

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Core Mathematics 3 (6665A)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037653 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

-	estion umber	Scheme		Marks	
1	(a)	Radians: f(0.2) = -0.4, $f(0.4) = 0.3$ or considers smaller subset of [0.2, 0.4]	Degrees: f(0.2) = -0.4, $f(0.4) = 0.2$ or considers smaller subset of [0.2, 0.4]	M1	
		Change of sign implies root		A1 (2)	
	(b)	$\sec x + 3x - 2 = 0 \Longrightarrow 3x = 2 - \sec x$ and so $x = \frac{2}{3} - \frac{1}{3\cos x} *$		B1 (1)	
	(c)	Radians: $\begin{array}{c} x_1 = 0.3177, \\ x_2 = 0.3158, \\ x_3 = 0.3160 \end{array}$	Degrees: $x_1 = 0.3333, x_2 = 0.3333, x_3 = 0.3333$	M1, A1, A1 (3)	
	(d)	0.316 (radians)	0.333 (degrees)	B1 (1)	
				[7]	
this	Notes (a) M1: Gives two answers with at least one correct to 1sf. Candidates may work in degrees or in radians in this question, but there is a maximum of 6/7 for those working in degrees. (May choose smaller interval between 0.2 and 0.4 e.g. f(0.3) and f(0.35) but this must span the root which is near to 0.316 in radians and				

0.333 in degrees) If they choose a larger interval then this is M0
A1: Both their values correct to at least one decimal place, and reason given (e.g. change of sign or f(0.2)<0, f(0.4)>0 or product f(0.2)f(0.4)<0 or equivalent) and conclusion e.g. root
(b) B1: Starts with equation equal to zero, rearranges correctly with no errors and at least one intermediate step

(c) M1:Substitutes $x_0 = 0.3$ into $x = \frac{2}{3} - \frac{1}{3\cos x} \Longrightarrow x_1 =$

This can be implied by $x_1 = \frac{2}{3} - \frac{1}{3\cos 0.3}$, or answers which round to 0.32 (rads) or 0.33 (degrees)

A1: x_1 awrt 0.3177 4dp (rads) or to awrt 0.3333 4dp (degrees)

Mark as the first value given. Don't be concerned by the subscript

A1: $x_2 = awrt \ 0.3158$, $x_3 = awrt \ 0.3160 \ (rads) - NOT \ just \ 0.316$

NB $x_2 = \text{awrt } 0.3333$, $x_3 = \text{awrt } 0.3333$ (degrees). This mark is A0. They cannot score A1 if working in degrees

Mark the second and third values given. Don't be concerned by the subscripts Ignore extra values.

(d) **B1**: 0.316 stated to 3dp (independent of part (c)) for radians or 0.333 for degrees

The whole answer must maintain consistent units – either degrees, or radians. Use answer to (c) to determine units being used. NB Degree answers have maximum of M1A1B1M1A1A0B1 ie 6/7

