

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6665/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2007 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1. (<i>a</i>)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3x}{6}\right) = 0$	M1
	x = 2 (only this answer)	A1 (cso) (2)
<i>(b)</i>	$\begin{array}{c} (e^{x})^{2} - 4e^{x} + 3 = 0 (\text{any 3 term form}) \\ (e^{x} - 3)(e^{x} - 1) = 0 \\ e^{x} = 3 \text{or} e^{x} = 1 \text{Solving quadratic} \\ x = \ln 3, x = 0 \ (\text{or ln 1}) \end{array}$	M1
	$(e^x - 3)(e^x - 1) = 0$	
	$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
	$x = \ln 3$, $x = 0$ (or ln 1)	M1 A1 (4)
		(6 marks)

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1 Note: x = 2 from $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$ M0A0 $\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$ allow M1, x = 2 (no wrong working) A1

(b) 1^{st} M1 for attempting to multiply through by e^x : Allow y, X, even x, for e^x 2^{nd} M1 is for solving quadratic as far as getting two values for e^x or y or X etc 3^{rd} M1 is for converting their answer(s) of the form $e^x = k$ to x = lnk (must be exact) A1 is for ln3 **and** ln1 or 0 (Both required and no further solutions)

2. (<i>a</i>)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1	
	$f(x) = \frac{(2x+3)(2x-1) - (9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors	M1, A1√	
	(need not be single fraction)		
	Simplifying numerator to quadratic form	M1	
	Correct numerator $= \frac{4x^2 + 2x - 12}{[(2x-1)(x+2)]}$	A1	
	Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1	
	$=\frac{4x-6}{2x-1}\qquad (\clubsuit)$	A1 cso (7)	
Alt.(<i>a</i>)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1		
	$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.		
	$=\frac{4x^3+10x^2-8x-24}{(x+2)(2x^2+3x-2)}$		
	$(x+2)(2x^2+3x-2)$		
	$2(x+2)(2x^2+x-6)$ $2(2x-3)(x^2+4x+4)$		
	$= \frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$		
	Any one linear factor \times quadratic factor in numerator M1, A1		
	$=\frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)}$ o.e. M1		
	$=\frac{2(2x-3)}{2x-1} \qquad \frac{4x-6}{2x-1} \qquad (\clubsuit) $ A1		
(b)	Complete method for f'(x); e.g f'(x) = $\frac{(2x-1) \times 4 - (4x-6) \times 2}{(2x-1)^2}$ o.e	M1 A1	
	$=\frac{8}{(2x-1)^2}$ or $8(2x-1)^{-2}$	A1 (3)	
	Not treating f^{-1} (for f') as misread	(10 marks)	
Notes: (a	a) 1 st M1 in either version is for correct method 2x+2(2x-1) = (0+2x) = (2x+2)(2x-1) = 0+2x = -2x+2(2x-1) = 0+2x) r	
	1 st A1 Allow $\frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)}$ or $\frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)}$ or $\frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$	$\frac{-2x}{-1}$ (fractions)	
2 nd M1 in (main a) is for forming 3 term quadratic in numerator 3 rd M1 is for factorising their quadratic (usual rules) ; factor of 2 need not be extracted			
Alt ·	 (*) A1 is given answer so is cso (a) 3rd M1 is for factorising resulting quadratic 		
	(b) SC: For M allow \pm given expression or one error in product rule		
Alt: Attempt at $f(x) = 2 - 4(2x-1)^{-1}$ and diff. M1; $k(2x-1)^{-2}$ A1; A1 as above			
	Accept $8(4x^2 - 4x + 1)^{-1}$.		
	Differentiating original function – mark as scheme.		

