

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6665/01)

June 2009 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme		Marks	
Q1 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$			
(b)	$x_{1} = \frac{2}{(2.5)^{2}} + 2$ $x_{1} = 2.32$ $x_{2} = 2.371581451$ $x_{3} = 2.355593575$ $x_{4} = 2.360436923$ Let $f(x) = -x^{3} + 2x^{2} + 2 = 0$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = \text{awrt } 2.372$ Both $x_3 = \text{awrt } 2.356$ and $x_4 = \text{awrt } 2.360$ or 2.36	M1 A1 A1 cso	(3)
	f(2.3585) = 0.00583577 f(2.3595) = -0.00142286 Sign change (and $f(x)$ is continuous) therefore a root α is such that $\alpha \in (2.3585, 2.3595) \Rightarrow \alpha = 2.359$ (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign, hence root".	M1 dM1 A1	(3)

Question Number	Scheme		Mark	(S
Q2 (a)	$\cos^2\theta + \sin^2\theta = 1 (\div \cos^2\theta)$			
	$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$	Dividing $\cos^2 \theta + \sin^2 \theta = 1$ by $\cos^2 \theta$ to give <u>underlined</u> equation.	M1	
	$1 + \tan^2 \theta = \sec^2 \theta$			
	$\tan^2 \theta = \sec^2 \theta - 1$ (as required) AG	Complete proof. No errors seen.	A1 cso	(2)
(b)	$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2, (\text{eqn *}) \qquad 0 \le \theta < 360^\circ$			
	$2(\sec^2\theta - 1) + 4\sec\theta + \sec^2\theta = 2$	Substituting $\tan^2 \theta = \sec^2 \theta - 1$ into eqn * to get a quadratic in $\sec \theta$ only	M1	
	$2\sec^2\theta - 2 + 4\sec\theta + \sec^2\theta = 2$			
	$3\sec^2\theta + 4\sec\theta - 4 = 0$	Forming a three term "one sided" quadratic expression in $\sec \theta$.	M1	
	$(\sec\theta + 2)(3\sec\theta - 2) = 0$	Attempt to factorise or solve a quadratic.	M1	
	$\sec \theta = -2 \text{or} \sec \theta = \frac{2}{3}$			
	$\frac{1}{\cos \theta} = -2 \text{or} \frac{1}{\cos \theta} = \frac{2}{3}$			
	$\cos\theta = -\frac{1}{2}$; or $\cos\theta = \frac{3}{2}$	$\cos\theta = -\frac{1}{2}$	A1;	
	$\alpha = 120^{\circ}$ or $\alpha = \text{no solutions}$			
	$\theta_1 = \underline{120^\circ}$	<u>120°</u>	<u>A1</u>	
	$\theta_2 = 240^{\circ}$	$ \underline{240^{\circ}} $ or $\theta_2 = 360^{\circ} - \theta_1$ when solving using $\cos \theta = \dots$	B1 √	
	$\theta = \left\{120^{\circ}, 240^{\circ}\right\}$	Note the final A1 mark has been changed to a B1 mark.		(6)
				[8]

Question Number	Scheme	Mar	ks
Q3	$P = 80 e^{\frac{t}{5}}$		
(a)	$t = 0 \implies P = 80e^{\frac{0}{5}} = 80(1) = \underline{80}$	B1	(1)
(b)	Substitutes $P = 1000$ and $P = 1000 \Rightarrow 1000 = 80e^{\frac{t}{5}} \Rightarrow \frac{1000}{80} = e^{\frac{t}{5}}$ rearranges equation to make $e^{\frac{t}{5}}$ the subject.	M1	
	$\therefore t = 5\ln\left(\frac{1000}{80}\right)$		
	$t = 12.6286$ awrt 12.6 or 13 years Note $t = 12$ or $t = \text{awrt } 12.6 \Rightarrow t = 12$ will score A0	A1	(2)
(c)	$\frac{\mathrm{d}P}{\mathrm{d}t} = 16\mathrm{e}^{\frac{t}{5}}$ $k\mathrm{e}^{\frac{1}{5}t} \text{ and } k \neq 80.$ $16\mathrm{e}^{\frac{1}{5}t}$		(2)
(d)	$50 = 16e^{\frac{t}{5}}$		
	$Using 50 = \frac{dP}{dt} \text{ and}$ $\therefore t = 5 \ln \left(\frac{50}{16} \right)$ $\left\{ = 5.69717 \right\}$ $to find the value of t or \frac{t}{5}.$	M1	
	$P = 80e^{\frac{1}{5}\left(5\ln\left(\frac{50}{16}\right)\right)} \text{or} P = 80e^{\frac{1}{5}\left(5.69717\right)}$ Substitutes their value of t back into the equation for P.	dM1	
	$P = \frac{80(50)}{16} = \underline{250}$ \tag{250} or awrt 250	A1	
			(3)
			[8]