Question Number	Scheme	Marks
2. (a)	Use of common denominator e.g. $\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15(x-1) - 2x(3x+4) + 14}{(3x+4)(x-1)}$	M1
	$=\frac{-6x^2+7x-1}{(3x+4)(x-1)}$	A1
	$=\frac{-(6x-1)(x-1)}{(3x+4)(x-1)}$	M1
	$=\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	A1 (4)
First Alternative for (a)	$\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15}{3x+4} + \frac{-2x(3x+4)+14}{(3x+4)(x-1)}$	M1
	$=\frac{15}{3x+4}+\frac{-6x^2-8x+14}{(3x+4)(x-1)}$	A1
	$=\frac{15}{3x+4} + \frac{-2(x-1)(3x+7)}{(3x+4)(x-1)}$	M1
	$=\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	A1 (4)
Second Alternative for (a)	$\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15(3x+4)(x-1) - 2x(3x+4)^2 + 14(3x+4)}{(3x+4)^2(x-1)}$	M1
	$=\frac{(3x+4)(-6x^2+7x-1)}{(3x+4)^2(x-1)} \text{ or } =\frac{(x-1)(-18x^2-21x+4)}{(3x+4)^2(x-1)}$	A1
	$=\frac{(3x+4)^2(1-6x)}{(3x+4)^2(x-1)}, =\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	M1, A1 (4)
(b)	$f'(x) = \frac{(3x+4) \times (-6) - (1-6x) \times 3}{(3x+4)^2}$	M1 A1ft
	$=\frac{-27}{(3x+4)^2}$	A1cao (3)
Alternative for (b)	Or $f'(x) = (3x+4)^{-1} \times (-6) + (1-6x) \times (-3) \times (3x+4)^{-2}$	M1 A1ft
~ / /	$=\frac{-27}{(3x+4)^2}$	A1cao (3)
Second Alternative for (b)	$= \frac{-27}{(3x+4)^2}$ Or $f(x) = -2 + \frac{9}{3x+4}$ so $f'(x) = 9 \times (-3) \times (3x+4)^{-2} = \frac{-27}{(3x+4)^2}$	M1 A1ft A1cao
		(3)

Question	Scheme	Marks
Number	Differentiates enisional energy inc.	
Third	Differentiates original expression:	M1
Alternative	$\frac{-45}{(3x+4)^2} - \left[\frac{2(x-1)-2x}{(x-1)^2}\right] + \frac{-14(6x+1)}{(3x+4)^2(x-1)^2}$	A1
for (b)	$(3x+4)^2 \begin{bmatrix} (x-1)^2 \end{bmatrix}^2 (3x+4)^2 (x-1)^2$	111
	-27	A1cao
	$=\frac{-27}{(3x+4)^2}$	[7]
A1: corre M1: Facto	<u>Notes</u> bines two or three fractions into single fraction with correct use of common denomina ct answer with collected terms giving three term quadratic numerator prises their quadratic following usual rules in numerator: but may be written in different ways – see m-s above)	ator
7 11 cu o (0	at may be written in different ways see in 5 above,	
denomin numera squared	lies product or quotient rule correctly to their fraction (must have <i>x</i> terms in numerator batteries of their answer to (a) which may be linear, quadratic, or even cubic; not just constator) but it should be clear that they are using the correct rule with correct signs and contain (in the case of quotient rule) i.e. using $\frac{vu'-uv'}{v^2}$ and states $u = v = \frac{du}{dx} = \frac{dv}{dx} = \frac{dv}{dx}$ of the form $\frac{(3x+4) \times A - (1-6x) \times B}{(3x+4)^2}$ implies the method.	s tant rect term
attempt	y for the product rule : If the formula is quoted it must be correct. There must have bee to differentiate both terms. le is not quoted nor implied by their working, meaning that term are written out	n some
	$6x'', v = ("3x+4")^{-1}, u' =, v' = followed by their vu'+uv', then only accept an$	swers of
the form	$("3x+4")^{-1} \times A \pm "3" ("3x+4")^{-2} \times B$.	
	e invisible brackets for the M mark.	
	hird alternative method , need an attempt at all three differentiations in line with the goal N.B. the first A1 is not ft for this method).	guidance
A1ft: may be	e unsimplified e.g. $\frac{(3x+4)\times(-6)-(1-6x)\times3}{(3x+4)^2}$ but should be correct for their answe	er to (a)
A1: correct s	implified cao but accept $=\frac{-27}{9x^2+24x+16}$, as alternative	
	nswer in (a) can only achieve a maximum mark of M1A1A0 in part (b)	