6665 Core Mathematics C33June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
3. (<i>a</i>)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)
<i>(b)</i>	If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$	M1
(c)	$\frac{dx}{dx} = x e^{-x} + 2xe^{-x}$ If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$ $[e^{x} \neq 0]$ $x(x + 2) = 0$ (x = 0) $x = -2x = 0, y = 0 and x = -2, y = 4e^{-2} (= 0.54)\frac{d^{2}y}{dx^{2}} = x^{2}e^{x} + 2xe^{x} + 2xe^{x} + 2e^{x} [= (x^{2} + 4x + 2)e^{x}]$	$ \begin{array}{c} A1 \\ A1 (3) \\ M1, A1 (2) \end{array} $
(<i>d</i>)	$x = 0, \frac{d^2 y}{dx^2} > 0 (=2) \qquad x = -2, \frac{d^2 y}{dx^2} < 0 [= -2e^{-2} (= -0.270)]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's <i>x</i> value(s) from (b)	M1
	∴minimum ∴maximum	A1 (cso) (2)
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve	
		(10 marks)

- Notes: (a) M for attempt at f(x)g'(x) + f'(x)g(x)1st A1 for one correct, 2nd A1 for the other correct. Note that x^2e^x on its own scores no marks (b) 1st A1 (x = 0) may be omitted, but for
 - 2^{nd} A1 both sets of coordinates needed ; f.t only on candidate's x = -2
 - (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
 - (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen, or (in alternative) sign of $\frac{dy}{dx}$ either side correct, or values of y appropriate to t.p. Need only consider the quadratic, as may assume $e^x > 0$. **If all marks gained** in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Question Number	- Noneme		Marks	
4. (<i>a</i>)	$x^{2}(3-x) - 1 = 0$ o.e. (e.g. $x^{2}(-x+3) = 1$)		M1	
	$x^{2}(3-x) - 1 = 0 \text{ o.e.} (e.g. \ x^{2}(-x+3) = 1)$ $x = \sqrt{\frac{1}{3-x}} (\clubsuit)$ Note(\mathcal{*}), answer is given: need to see appropriate we [Reverse process: Squaring and non-fractional equation]	6	A1 (cso)	(2)
(b)	$x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$ 1 st B1 is for one correct, 2 nd B1 for other two correct If all three are to greater accuracy, award B0 B1		B1; B1	(2)
(<i>c</i>)	Choose values in interval (0.6525, 0.6535) or tighter f(0.6525) = -0.0005 (372 $f(0.6535) = 0.0At least one correct "up to bracket", i.e0.0005 orChange of sign, \therefore x = 0.653 is a root (correct) to 3 dRequires both correct "up to bracket" and conclusion$	002 (101 0.002 l.p.	M1 A1 A1	(3)
Alt (i) Alt (ii)	Continued iterations at least as far as x_6 $x_5 = 0.65268, x_6 = 0.6527, x_7 = \dots$ two correct to at 1 Conclusion : Two values correct to 4 d.p., so 0.653 i If use g(0.6525) = 0.6527>0.6525 and g(0.6535) = 0 Conclusion : Both results correct, so 0.653 is root to 2	M1 least 4 s.f. A1 s root to 3 d.p. A1 0.6528<0.6535 M1A1	(7 m:	arks)
5. (<i>a</i>)	Finding g(4) = k and f(k) = or $fg(x) = ln(\frac{4}{x-3} - 1)$		M1 A1	(2)
<i>(b)</i>	$\frac{[f(2) = \ln(2x2 - 1) \qquad fg(4) = \ln(4 - 1)]}{y = \ln(2x - 1) \implies e^{y} = 2x - 1 \text{or} e^{x} = 2y - 1}$		M1, A1	
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1	
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$		B1	(4)
(c)	$\frac{y}{\frac{2}{3}}$ $x = 3$	Shape, and x-axis should appear to be asymptote Equation $x = 3$ needed, may see in diagram (ignore others)	B1 B1 ind.	
	$0 3 \longrightarrow_x$	Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind	(3)
(<i>d</i>)	2		B1	
	$\frac{-}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv.		M1, A1	(3)
	Note: $2 = 3(x + 3)$ or $2 = 3(-x - 3)$ o.e. is M0A0			