Question Number	Scheme	Marks
Q4 (i)(a)	$y = x^{2} \cos 3x$ Apply product rule: $\begin{cases} u = x^{2} & v = \cos 3x \\ \frac{du}{dx} = 2x & \frac{dv}{dx} = -3\sin 3x \end{cases}$	
	Applies $vu' + uv'$ correctly for their u, u', v, v' AND gives an expression of the form $\frac{dy}{dx} = 2x\cos 3x - 3x^2 \sin 3x$ Any one term correct Both terms correct and no further simplification to terms in $\cos \alpha x^2$ or $\sin \beta x^3$.	M1 A1 A1 (3)
(b)	$y = \frac{\ln(x^2 + 1)}{x^2 + 1}$	(3)
	$u = \ln(x^2 + 1) \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2x}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{\mathrm{something}}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{2x}{x^2 + 1}$	M1 A1
	Apply quotient rule: $\begin{cases} u = \ln(x^2 + 1) & v = x^2 + 1 \\ \frac{du}{dx} = \frac{2x}{x^2 + 1} & \frac{dv}{dx} = 2x \end{cases}$	
	$\frac{dy}{dx} = \frac{\left(\frac{2x}{x^2+1}\right)(x^2+1) - 2x\ln(x^2+1)}{\left(x^2+1\right)^2}$ Applying $\frac{vu'-uv'}{v^2}$ Correct differentiation with correct bracketing but allow recovery.	M1 A1 (4)
	$ \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 2x\ln(x^2 + 1)}{\left(x^2 + 1\right)^2} \right\} $ {Ignore subsequent working.}	

Question Number	Scheme		Marks
(ii)	$y = \sqrt{4x+1}, \ x > -\frac{1}{4}$		
	At P , $y = \sqrt{4(2) + 1} = \sqrt{9} = 3$	At $P, y = \sqrt{9} \text{ or } 3$	B1
	$\frac{dy}{dx} = \frac{1}{2} (4x+1)^{-\frac{1}{2}} (4)$	$\pm k \left(4x+1\right)^{-\frac{1}{2}}$	M1*
	$dx = \frac{2^{(4x+1)}}{2}$	$2(4x+1)^{-\frac{1}{2}}$	A1 aef
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{(4x+1)^{\frac{1}{2}}}$		
	At P , $\frac{dy}{dx} = \frac{2}{\left(4(2)+1\right)^{\frac{1}{2}}}$ Substituting $x = \frac{1}{2}$	= 2 into an equation	M1
	$dx \left(4(2)+1\right)^{\frac{1}{2}}$	involving $\frac{dy}{dx}$;	
	Hence $m(T) = \frac{2}{3}$		
	Either T: $y-3 = \frac{2}{3}(x-2)$; or $y-y_1 = m(x)$	$y - y_1 = m(x - 2)$ - their stated x) with	
	'their TANG	GENT gradient' and their y_1 ;	dM1*;
	$13 - 4(2) + c \rightarrow c - 3 - 4 - 2$	ses y = mx + c with	 ,
	their TANGE	NT gradient', their x and their y_1 .	
	Either T: $3y-9 = 2(x-2)$;		
	T: $3y-9=2x-4$		
	T: $2x - 3y + 5 = 0$	2x - 3y + 5 = 0	A1
		be stated in the form 0 , where a , b and c	
	are integers.		
	or T : $y = \frac{2}{3}x + \frac{5}{3}$		(6)
	T: 3y = 2x + 5		
	T: $2x - 3y + 5 = 0$		
			[13]

Past Paper (Mark Scheme)