Question Number	Scheme	Marks
3 (a)	Let $y = (\sin x)^{-1}$, then $\frac{dy}{dx} = -1(\sin x)^{-2} \times \cos x$	M1 A1
	i.e. $\frac{dy}{dx} = \frac{-1}{\sin x} \times \frac{\cos x}{\sin x} = -\cos \operatorname{ecx} \cot x^*$	B1*
Alternative Method (a)	Use of quotient rule $\frac{dy}{dx} = \frac{\sin x \times 0 - 1\cos x}{\sin^2 x}$	M1A1
	i.e. $\frac{dy}{dx} = \frac{-1}{\sin x} \times \frac{\cos x}{\sin x} = -\cos \exp \cot x^*$	B1* (3)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\cos\mathrm{ec}2x + \mathrm{e}^{3x} \times -2\cos\mathrm{ec}2x\cot 2x$	M1 A1 A1
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3x} \cos \mathrm{ec} 2x(3 - 2\cot 2x) = 0$	M1
	(So cot $2x = 1.5$) tan $2x = 2/3$ so $x = \frac{1}{2} \arctan \frac{2}{3}$ (or $k = 2/3$)	A1 (2
	Notes	
(a) M1 : Us	e of chain rule so $\frac{dy}{dx} = -1(\sin x)^{-2} \times (\pm \cos x)$	
A1: cao		intermediate step
sho	wn in scheme which may be written $\frac{dy}{dx} = \frac{-\cos x}{\sin x \sin x}$). This mark is dependent o	n the M1.
Alternative	: M1: If quotient rule is used need to see $\frac{dy}{dx} = \frac{\sin x \times 0 - 1(\pm \cos x)}{\sin^2 x}$, then A1 is	s cao
	the rule is not quoted nor implied by their working, meaning that terms are writ x^{x} , $v = \cos ec 2x$, $u' =, v' =$ followed by their $vu'+uv'$, then only accept and	
$\mu e^{3x} c$	$\cos \sec 2x + e^{3x} \times \lambda \cos \sec 2x \cot 2x$.	
A1: one	term correct, A1 both terms correct (need not simplify isw)	
(c) M1 : Pu	ts $\frac{dy}{dx} = 0$ and factorises or cancels by $e^{3x} \csc 2x$ concluding that $a \pm b \cot 2x =$	0 or $\cot 2x = \pm \frac{a}{b}$
A1. Dray	vs correct conclusion $\frac{1}{2} \arctan \frac{2}{2}$ or $k = 2/3$	

A1: Draws correct conclusion $\frac{1}{2} \arctan \frac{2}{3}$ or k = 2/3

Question Number	Ncheme		Marks	
4.	(a) When $t = 0$, $\theta = 85$ so $85 = A + 60$, $A = 25$	B1	(1)	
	(b) $58 = "25" + 60e^{-k15}$ $"33" = 60e^{-k15} \rightarrow e^{-k15} = \frac{"33"}{60}$ or $e^{k15} = \frac{60}{"33"}$	M1		
	So $-15k = \ln\left(\frac{"11"}{20}\right)$ or $15k = \ln\left(\frac{20}{"11"}\right)$	M1		
	$k = -\frac{1}{15} \ln\left(\frac{11}{20}\right) = \frac{1}{15} \ln\left(\frac{20}{11}\right) *$	A1cso*	(3)	
	(c) $50 = "25" + 60e^{-kt} \rightarrow e^{-kt} = \text{ or } e^{kt} = \text{ or } (.96)^t = 25$	M1		
	$(e^{-kt}) = \frac{25}{60}$ (or awrt 0.42) or $(0.96^t) = \frac{25}{60}$ or $(e^{kt}) = \frac{60}{25}$	A1		
	$t = \frac{\ln\left(\frac{"25"}{60}\right)}{-k} \text{or} t = \frac{\ln\left(\frac{60}{"25"}\right)}{k}$	M1		
	$\frac{\ln\left(\frac{25}{60}\right)}{-\frac{1}{15}\ln\left(\frac{20}{11}\right)} = (21.96) = 22 \text{ mins (approx) or } 11.22 \text{ or } t = 22$	A1	(4 [8	
(a) B1 : Giv	$\frac{\text{Notes}}{\text{Notes}}$ where $A = 25$ – any work seen should be correct			
M1 : Uses of <i>A</i> to find	es values 58 and 15 with their A to form equation in k and isolate $e^{-k15} = or e^{k15} = logs$ correctly (<i>following correct log rules and only applying log to positive quantitie</i> k. Need to see line shown in mark scheme.	s) with their		
A1cso: The	ere needs to be a step between $-15k = \ln\left(\frac{"11"}{20}\right)$ and the printed answer. The printed	l answer nee	ds to	
in A0	No errors should be seen reaching it. Use of decimals giving 0.03985 as part of the p proof must be seen in part (b) to be credited with marks in part (b).	proof will re	sult	
A1: correct	es 50 with their <i>A</i> and makes their e ^{-kt} subject numerical fraction (any correct form- if given as decimal accept awrt 0.42)[ignore logs correctly then rearranges correctly to obtain $t = \frac{\ln\left(\frac{"25"}{60}\right)}{-k}$ (Allow 50 – their <i>A</i>		. بر	
		instead of 2	.5 in	
	2 minutes. Accept 11.22 i.e. 24 hour clock or $t = 22$ or $t = 22$ minutes but not $t = 22$	-		
Special cas	e: A common error is to reach $0.96t = \frac{25}{60}$; this is a result of log errors- so allow M	IA1M0A0		
	mmon error is to miscopy 15 as 5 (usually part way through the answer). Answer is u			

Question Number	Scheme	Marks			
5.	(a) $R\cos\alpha = 3, R\sin\alpha = 3$				
	$R = 3\sqrt{2}$ or $\sqrt{18}$ or awrt 4.24	B1			
	$\tan \alpha = 1, \implies \alpha = \frac{\pi}{4}$ or 0.785	M1, A1 (3)			
	(b) $\left(\frac{dx}{dy}\right) = 3\cos y - 3\sin y$ or $3\sqrt{2}\cos(y + \frac{\pi}{4})$	M1 A1			
	Puts $3\sqrt{2}\cos(y+\alpha) = 2$ or puts $-3\sqrt{2}\sin(y-\alpha) = 2$	B1			
	Puts $3\sqrt{2}\cos(y+\alpha) = 2$ or puts $-3\sqrt{2}\sin(y-\alpha) = 2$ So $\cos(y+\alpha) = \frac{\sqrt{2}}{3}$ and $y = "1.0799"-\alpha$ or $y = "-0.491"+\alpha$	M1			
	y=0.295 and $x=3.742$ (or 3.743)	A1 A1 (6) [9]			
A1: Accept(b) M1: AtteA1: correct iB1: Obtainsfurther work	$\tan \alpha = \pm \frac{3}{3}$ If <i>R</i> is used then accept $\sin \alpha = \pm \frac{3}{R}$ or $\cos \alpha = \pm \frac{3}{R}$ awrt 0.785 BUT 45 degrees is A0 empts differentiation (may be sign errors) in either form shown on scheme – answer is A0 if clearly in degrees. equation given in scheme, or $\frac{1}{3\sqrt{2}\cos(y+\alpha)} = \frac{1}{2}$, or equivalent. $3\cos y - 3\sin y$ a) is B0 but may be written as $-3\sqrt{2}\sin(y-\alpha) = 2$ which would be B1. It may also e (see below)	= 2 (without so be solved by			
M1: Allow in degrees or radians for $\operatorname{arcos}\left(\frac{\pm 2}{R}\right) \pm \alpha$ or for $\operatorname{arcsin}\left(\frac{\pm 2}{R}\right) \pm \alpha$ or for $\operatorname{arcos}\left(\frac{\pm \frac{1}{2}}{R}\right) \pm \alpha$ or					
A1: one corr awrt in both Do not accep	for $\arcsin\left(\frac{\pm \frac{1}{2}}{R}\right) \pm \alpha$ A1: one correct answer – allow 3.742 or 3.743 following incorrect <i>y</i> value A1: two correct answers (Accept awrt in both cases) Do not accept mixed units- unless recovery yields a correct final answer. Special case: Candidate works solely in degrees: In part (a) max mark is B1M1A0 In part (b) they can have				
M1A1 for $\frac{d}{d}$	M1A1 for $\frac{dx}{dy} = 3\cos y - 3\sin y$ or M1A0 for $3\sqrt{2}\cos(y+45)$) then B1 is possible and M1 if solution is				
correct value	completed in degrees. The value for y in degrees is not appropriate but correct work in degrees may lead tocorrect value for x, so A1, A0 could be earned.Ignore extra answer outside range.(PTO for little t formula method in part (b))				

Question Number	Scheme	Marks
5.	Contd "little <i>t</i> formula method"	
Alternative for last four marks in (b)	(b) $\frac{dx}{dy} = 3\cos y - 3\sin y$ (as before)	M1A1
	$3\cos y - 3\sin y = 2$ so $3\frac{1-t^2}{1+t^2} - 3\frac{2t}{1+t^2} = 2$	B1
	Attempt to solve $5t^2 + 6t - 1 = 0$ and use $y = 2 \times \arctan"0.148"$	M1
	y=0.295 and $x=3.742$ (or 3.743)	A1 A1 (6) [9]

(a) (i)	V shape in correct position i.e. touches – ve x – axis as shown	B1
	(- <i>a</i> /2,0) and (0, <i>a</i>)	B1
(ii)	Translation down of previous V shape ft or correct position if starts again	B1 ft
a de la caractería de la c	((b-a)/2, 0) and $((a+b)/2, 0)$	B1, B1
	Completely correct graph with y intercept at $(0, a - b)$	B1 (6)
(b) $(2x+a)-b = \frac{1}{3}x \rightarrow \frac{5}{2}x = b-a$		M1
So $x = \frac{3}{5}(b-a)$		A1
And $-(2x+a)-b = \frac{1}{3}x \to -2x - \frac{1}{3}x = a+b$		M1
So $x = -\frac{3}{7}(a+b)$		A1
,		(4) [10]
V shape correct orientation and position. Could be a tice $(-a/2, 0)$ and $(0, a)$ accept $-a/2$ and a marked on the a $(a, 0)$ on y axis re must be a graph for these marks to be awarded in : Translation down of previous V shaped graph by any orrect V in correct position if candidate starts again and one x coordinate correct B1 : both correct (may be shown on $(0, (b-a)/2)$ and $(0, -(a + b)/2)$). (May be shown on v be given for correct coordinates i.e. $((b-a)/2, 0)$ and The graph must be completely correct. Intercept must I x-intercepts, one positive and one negative. The y co as $a - b$ or even $(a - b, 0)$) Attempts first +ve solution correctly using $(2x + a)$ and obtain any equivalent to $x = \frac{3}{5}(b-a)$ e.g. $x = \frac{3}{5}b - \frac{3}{5}a$ Attempts second -ve solution correctly using $-(2x + a)$ and	correct axes or even $(0, -a/2)$ a part (a) . y amount (may be in wrong d does not relate this to their y wn on x axis as $((b - a)/2)$ an wrong parts of $x - axis$, or inte (-(a + b)/2, 0) without grap be on negative y axis and th oordinate must be correct (m ins equation with multiple of x correct)	on <i>x</i> axis and position) graph in part (a) id $(-(a + b)/2)$ or erchanged) Marks oh. ere should be hay be shown on <i>y</i> only on LHS
	(b) $(2x+a)-b=\frac{1}{3}x \rightarrow "\frac{5}{3}x=b-a"$ So $x=\frac{3}{5}(b-a)$ And $-(2x+a)-b=\frac{1}{3}x\rightarrow -2x-\frac{1}{3}x=a+b$ So $x=-\frac{3}{7}(a+b)$ Notes V shape correct orientation and position. Could be a tid (-a/2, 0) and (0, a) accept $-a/2$ and a marked on the a (a, 0) on y axis re must be a graph for these marks to be awarded in : Translation down of previous V shaped graph by any porrect V in correct position if candidate starts again and one x coordinate correct B1: both correct (may be shown on v be given for correct coordinates i.e. $((b-a)/2, 0)$ and The graph must be completely correct. Intercept must be x-intercepts, one positive and one negative. The y c as $a-b$ or even $(a-b, 0)$) Attempts first +ve solution correctly using $(2x + a)$ and obta any equivalent to $x = \frac{3}{5}(b-a)$ e.g. $x = \frac{3}{5}b - \frac{3}{5}a$	(ii) $\int \frac{1}{1+\frac{1}{2}} = \int \frac{1}{2} \int \frac{1}{2$