	a) Complete method for R: e.g. $R \cos \alpha = 3$, $R \sin \alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1
	$R = \sqrt{13}$ or 3.61 (or more accurate)	A1
	Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1
	$\alpha = 0.588$ (Allow 33.7°)	A1 (4)
	b) Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A1 (2)
((c) $\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$	M1
	$\begin{array}{l} (x + 0.588) \\ (x + 0.588) \\ (x + 0.588) \end{array} = 0.281(03) \text{ or } 16.1^{\circ} \\ = \pi - 0.28103 \end{array}$	A1
	$(x + 0.588) = \pi - 0.28103$	M1
	Must be π – their 0.281 or 180° – their 16.1°	
	or $(x + 0.588)$ = $2\pi + 0.28103$	M1
	Must be 2π + their 0.281 or 360° + their 16.1° x = 2.273 or x = 5.976 (awrt) Both (radians only)	A1 (5)
	If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks
Notes:	(a) 1^{st} M1 for correct method for R 2^{nd} M1 for correct method for tan α No working at all: M1A1 for $\sqrt{13}$, M1A1 for 0.588 or 33.7°. N.B. Rcos $\alpha = 2$, Rsin $\alpha = 3$ used, can still score M1A1 for R, but loses the	A mark for a
	$\cos \alpha = 3$, $\sin \alpha = 2$: apply the same marking.	TY Mark for u.
	(b) M1 for realising $sin(x + \alpha) = \pm 1$, so finding R ⁴ .	
	 (c) Working in mixed degrees/rads : first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N 	
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> 	
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin x or cos x [13cos² x - 4cos x - 8 = 0, 13sin² x - 6sin x - 3 = 0] 	M mark. M1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin x or cos x [13cos² x - 4cos x - 8 = 0, 13sin² x - 6sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 away 	M mark. M1 rt A1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin x or cos x [13cos² x - 4cos x - 8 = 0, 13sin² x - 6sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 awa For any one value of cos x or sinx, correct method for two values of x 	M mark. M1 rt A1 M1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin x or cos x [13cos² x - 4cos x - 8 = 0, 13sin² x - 6sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 away 	M mark. M1 rt A1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos² x - 4 cos x - 8 = 0, 13 sin² x - 6 sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 awa For any one value of cos x or sinx, correct method for two values of x x = 2.273 or x = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form a cos2x + bsin2x = c 	M mark. M1 rt A1 M1 A1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos² x - 4 cos x - 8 = 0, 13 sin² x - 6 sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 awn For any one value of cos x or sinx, correct method for two values of x x = 2.273 or x = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form a cos2x + bsin2x = c 9 sin² x + 4 cos² x + 12 sin 2x = 1 ⇒ 12 sin 2x + 5 cos 2x = 11 Setting up to solve using R formula e.g. √13 cos(2x-1.176) = 11 	M mark. M1 rt A1 M1 A1
Alt: (c)	Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's $0.588 + 2\pi$ or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [$13\cos^2 x - 4\cos x - 8 = 0$, $13\sin^2 x - 6\sin x - 3 = 0$] Correct values for cos $x = 0.953$, -0.646 ; or $\sin x = 0.767$, 2.27 awn For any one value of cos <i>x</i> or sin <i>x</i> , correct method for two values of <i>x</i> x = 2.273 or $x = 5.976$ (awrt) Both seen anywhere Checking other values ($0.307, 4.011$ or $0.869, 3.449$) and discarding (ii) Squaring and forming equation of form $a \cos 2x + b \sin 2x = c$ $9\sin^2 x + 4\cos^2 x + 12\sin 2x = 1 \Rightarrow 12\sin 2x + 5\cos 2x = 11$	M mark. M1 rt A1 M1 A1 M1
Alt: (c)	 Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos² x - 4 cos x - 8 = 0, 13 sin² x - 6 sin x - 3 = 0] Correct values for cos x = 0.953, -0.646; or sin x = 0.767, 2.27 awn For any one value of cos x or sinx, correct method for two values of x x = 2.273 or x = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form a cos2x + bsin2x = c 9 sin² x + 4 cos² x + 12 sin 2x = 1 ⇒ 12 sin 2x + 5 cos 2x = 11 Setting up to solve using R formula e.g. √13 cos(2x-1.176) = 11 	M mark. M1 rt A1 M1 A1 M1 M1
Alt: (c)	Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2 π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos ² <i>x</i> - 4 cos <i>x</i> - 8 = 0, 13 sin ² <i>x</i> - 6 sin <i>x</i> - 3 = 0] Correct values for cos <i>x</i> = 0.953, -0.646; or sin <i>x</i> = 0.767, 2.27 awn For any one value of cos <i>x</i> or sin <i>x</i> , correct method for two values of <i>x</i> <i>x</i> = 2.273 or <i>x</i> = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form <i>a</i> cos2 <i>x</i> + <i>b</i> sin2 <i>x</i> = <i>c</i> 9 sin ² <i>x</i> + 4 cos ² <i>x</i> + 12 sin 2 <i>x</i> = 1 \Rightarrow 12 sin 2 <i>x</i> + 5 cos 2 <i>x</i> = 11 Setting up to solve using R formula e.g. $\sqrt{13}$ cos(2 <i>x</i> -1.176) = 11 (2 <i>x</i> -1.176) = cos ⁻¹ $\left(\frac{11}{\sqrt{13}}\right) = 0.562(0 (\alpha)$	M mark. M1 rt A1 M1 A1 M1 M1 A1
Alt: (c)	Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2 π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos ² <i>x</i> - 4 cos <i>x</i> - 8 = 0, 13 sin ² <i>x</i> - 6 sin <i>x</i> - 3 = 0] Correct values for cos <i>x</i> = 0.953, -0.646; or sin <i>x</i> = 0.767, 2.27 awn For any one value of cos <i>x</i> or sin <i>x</i> , correct method for two values of <i>x</i> <i>x</i> = 2.273 or <i>x</i> = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form <i>a</i> cos2 <i>x</i> + <i>b</i> sin2 <i>x</i> = <i>c</i> 9 sin ² <i>x</i> + 4 cos ² <i>x</i> + 12 sin 2 <i>x</i> = 1 \Rightarrow 12 sin 2 <i>x</i> + 5 cos 2 <i>x</i> = 11 Setting up to solve using R formula e.g. $\sqrt{13}$ cos(2 <i>x</i> -1.176) = 11 (2 <i>x</i> -1.176) = cos ⁻¹ $\left(\frac{11}{\sqrt{13}}\right) = 0.562(0 (\alpha)$ (2 <i>x</i> -1.176) = 2 π - α , 2 π + α ,	M mark. M1 rt A1 M1 A1 M1 M1 A1 M1 M1
	Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2 π or e One of the answers correct in radians or degrees implies the corresponding N (i) Squaring to form quadratic in sin <i>x</i> or cos <i>x</i> [13 cos ² <i>x</i> - 4 cos <i>x</i> - 8 = 0, 13 sin ² <i>x</i> - 6 sin <i>x</i> - 3 = 0] Correct values for cos <i>x</i> = 0.953, -0.646; or sin <i>x</i> = 0.767, 2.27 awn For any one value of cos <i>x</i> or sin <i>x</i> , correct method for two values of <i>x</i> <i>x</i> = 2.273 or <i>x</i> = 5.976 (awrt) Both seen anywhere Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding (ii) Squaring and forming equation of form <i>a</i> cos2 <i>x</i> + <i>b</i> sin2 <i>x</i> = <i>c</i> 9 sin ² <i>x</i> + 4 cos ² <i>x</i> + 12 sin 2 <i>x</i> = 1 \Rightarrow 12 sin 2 <i>x</i> + 5 cos 2 <i>x</i> = 11 Setting up to solve using R formula e.g. $\sqrt{13}$ cos(2 <i>x</i> -1.176) = 11 (2 <i>x</i> -1.176) = cos ⁻¹ $\left(\frac{11}{\sqrt{13}}\right)$ = 0.562(0 (α) (2 <i>x</i> -1.176) = 2 π - α , 2 π + α , <i>x</i> = 2.273 or <i>x</i> = 5.976 (awrt) Both seen anywhere	M mark. M1 rt A1 M1 A1 M1 M1 A1 A1 M1 A1

Question Number	Scheme	Marks
7. (<i>a</i>)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$ M1 Use of common denominator to obtain single fraction	M1
	$= \frac{1}{\cos\theta\sin\theta}$ M1 Use of appropriate trig identity (in this case $\sin^2\theta + \cos^2\theta = 1$)	M1
	$= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin\theta\cos\theta$	M1
Alt.(<i>a</i>)	$= 2\operatorname{cosec} 2\theta (\texttt{*})$ $\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \tan\theta + \frac{1}{\tan\theta} = \frac{\tan^2\theta + 1}{\tan\theta} \qquad M1$	A1 cso (4)
	$=\frac{\sec^2\theta}{\tan\theta}$ M1	
	$= \frac{1}{\cos\theta\sin\theta} = \frac{1}{\frac{1}{2}\sin 2\theta} \qquad M1$	
<i>(b)</i>	$= 2 \operatorname{cosec} 2\theta (\texttt{*}) (\operatorname{cso}) A1$ If show two expressions are equal, need conclusion such as QED, tick, true.	
	$\begin{array}{c} y \\ 2 \\ 2 \\ \end{array} $ Shape (May be translated but need to see 4"sections")	B1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 dep. (2)
(c)	$2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{3}$ Allow $\frac{2}{\sin 2\theta} = 3$ [M1 for equation in $\sin 2\theta$]	M1, A1
	$(2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}]$ 1st M1 for α , 180 – α ; 2 nd M1 adding 360° to at least one of values $\theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$ (1 d.p.) awrt	M1; M1
Note	1 st A1 for any two correct, 2 nd A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: $\theta = 20.9^\circ$, after M0M0 is B1; record as M0M0A1A0	A1,A1 (6)
Alt.(c)	$\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3\tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above)	
	Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1	
	$\theta = 69.1^{\circ}, 249.1^{\circ}$ $\theta = 20.9^{\circ}, 200.9^{\circ}$ (1 d.p.) M1, A1, A1 (M1 is for one use of $180^{\circ} + \alpha^{\circ}$, A1A1 as for main scheme)	(12 marks)

6665 Core Mathematics C37June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
8. (<i>a</i>)	$D = 10, t = 5, x = 10e^{-\frac{1}{8} \times 5}$ = 5.353 awrt	M1 A1 (2)
(b)	$D = 10 + 10e^{-\frac{5}{8}}, t = 1,$ $x = 15.3526 \times e^{-\frac{1}{8}}$ x = 13.549 (*)	M1 A1 cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8}\times 6} + 10e^{-\frac{1}{8}\times 1}$ M1 $x = 13.549$ (*) A1 cso	
(c)	$15.3526e^{-\frac{1}{8}T} = 3$ $e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$	M1
	$-\frac{1}{8}T = \ln 0.1954$	M1
	T = 13.06 or 13.1 or 13	A1 (3)
		(7 marks)

Notes: (b) (main scheme) M1 is for $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$, or $\{10 + \text{their}(a)\}e^{-\frac{1}{8}}$

N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0

(c) 1st M is for $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$ o.e.

 2^{nd} M is for converting $e^{-\frac{T}{8}} = k$ (k > 0) to $-\frac{T}{8} = \ln k$. This is independent of 1^{st} M.

Trial and improvement: M1 as scheme, M1 correct process for their equation (two equal to 3 s.f.) A1 as scheme