Questi Numb		Scheme	Mar	ks
Q5 ((a)	Curve retains shape when $x > \frac{1}{2} \ln k$	B1	
		Curve reflects through the x-axis when $x < \frac{1}{2} \ln k$	B1	
		O $\left(\frac{1}{2}\ln k, 0\right)$ x $\left(0, k-1\right)$ and $\left(\frac{1}{2}\ln k, 0\right)$ marked in the correct positions.	B1	
((b)	Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote) $(1-k,0)$	B1	(3)
		O X $(1-k,0) \text{ and } (0,\frac{1}{2}\ln k)$	B1	
		Either $f(x) > -k$ or $y > -k$ or		(2)
((c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ $\underline{(-k, \infty)} \text{ or } \underline{f > -k} \text{ or } \underline{\text{Range} > -k}.$	B1	
((d)	$y = e^{2x} - k \implies y + k = e^{2x}$ Attempt to make x $\Rightarrow \ln(y + k) = 2x$ (or swapped y) the subject	M1	(1)
		$\Rightarrow \frac{1}{2}\ln(y+k) = x$ Makes e^{2x} the subject and takes ln of both sides	M1	
		Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ or $\frac{\ln\sqrt{(x+k)}}{\ln x}$	A1 cao	(3)
((e)	Either $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain: $\underline{x > -k}$ or $\underline{(-k, \infty)}$ or Domain $x > -k$ or x "ft one sided inequality" their part (c) RANGE answer	B1 √	(1)
				[10]

Ques Num		Scheme		Marks		s
Q6	(a)	$A = B \Rightarrow \cos(A + A) = \cos 2A = \frac{\cos A \cos A - \sin A \sin A}{2}$	Applies $A = B$ to $\cos(A + B)$ to give the <u>underlined</u> equation or $\cos 2A = \frac{\cos^2 A - \sin^2 A}{2}$	M1		
		$\cos 2A = \cos^2 A - \sin^2 A$ and $\cos^2 A + \sin^2 A = 1$ gives				
		$\frac{\cos 2A}{1 - \sin^2 A - \sin^2 A} = \frac{1 - 2\sin^2 A}{1 - \sin^2 A}$ (as required)	Complete proof, with a link between LHS and RHS. No errors seen.	A1	AG	(2)
	(b)	$C_1 = C_2 \implies 3\sin 2x = 4\sin^2 x - 2\cos 2x$	Eliminating <i>y</i> correctly.	M1		
		$3\sin 2x = 4\left(\frac{1-\cos 2x}{2}\right) - 2\cos 2x$	Using result in part (a) to substitute for $\sin^2 x$ as $\frac{\pm 1 \pm \cos 2x}{2}$ or $k \sin^2 x$ as $k\left(\frac{\pm 1 \pm \cos 2x}{2}\right)$ to produce an equation in only double angles.	M1		
		$3\sin 2x = 2(1-\cos 2x) - 2\cos 2x$				
		$3\sin 2x = 2 - 2\cos 2x - 2\cos 2x$				
		$3\sin 2x + 4\cos 2x = 2$	Rearranges to give correct result	A1	AG	(3)
	(c)	$3\sin 2x + 4\cos 2x = R\cos(2x - \alpha)$				
		$3\sin 2x + 4\cos 2x = R\cos 2x\cos \alpha + R\sin 2x\sin \alpha$				
		Equate $\sin 2x$: $3 = R \sin \alpha$ Equate $\cos 2x$: $4 = R \cos \alpha$				
		$R = \sqrt{3^2 + 4^2} \; ; = \sqrt{25} = 5$	R = 5	B1		
		$\tan \alpha = \frac{3}{4} \implies \alpha = 36.86989765^{\circ}$	$\tan \alpha = \pm \frac{3}{4} \text{ or } \tan \alpha = \pm \frac{4}{3} \text{ or } \sin \alpha = \pm \frac{3}{\text{their } R} \text{ or } \cos \alpha = \pm \frac{4}{\text{their } R}$ $\text{awrt } 36.87$	M1 A1		
		Hence, $3\sin 2x + 4\cos 2x = 5\cos(2x - 36.87)$				(3)

Question Number	Scheme	Marks
(d)	$3\sin 2x + 4\cos 2x = 2$	
	$5\cos(2x - 36.87) = 2$	
	$\cos(2x-36.87) = \frac{2}{5}$ $\cos(2x \pm \text{their } \alpha) = \frac{2}{\text{their } K}$	M1
	$(2x-36.87) = 66.42182^{\circ}$ awrt 6	5 A1
	$(2x-36.87) = 360 - 66.42182^{\circ}$	
	One of either awrt 51.6 or awrt 165.2 or awrt 165.2 or awrt 165. Both awrt 51.6 AND awrt 165.	3 1
	If there are any EXTRA solutions inside the range $0 \le x < 180^\circ$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 \le x < 180^\circ$.	(4)
		[12]

Question Number	Scheme		Marks
Q7	$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}$ $x \in \mathbb{R}, \ x \neq -4, \ x \neq 2.$		
(a)	$f(x) = \frac{(x-2)(x+4) - 2(x-2) + x - 8}{(x-2)(x+4)}$	An attempt to combine to one fraction Correct result of combining all three fractions	M1 A1
	$= \frac{x^2 + 2x - 8 - 2x + 4 + x - 8}{(x - 2)(x + 4)}$		
	$= \frac{x^2 + x - 12}{\left[(x+4)(x-2)\right]}$	Simplifies to give the correct numerator. Ignore omission of denominator	A1
	$= \frac{(x+4)(x-3)}{[(x+4)(x-2)]}$	An attempt to factorise the numerator.	dM1
	$=\frac{(x-3)}{(x-2)}$	Correct result	A1 cso AG (5)
(b)	$g(x) = \frac{e^x - 3}{e^x - 2} x \in \mathbb{R}, \ x \neq \ln 2.$		
	Apply quotient rule: $\begin{cases} u = e^{x} - 3 & v = e^{x} - 2 \\ \frac{du}{dx} = e^{x} & \frac{dv}{dx} = e^{x} \end{cases}$		
	$g'(x) = \frac{e^{x}(e^{x}-2) - e^{x}(e^{x}-3)}{(e^{x}-2)^{2}}$	Applying $\frac{vu' - uv'}{v^2}$ Correct differentiation	M1 A1
	$= \frac{e^{2x} - 2e^x - e^{2x} + 3e^x}{(e^x - 2)^2}$		
	$=\frac{\mathrm{e}^x}{(\mathrm{e}^x-2)^2}$	Correct result	A1 AG cso (3)

Question Number	Scheme		
(c)	$g'(x) = 1 \implies \frac{e^x}{(e^x - 2)^2} = 1$		
	$e^x = (e^x - 2)^2$ Puts their differentiated numerator equal to their denominator. $e^x = e^{2x} - 2e^x - 2e^x + 4$	M1	
	$e^{2x} - 5e^x + 4 = 0$ $e^{2x} - 5e^x + 4$	A1	
	$(e^x - 4)(e^x - 1) = 0$ Attempt to factorise or solve quadratic in e^x	M1	
	$e^x = 4$ or $e^x = 1$		
	$x = \ln 4$ or $x = 0$ both $x = 0$, $\ln 4$	A1 (4)	
		[12]	

Q8 (a					Mark	-
, ,	$\sin 2x =$	$2\sin x \cos x$	$2\sin x \cos x$	B1	aef	(1)
(1	o)	$\csc x - 8\cos x = 0, 0 < x < \pi$ $\frac{1}{\sin x} - 8\cos x = 0$ $\frac{1}{\sin x} = 8\cos x$	Using $\csc x = \frac{1}{\sin x}$	M1		
		$1 = 8\sin x \cos x$ $1 = 4(2\sin x \cos x)$ $1 = 4\sin 2x$ $\sin 2x = \frac{1}{4}$	$\sin 2x = k$, where $-1 < k < 1$ and $k \neq 0$ $\underline{\sin 2x = \frac{1}{4}}$	M1 <u>A1</u>		
	Radians Degrees	$2x = \{0.25268, 2.88891\}$ $2x = \{14.4775, 165.5225\}$				
	Radians Degrees	,	Either arwt 7.24 or 82.76 or 0.13 or 1.44 or 1.45 or awrt 0.04π or awrt 0.46π . Both 0.13 and 1.44 Solutions for the final two A marks must be given in x only. If there are any EXTRA solutions inside the range $0 < x < \pi$ then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 < x < \pi$.	A1	cao	(5) [6]