Mathematics C3

6665

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6665 Core C3

Scheme	Mark	TS.
Dividing by $\cos^2 \theta$: $\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} \equiv \frac{1}{\cos^2 \theta}$	M1	
Completion: $1 + \tan^2 \theta = \sec^2 \theta$ (no errors seen)	A1	(2)
Use of $1 + \tan^2 \theta = \sec^2 \theta$: $2(\sec^2 \theta - 1) + \sec \theta = 1$	M1	
$[2\sec^2\theta + \sec\theta - 3 = 0]$		
Factorising or solving: $(2 \sec \theta + 3)(\sec \theta - 1) = 0$	M1	
$[\sec \theta = -\frac{3}{2} \text{ or } \sec \theta = 1]$		
$\theta = 0$	B1	
$\cos\theta = -\frac{2}{3}$; $\theta_1 = 131.8^{\circ}$	M1 A1	
$\theta_2 = 228.2^{\circ}$	A 1√	(6)
[A1ft for $\theta_2 = 360^\circ - \theta_1$]		
		[8]
	Dividing by $\cos^2\theta$: $\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$ Completion: $1 + \tan^2\theta = \sec^2\theta$ (no errors seen) Use of $1 + \tan^2\theta = \sec^2\theta$: $2(\sec^2\theta - 1) + \sec\theta = 1$ $[2\sec^2\theta + \sec\theta - 3 = 0]$ Factorising or solving: $(2\sec\theta + 3)(\sec\theta - 1) = 0$ $[\sec\theta = -\frac{3}{2} \text{ or } \sec\theta = 1]$ $\theta = 0$ $\cos\theta = -\frac{2}{3}$; $\theta_1 = 131.8^\circ$ $\theta_2 = 228.2^\circ$	Dividing by $\cos^2\theta$: $\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$ Completion: $1 + \tan^2\theta = \sec^2\theta$ (no errors seen) Al Use of $1 + \tan^2\theta = \sec^2\theta$: $2(\sec^2\theta - 1) + \sec\theta = 1$ $[2\sec^2\theta + \sec\theta - 3 = 0]$ Factorising or solving: $(2\sec\theta + 3)(\sec\theta - 1) = 0$ M1 $[\sec\theta = -\frac{3}{2} \text{ or } \sec\theta = 1]$ $\theta = 0$ B1 $\cos\theta = -\frac{2}{3}$; $\theta_1 = 131.8^\circ$ $\theta_2 = 228.2^\circ$ M1 M1 A1 M1 A1

[10]

6665 Core C3

Past Paper (Mark Scheme)

Question Number	Scheme	Marks
2 (a)	(i) $6\sin x \cos x + 2\sec 2x \tan 2x$ or $3\sin 2x + 2\sec 2x \tan 2x$ [M1 for $6\sin x$]	M1A1A1 (3)
(ii)	$3(x + \ln 2x)^{2}(1 + \frac{1}{x})$ [B1 for $3(x + \ln 2x)^{2}$]	B1M1A1 (3)
(b)	Differentiating numerator to obtain $10x - 10$	
	Differentiating denominator to obtain $2(x-1)$	
	Using quotient rule formula correctly:	
	To obtain $\frac{dy}{dx} = \frac{(x-1)^2 (10x-10) - (5x^2 - 10x + 9)2(x-1)}{(x-1)^4}$	
	Simplifying to form $\frac{2(x-1)[5(x-1)^2 - (5x^2 - 10x + 9)}{(x-1)^4}$	
	$=$ $-\frac{8}{(x-1)^3}$ * (c.s.o.)	
3 (a)	$\frac{5x+1}{(x+2)(x-1)} - \frac{3}{x+2}$	B1
	$= \frac{5x+1-3(x-1)}{(x+2)(x-1)}$	M1
	M1 for combining fractions even if the denominator is not lowest common	
	$= \frac{2x+4}{(x+2)(x-1)} = \frac{2(x+2)}{(x+2)(x-1)} = \frac{2}{x-1}$ M1 must have linear numerator	M1 A1 cso (4)
(b)	$y = \frac{2}{x - 1} \implies xy - y = 2 \implies xy = 2 + y$	M1A1
		A1 (3)
	$f^{-1}(x) = \frac{2+x}{x}$ o.e. $fg(x) = \frac{2}{x^2+4}$ (attempt) $\left[\frac{2}{"g"-1}\right]$	M1
	Setting $\frac{2}{x^2 + 4} = \frac{1}{4}$ and finding $x^2 =;$ $x = \pm 2$	M1; A1 (3

Mathematics C3 6665

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel 6665 Core C3

Question Number	Scheme	Mark	S
4 (a)	$f'(x) = 3 e^x - \frac{1}{2x}$	M1A1A1	(3)
	$3e^x - \frac{1}{2x} = 0$	M1	
	$\Rightarrow 6\alpha e^{\alpha} = 1 \qquad \Rightarrow \alpha = \frac{1}{6} e^{-\alpha} \qquad (*)$	A1 cso	(2)
(c)	$x_1 = 0.0613, x_2 = 0.1568, x_3 = 0.1425, x_4 = 0.1445$	M1 A1	(2)
	[M1 at least x_1 correct, A1 all correct to 4 d.p.]		
(d)	Using $f'(x) = 3 e^x - \frac{1}{2x}$ with suitable interval		
	e.g. $f'(0.14425) = -0.0007$	M1	
	f'(0.14435) = +0.002(1)		
	Accuracy (change of sign and correct values)	A1	(2)
			[9]

6665

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6665 Core C3

Question Number	Scheme	Mar	ks
5 (a)	$\cos 2A = \cos^2 A - \sin^2 A (+ \text{ use of } \cos^2 A + \sin^2 A \equiv 1)$	M1	
	$= (1 - \sin^2 A); -\sin^2 A = 1 - 2\sin^2 A \qquad (*)$	A1	(2)
(b)	$2\sin 2\theta - 3\cos 2\theta - 3\sin \theta + 3 = 4\sin \theta \cos \theta; -3(1 - 2\sin^2 \theta) - 3\sin \theta + 3$	B1; M1	
	$\equiv 4\sin\theta\cos\theta + 6\sin^2\theta - 3\sin\theta$	M1	
	$\equiv \sin\theta(4\cos\theta + 6\sin\theta - 3) \tag{*}$	A1	(4)
(c)	$4\cos\theta + 6\sin\theta \equiv R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$		
	Complete method for R (may be implied by correct answer)		
	$[R^2 = 4^2 + 6^2, R \sin \alpha = 4, R \cos \alpha = 6]$	M1	
	$R = \sqrt{52}$ or 7.21	A1	
	Complete method for α ; $\alpha = 0.588$ (allow 33.7°)	M1 A1	(4)
(d)	$\sin\theta \left(4\cos\theta + 6\sin\theta - 3\right) = 0$	M1	
	$\theta = 0$	B1	
	$\sin(\theta + 0.588) = \frac{3}{\sqrt{52}} = 0.4160 (24.6^{\circ})$	M1	
	$\theta + 0.588 = (0.4291), 2.7125 \text{ [or } \theta + 33.7^{\circ} = (24.6^{\circ}), 155.4^{\circ}]$	dM1	
	heta=2.12 cao	A1	(5)
			[15]

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6665 Core C3

Question Number	Scheme		Marks	
6. (a)	<i>y</i> ↑	Translation \leftarrow by 1	M1	
	-2 0 2 x	Intercepts correct	A1	(2)
(b)	y ↑	$x \ge 0$, correct "shape"	B1	
		[provided not just original]		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reflection in y-axis	B1√	
	b	Intercepts correct	B1	(3)
(c)	a = -2, b = -1		B1 B1	(2)
(d)	Intersection of $y = 5x$ with $y = -x - 1$		M1A1	
	Solving to give $x = -\frac{1}{6}$		M1A1	(4)
				[11]
	[Notes:	1 15 2 1 1		
	(i) If both values found for $5x = -x - 1$ and $5x = x - 3$, or solved			
	algebraically, can score 3 out of 4 for $x = -\frac{1}{6}$ and $x = -\frac{3}{4}$;			
	required to eliminate $x = -\frac{3}{4}$ for final mark. (ii) Squaring approach: M1 correct method, $24x^2 + 22x + 3 = 0$ (correct 3 term quadratic, any form) A1			
	Solving M1, Final correct ans	ewer A1.]		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6665 Core C3

Mark Scheme (Post standardisation)

Mathematics C3 6665

Question Number	Scheme	Mar	ks
7 (a)	Setting $p = 300$ at $t = 0 \implies 300 = \frac{2800a}{1+a}$	M1	
	(300 = 2500a); $a = 0.12 (c.s.o) *$	dM1A1	(3)
(b)	$1850 = \frac{2800(0.12)e^{0.2t}}{1 + 0.12e^{0.2t}} ; \qquad e^{0.2t} = 16.2$	M1A1	
	Correctly taking logs to $0.2 t = \ln k$	M1	
	t = 14 (13.9)	A1	(4)
(c)	Correct derivation:		
	(Showing division of num. and den. by $e^{0.2t}$; using a)	B1	(1)
(d)	Using $t \to \infty$, $e^{-0.2t} \to 0$,	M1	
	$p \to \frac{336}{0.12} = 2800$	A1	(2)
	0.12		[10]