Question Number	Scheme		Marks	
7 (i)(a)	$\cos 3\theta = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$		M1	
	$=(2\cos^2\theta-1)\cos\theta-2\sin\theta\cos\theta\sin\theta$		M1	
	$=2\cos^3\theta-\cos\theta-2$	$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta$		
	$=4\cos^3\theta-3\cos\theta^*$		A1 *	(4)
(b)	$8\cos^3\theta - 6\cos\theta + \theta$	$(2\cos^2\theta - 1) + 1 = 0$	M1	
	$8\cos^3\theta + 2\cos^2\theta - 6\cos\theta = 0$		A1	
	$2\cos\theta(4\cos\theta-3)(\cos\theta+1)=0$ so $\cos\theta=$		dM1	
	$\cos\theta = \frac{3}{4}$ (or 0 or -1)		A1	
	$\theta = 0.723$ and no extra answers in range, or $\theta = \frac{\pi}{2}$ and π (or 90° and 180°)		A1, B1	(6)
(ii)	$(\sin\theta = x \text{ and so}) \cos\theta = \sqrt{(1-x^2)}$	Or uses right angled triangle with sides 1, x and $\sqrt{(1-x^2)}$	M1	
	$(\cot\theta) = \frac{\cos\theta}{\sin\theta}$	Indicates θ on diagram and implies $(\cot \theta) = \frac{adjacent}{opposite}$	M1	
	$\sqrt{(1-1)^2}$	$(-x^2)_{*}$	A1*	
	$=\frac{\sqrt{x}}{x}$ *			(3)
				[13]

<u>Notes</u>

(i) (a) M1: Correct statement for $\cos 3\theta$ as shown using compound angle formula

M1: Uses correct double angle formulae for $\sin 2\theta$ and $\cos 2\theta$ (any of the three) – allow invisible brackets dM1: (dependent on both previous Ms). Uses $\sin^2 \theta = (1 - \cos^2 \theta)$ o.e. to replace all sin terms by cos terms A1: deduces result with no errors- allow recovery from invisible brackets or from occasional missing θ – need all 3 M marks

(b) M1: Replaces $\cos 3\theta$ and $\cos 2\theta$ by expression from (a) and by attempt at double angle formula resulting in expression in cosine only – may do this in one or several steps – allow slips $8\cos^3\theta - 6\cos\theta + (\cos^2\theta - \sin^2\theta) + 1 = 0$ is not yet enough for M mark- but

 $8\cos^3\theta - 6\cos\theta + (\cos^2\theta - (1 - \cos^2\theta) + 1 = 0$ would get M1 but not yet the A mark

A1: correct cubic shown with 3 terms

dM1: Solves by any valid method (factorising, formula, completion of square or calculator or implied by 3/4) to give at least one non zero value for $\cos \theta =$ A1: for 3/4

A1: 0.723 or answers which round to this and no extra answers in range. Do not accept degrees.

B1: for $\theta = \frac{\pi}{2}$ and π (allow decimals to 3sf 3.14 and 1.57 or degrees)

(ii) M1: States $\cos \theta = \sqrt{(1-x^2)}$, or see right angled triangle with sides 1, x and $\sqrt{(1-x^2)}$

M1: Implies $(\cot \theta) = \frac{\cos \theta}{\sin \theta}$ - not $(\cot \theta) = \frac{\cos}{\sin \theta}$ nor $(\cot \theta) = \frac{\cos}{\sin \theta}$

or indicates angle on diagram and implies ($\cot \theta$) = *adjacent* ÷ *opposite*

A1: Clear explanation No errors, printed answer achieved. Needs both M marks

Question Number	Scheme		Marks	
8. (a)	Let $y = 3 - 2e^{-x}$, then $2e^{-x} = 3 - y$ <i>Or</i> $2e^{-y} = 3 - x$		M1	
	$-x = \ln \frac{3-y}{2}$ and $x =$	$-y = \ln \frac{3-x}{2}$ and $y =$	M1	
	$x = -\ln\frac{3-y}{2}$	This mark earned with next for correct answer by this method	A1	
	$f^{-1}(x) = \ln \frac{2}{3-x}$ or $-\ln \frac{3-x}{2}$ o.e.		A1	
	Domain is $x < 3$		B1	(5)
(b)	$\ln\frac{2}{3-x} = \ln x \longrightarrow 2 = (3-x)x$		M1	
	$x^2 - 3x + 2 = 0$			
	x = 2 or x = 1			(4)
(c)	$3-2e^{-t} = ke^{t} \rightarrow ke^{2t} - 3e^{t} + 2 = 0 \text{ or } \rightarrow ke^{2t} - 3e^{t} = -2 \text{ o.e. (isw)}$		M1 A1	(1)
	Use " $b^2 - 4ac = 0$ " or " $b^2 = 4ac$ " or attempts $e^t = \frac{3 \pm \sqrt{9 - 8k}}{2k}$			
	So $k = 1.125$ o.e. e.g. $\frac{9}{8}$ or $1\frac{1}{8}$			(4) [13]
	Note	S		

(a) M1: Puts y = f(x) and makes e^{-x} term subject of formula so $2e^{-x} = 3 - y$ or $e^{-x} = \frac{3 - y}{2}$ or even

 $-2e^{-x} = y - 3$ or $-e^{-x} = \frac{y - 3}{2}$ - allow sign slips. Allow f(x) instead of y in expression for both Ms

M1: Uses ln to get x =(This mark is for knowing that $\ln x$ is inverse of e^x so allow sign errors and weak log work. These errors will be penalised in the A mark.)

A1: completely correct log work giving a correct unsimplified answer for x = (then isw for this mark)A1: any correct answer - do not need to see LHS of equation but variable **must** be x not y

NB Possible answers include
$$\frac{\log \frac{2}{3-x}}{\log e}$$
, $-\ln(3-x) + \ln 2$, $-\ln\left(-\frac{1}{2}x + \frac{3}{2}\right)$, or $\ln \frac{-2}{x-3}$ etc

If x and y interchanged at start – see alternative in scheme. Note this method gives A1A1 or A0A0 **B1**: For x < 3 (independent mark); allow $(-\infty, 3)$, but $x \le 3$ is B0

(b) M1: Removes In correctly on both sides and multiplies across

A1: expands bracket to give three term quadratic equation, allow $x^2 - 3x = -2$

M1: Solves quadratic (may be implied by answers)

A1: Need both these correct answers

(c) M1: Sets $3-2e^{-t} = ke^{t}$ and attempts to multiply all terms by e^{t} or by e^{-t} (allow use of x instead of t) A1: three term quadratic – allow x or t so $ke^{2x} - 3e^x + 2 = 0$ or $ke^{2x} - 3e^x = -2$ or $k = 3e^{-t} - 2e^{-2t}$ etc **dM1**: Uses condition for equal roots to give expression in k – may not be simplified- or attempts to solve their quadratic equation in e' using formula or completion of the square A1: See scheme

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE