Turning point $\Rightarrow \frac{dy}{dx} = 0$<br>Hence, $e^{2x} \sec 3x(2 + 3\tan 3x) = 0$                                                                                | Sets their $\frac{dy}{dx} = 0$ and factorises (or cancels)                                                                                                                            | M1                  |
|                    | {Note $e^{2x} \neq 0$ , $\sec 3x \neq 0$ , so $2 + 3\tan 3x = 0$ , }                                                                                                      | out at least $e^{2x}$ from at least two terms.                                                                                                                                        |                     |
|                    | giving $\tan 3x = -\frac{2}{3}$                                                                                                                                           | $\tan 3x = \pm k \; ; \; k \neq 0$                                                                                                                                                    | M1                  |
|                    | $\Rightarrow 3x = -0.58800 \Rightarrow x = \{a\} = -0.19600$                                                                                                              | Either awrt $-0.196^{\circ}$ or awrt $-11.2^{\circ}$                                                                                                                                  | A1                  |
|                    | Hence, $y = \{b\} = e^{2(-0.196)} \sec(3 \times -0.196)$                                                                                                                  |                                                                                                                                                                                       |                     |
|                    | = 0.812093 = 0.812 (3sf)                                                                                                                                                  | 0.812                                                                                                                                                                                 | A1 cao<br>(4)       |
|                    |                                                                                                                                                                           |                                                                                                                                                                                       | [11]                |

**Part (c)**: If there are any EXTRA solutions for *x* (or *a*) inside the range  $-\frac{\pi}{6} < x < \frac{\pi}{6}$ , ie. -0.524 < x < 0.524 or ANY EXTRA solutions for *y* (or *b*), (for these values of *x*) then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range  $-\frac{\pi}{6} < x < \frac{\pi}{6}$ , ie. -0.524 < x < 0.524.

| Question<br>Number | Scheme                                                                                                                                                                                             |                                                                                                                                                                     | Marks    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Q8                 | $\csc^2 2x - \cot 2x = 1$ , $(eqn *)$ $0 \le x \le 180^\circ$                                                                                                                                      |                                                                                                                                                                     |          |
|                    | Using $\csc^2 2x = 1 + \cot^2 2x$ gives<br>$1 + \cot^2 2x - \cot 2x = 1$                                                                                                                           | Writing down or using<br>$\csc^2 2x = \pm 1 \pm \cot^2 2x$<br>or $\csc^2 \theta = \pm 1 \pm \cot^2 \theta$ .                                                        | M1       |
|                    | $\underline{\cot^2 2x - \cot 2x} = 0  \text{or}  \cot^2 2x = \cot 2x$                                                                                                                              | For either $\underline{\cot^2 2x - \cot 2x} \{= 0\}$<br>or $\cot^2 2x = \cot 2x$                                                                                    | A1       |
|                    | $\cot 2x(\cot 2x - 1) = 0$ or $\cot 2x = 1$                                                                                                                                                        | Attempt to factorise or solve a quadratic (See rules for factorising quadratics) or cancelling out $\cot 2x$ from both sides.                                       | dM1      |
|                    | $\cot 2x = 0$ or $\cot 2x = 1$                                                                                                                                                                     | Both $\cot 2x = 0$ and $\cot 2x = 1$ .                                                                                                                              | A1       |
|                    | $\cot 2x = 0 \Rightarrow (\tan 2x \rightarrow \infty) \Rightarrow 2x = 90,270$ $\Rightarrow x = 45,135$ $\cot 2x = 1 \Rightarrow \tan 2x = 1 \Rightarrow 2x = 45,225$ $\Rightarrow x = 22.5,112.5$ | Candidate attempts to divide at least<br>one of their principal angles by 2.<br>This will be usually implied by seeing<br>$x = 22.5$ resulting from $\cot 2x = 1$ . | ddM1     |
|                    | Overall, $x = \{22.5, 45, 112.5, 135\}$                                                                                                                                                            | <b>Both</b> $x = 22.5$ and $x = 112.5$<br><b>Both</b> $x = 45$ and $x = 135$                                                                                        | A1<br>B1 |
|                    |                                                                                                                                                                                                    |                                                                                                                                                                     | [7       |

If there are any EXTRA solutions inside the range  $0 \le x \le 180^{\circ}$  and the candidate would otherwise score FULL MARKS then withhold the final accuracy mark (the sixth mark in this question). Also ignore EXTRA solutions outside the range  $0 \le x \le 180^{\circ}$ .

| Question<br>Number | Scheme                                                                                                   |                                                                                                                         | Marks            |
|--------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|
| Q9 (i)(a)          | ln(3x - 7) = 5<br>$e^{ln(3x - 7)} = e^5$                                                                 | Takes e of both sides of the equation.<br>This can be implied by $3x - 7 = e^5$ .                                       | M1               |
|                    | $3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \{= 51.804\}$                                               | Then rearranges to make <i>x</i> the subject.<br><b>Exact answer</b> of $\frac{e^5 + 7}{3}$ .                           | dM1<br>A1<br>(3) |
| (b)                | $3^x e^{7x+2} = 15$                                                                                      |                                                                                                                         | (3)              |
|                    | $\ln\left(3^x \mathrm{e}^{7x+2}\right) = \ln 15$                                                         | Takes ln (or logs) of both sides of the equation.                                                                       | M1               |
|                    | $\ln 3^x + \ln e^{7x+2} = \ln 15$                                                                        | Applies the addition law of logarithms.                                                                                 | M1               |
|                    | $x\ln 3 + 7x + 2 = \ln 15$                                                                               | $x\ln 3 + 7x + 2 = \ln 15$                                                                                              | A1 oe            |
|                    | $x(\ln 3 + 7) = -2 + \ln 15$                                                                             | Factorising out at least two <i>x</i> terms on one side and collecting number terms on the other side.                  | ddM1             |
|                    | $x = \frac{-2 + \ln 15}{7 + \ln 3} \{= 0.0874\}$                                                         | <b>Exact answer</b> of $\frac{-2 + \ln 15}{7 + \ln 3}$                                                                  | A1 oe            |
| (ii) (a)           | $\mathbf{f}(x) = \mathbf{e}^{2x} + 3, \ x \in \Box$                                                      |                                                                                                                         | (5)              |
|                    | $y = e^{2x} + 3 \implies y - 3 = e^{2x}$ $\implies \ln(y - 3) = 2x$ $\implies \frac{1}{2}\ln(y - 3) = x$ | Attempt to make $x$<br>(or swapped $y$ ) the subject<br>Makes $e^{2x}$ the subject and<br>takes ln of both sides        | M1<br>M1         |
|                    | Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$                                                                  | $\frac{\frac{1}{2}\ln(x-3)}{\text{ or } \ln\sqrt{(x-3)}}$ or f <sup>-1</sup> (y) = $\frac{1}{2}\ln(y-3)$ (see appendix) | <u>A1</u> cao    |
|                    | f <sup>-1</sup> (x): Domain: $\underline{x > 3}$ or $\underline{(3, \infty)}$                            | Either $\underline{x > 3}$ or $(\underline{3, \infty})$ or Domain > 3.                                                  | B1               |
| (b)                | $g(x) = \ln(x-1), x \in \Box, x > 1$                                                                     |                                                                                                                         | (4)              |
|                    | fg(x) = e <sup>2ln(x-1)</sup> + 3 {= (x - 1) <sup>2</sup> + 3}                                           | An attempt to put function g into function f.<br>$e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$ .               | M1<br>A1 isw     |
|                    | fg(x): Range: $\underline{y > 3}$ or $\underline{(3, \infty)}$                                           | Either $\underline{y > 3}$ or $\underline{(3, \infty)}$ or Range > 3 or $\underline{fg(x) > 3}$ .                       | B1<br>(3)        |
|                    |                                                                                                          |                                                                                                                         | [15]             |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code US022710 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH