

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6665/01)

June 2009 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme		N	arks	
Q1 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$				
(b)	$x_{1} = \frac{2}{(2.5)^{2}} + 2$ $x_{1} = 2.32$ $x_{2} = 2.371581451$ $x_{3} = 2.355593575$ $x_{4} = 2.360436923$ Let $f(x) = -x^{3} + 2x^{2} + 2 = 0$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = awrt 2.372$ Both $x_3 = awrt 2.356$ and $x_4 = awrt 2.360$ or 2.36	M1 A1 A1 c		(3)
	f(2.3585) = 0.00583577 f(2.3595) = −0.00142286 Sign change (and f(x) is continuous) therefore a root α is such that α ∈ (2.3585, 2.3595) ⇒ α = 2.359 (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign, hence root".	M1 dM1 A1		(3)
					[6]

Question Number	Scheme		Marks
Q2 (a)	$\cos^2\theta + \sin^2\theta = 1 (\div \cos^2\theta)$		
	$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$	Dividing $\cos^2 \theta + \sin^2 \theta = 1$ by $\cos^2 \theta$ to give <u>underlined</u> equation.	M1
	$1 + \tan^2 \theta = \sec^2 \theta$		
	$\tan^2 \theta = \sec^2 \theta - 1$ (as required) AG	Complete proof. No errors seen.	A1 cso (2)
(b)	$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$, (eqn *) $0 \le \theta < 360^\circ$		
	$2(\sec^2\theta - 1) + 4\sec\theta + \sec^2\theta = 2$	Substituting $\tan^2 \theta = \sec^2 \theta - 1$ into eqn * to get a quadratic in $\sec \theta$ only	M1
	$2\sec^2\theta - 2 + 4\sec\theta + \sec^2\theta = 2$		
	$\frac{3\sec^2\theta + 4\sec\theta - 4}{2} = 0$	Forming a three term "one sided" quadratic expression in $\sec \theta$.	M1
	$(\sec\theta+2)(3\sec\theta-2)=0$	Attempt to factorise or solve a quadratic.	M1
	$\sec \theta = -2$ or $\sec \theta = \frac{2}{3}$		
	$\frac{1}{\cos\theta} = -2$ or $\frac{1}{\cos\theta} = \frac{2}{3}$		
	$\underline{\cos\theta = -\frac{1}{2}}; \text{ or } \cos\theta = \frac{3}{2}$	$\frac{\cos\theta = -\frac{1}{2}}{2}$	A1;
	$\alpha = 120^{\circ}$ or $\alpha = no$ solutions		
	$\theta_1 = \underline{120^\circ}$	<u>120°</u>	<u>A1</u>
	$\theta_2 = 240^{\circ}$	$\underline{240^{\circ}}$ or $\theta_2 = 360^{\circ} - \theta_1$ when solving using $\cos \theta =$	Β1√
	$\boldsymbol{\theta} = \left\{ 120^{\circ}, 240^{\circ} \right\}$	Note the final A1 mark has been changed to a B1 mark.	(6)
			[8]

Question Number	Scheme		Mar	ks
Q3	$P = 80 \mathrm{e}^{\frac{L}{5}}$			
(a)	$t = 0 \implies P = 80e^{\frac{0}{5}} = 80(1) = \underline{80}$	<u>80</u>	B1	(1)
(b)	$P = 1000 \implies 1000 = 80e^{\frac{t}{5}} \implies \frac{1000}{80} = e^{\frac{t}{5}}$	Substitutes $P = 1000$ and rearranges equation to make $e^{\frac{1}{5}}$ the subject.	M1	
	$\therefore t = 5\ln\left(\frac{1000}{80}\right)$			
	t = 12.6286	awrt 12.6 or 13 yearsNote $t = 12$ or $t = awrt 12.6 \Rightarrow t = 12$ will score A0	A1	(2)
(c)	$\frac{\mathrm{d}P}{\mathrm{d}t} = 16\mathrm{e}^{\frac{t}{5}}$	$ke^{\frac{1}{5}t}$ and $k \neq 80$. $16e^{\frac{1}{5}t}$	M1 A1	(2)
(d)	$50 = 16e^{\frac{L}{5}}$			
	$\therefore t = 5 \ln\left(\frac{50}{16}\right) \qquad \{= 5.69717\}$	Using $50 = \frac{dP}{dt}$ and an attempt to solve to find the value of <i>t</i> or $\frac{t}{5}$.	M1	
	$P = 80e^{\frac{1}{5}(5\ln(\frac{50}{16}))}$ or $P = 80e^{\frac{1}{5}(5.69717)}$	Substitutes their value of <i>t</i> back into the equation for <i>P</i> .	dM1	
	$P = \frac{80(50)}{16} = \underline{250}$	<u>250</u> or awrt 250	A1	
				(3)
				[8]

6665

Question Number	Scheme	Marks
Q4 (i)(a)	$y = x^2 \cos 3x$	
	Apply product rule: $\begin{cases} u = x^2 & v = \cos 3x \\ \frac{du}{dx} = 2x & \frac{dv}{dx} = -3\sin 3x \end{cases}$	
	$\frac{dy}{dx} = 2x\cos 3x - 3x^2 \sin 3x$ Applies $vu' + uv'$ correctly for their u, u', v, v' AND gives an expression of the form $\alpha x \cos 3x \pm \beta x^2 \sin 3x$ Any one term correct Both terms correct and no further simplification to terms in $\cos \alpha x^2$ or $\sin \beta x^3$.	M1 A1 A1 (3)
(b)	$y = \frac{\ln(x^2 + 1)}{x^2 + 1}$	
	$u = \ln(x^2 + 1) \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2x}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{\mathrm{something}}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{2x}{x^2 + 1}$	M1 A1
	Apply quotient rule: $\begin{cases} u = \ln(x^2 + 1) & v = x^2 + 1 \\ \frac{du}{dx} = \frac{2x}{x^2 + 1} & \frac{dv}{dx} = 2x \end{cases}$	
	$\frac{dy}{dx} = \frac{\left(\frac{2x}{x^2+1}\right)(x^2+1) - 2x\ln(x^2+1)}{\left(x^2+1\right)^2}$ Applying $\frac{vu'-uv'}{v^2}$ Correct differentiation with correct bracketing but allow recovery.	M1 A1 (4)
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 2x\ln(x^2 + 1)}{\left(x^2 + 1\right)^2}\right\}$ {Ignore subsequent working.}	

6665

Question Number	Scheme		Marks
(ii)	$y = \sqrt{4x+1}, \ x > -\frac{1}{4}$		
	At P, $y = \sqrt{4(2) + 1} = \sqrt{9} = 3$ At P, $y = \sqrt{9}$	or <u>3</u>	B1
	$dy = \frac{1}{(4x+1)^{-\frac{1}{2}}} (4x + 1)^{-\frac{1}{2}} (4x + 1)^{-\frac{1}$	$(+1)^{-\frac{1}{2}}$	M1*
	$\frac{dy}{dx} = \frac{1}{2} (4x+1)^{-\frac{1}{2}} (4) \qquad \qquad$	$(+1)^{-\frac{1}{2}}$	A1 aef
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\left(4x+1\right)^{\frac{1}{2}}}$		
	At P, $\frac{dy}{dx} = \frac{2}{(4(2)+1)^{\frac{1}{2}}}$ Substituting $x = 2$ into an equinvolving involving $x = 2$ into a equinvolving $x = 2$ into a e		M1
	Hence m(T) = $\frac{2}{3}$		
	Either T: $y-3 = \frac{2}{3}(x-2)$; or $y-y_1 = m(x-their stated x)$ 'their TANGENT gradien	c) with	dM1*;
	$3 = \frac{2}{3}(2) + c \implies c = 3 - \frac{4}{3} = \frac{5}{3};$ or uses $y = mx + c$ 'their TANGENT gradient', their TANGENT gradient', their TANGENT gradient', the context of the second sec	c with	
	Either T: $3y-9 = 2(x-2);$		
	T : $3y - 9 = 2x - 4$		
	T: $2x - 3y + 5 = 0$ Tangent must be stated in the $ax + by + c = 0$, where $a, b = 0$	e form	A1
	are integers.		(6)
	or T : $y = \frac{2}{3}x + \frac{5}{3}$		(6)
	$\mathbf{T}: 3y = 2x + 5$		
	T : $2x - 3y + 5 = 0$		
			[13]

Question Number	Scheme	Marks
Q5 (a)	y Curve retains shape when $x > \frac{1}{2} \ln k$	B1
	(0, k-1) Curve reflects through the <i>x</i> -axis when $x < \frac{1}{2} \ln k$	B1
	$O \qquad \left(\frac{1}{2}\ln k, 0\right) \qquad x \qquad \left(0, k-1\right) \text{ and } \left(\frac{1}{2}\ln k, 0\right) \text{ marked} \\ \text{ in the correct positions.}$	B1
(b)	y Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote)	(3) B1
	$(1-k,0) \text{ and } (0,\frac{1}{2}\ln k)$	B1
(c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $(\underline{-k, \infty})$ Either $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ or $\underline{f > -k}$ or $\underline{Range > -k}$.	(2) B1
(d)	$y = e^{2x} - k \Rightarrow y + k = e^{2x}$ $\Rightarrow \ln(y + k) = 2x$ $\Rightarrow \frac{1}{2}\ln(y + k) = x$ Attempt to make x (or swapped y) the subject and takes e^{2x} the subject e^{2x} takes e^{2x	(1) M1 M1
	$\frac{1}{2} \ln(y+k) = x$ takes ln of both sides Hence $f^{-1}(x) = \frac{1}{2} \ln(x+k)$ $\frac{1}{2} \ln(x+k)$ or $\frac{\ln\sqrt{x+k}}{\sqrt{x+k}}$	<u>A1</u> cao (3)
(e)	f ⁻¹ (x): Domain: $\underline{x > -k}$ or $(\underline{-k, \infty})$ Either $\underline{x > -k}$ or $(\underline{-k, \infty})$ or Domain $> -k$ or x "ft one sided inequality" their part (c) RANGE answer	B1√
		(1) [10]

Ques Num		Scheme			Mark	S
Q6	(a)	$A = B \Rightarrow \cos(A + A) = \cos 2A = \frac{\cos A \cos A - \sin A \sin A}{\sin A}$	Applies $A = B$ to $\cos(A + B)$ to give the <u>underlined</u> equation or $\cos 2A = \frac{\cos^2 A - \sin^2 A}{\cos^2 A - \sin^2 A}$	M1		
		$\cos 2A = \cos^2 A - \sin^2 A$ and $\cos^2 A + \sin^2 A = 1$ gives				
		$\frac{\cos 2A}{\operatorname{required}} = 1 - \sin^2 A - \sin^2 A = \frac{1 - 2\sin^2 A}{1 - 2\sin^2 A} \text{(as}$	Complete proof, with a link between LHS and RHS. No errors seen.	A1	AG	(2)
	(b)	$C_1 = C_2 \implies 3\sin 2x = 4\sin^2 x - 2\cos 2x$	Eliminating <i>y</i> correctly.	M1		
		$3\sin 2x = 4\left(\frac{1-\cos 2x}{2}\right) - 2\cos 2x$	Using result in part (a) to substitute for $\sin^2 x$ as $\frac{\pm 1 \pm \cos 2x}{2}$ or $k \sin^2 x$ as $k\left(\frac{\pm 1 \pm \cos 2x}{2}\right)$ to produce an equation in only double angles.	М1		
		$3\sin 2x = 2(1-\cos 2x) - 2\cos 2x$				
		$3\sin 2x = 2 - 2\cos 2x - 2\cos 2x$				
		$3\sin 2x + 4\cos 2x = 2$	Rearranges to give correct result	A1	AG	(3)
	(c)	$3\sin 2x + 4\cos 2x = R\cos(2x - \alpha)$				
		$3\sin 2x + 4\cos 2x = R\cos 2x\cos \alpha + R\sin 2x\sin \alpha$				
		Equate $\sin 2x$: $3 = R \sin \alpha$ Equate $\cos 2x$: $4 = R \cos \alpha$				
		$R = \sqrt{3^2 + 4^2} ;= \sqrt{25} = 5$	<i>R</i> = 5	B1		
		$\tan \alpha = \frac{3}{4} \implies \alpha = 36.86989765^{\circ}$	$\tan \alpha = \pm \frac{3}{4} \text{ or } \tan \alpha = \pm \frac{4}{3} \text{ or}$ $\sin \alpha = \pm \frac{3}{\text{their } R} \text{ or } \cos \alpha = \pm \frac{4}{\text{their } R}$ $\text{awrt } 36.87$	M1 A1		
		Hence, $3\sin 2x + 4\cos 2x = 5\cos(2x - 36.87)$				(3)

6665

Question Number	Scheme	Marks	
(d)	$3\sin 2x + 4\cos 2x = 2$		
	$5\cos(2x-36.87) = 2$		
	$\cos(2x-36.87) = \frac{2}{5} \qquad \qquad \cos(2x \pm \text{their } \alpha) = \frac{2}{\text{their } R}$	M1	
	$(2x - 36.87) = 66.42182^{\circ}$ awrt 66	A1	
	$(2x - 36.87) = 360 - 66.42182^{\circ}$		
	Hence, $x = 51.64591^{\circ}$, 165.22409° One of either awrt 51.6 or awrt 51.7 or awrt 165.2 or awrt 165.3	A1	
	Both awrt 51.6 AND awrt 165.2	A1	
	If there are any EXTRA solutions	(4	1)
	inside the range $0 \le x < 180^{\circ}$ then withhold the final accuracy mark.		
	Also ignore EXTRA solutions		
	outside the range $0 \le x < 180^{\circ}$.		
		[12	2]

Question Number	Scheme		Marks
Q7	$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}$ x \in \mathbb{R}, x \ne -4, x \ne 2.		
(a)	$f(x) = \frac{(x-2)(x+4) - 2(x-2) + x - 8}{(x-2)(x+4)}$	An attempt to combine to one fraction Correct result of combining all three fractions	M1 A1
	$= \frac{x^2 + 2x - 8 - 2x + 4 + x - 8}{(x - 2)(x + 4)}$		
	$= \frac{x^2 + x - 12}{[(x+4)(x-2)]}$	Simplifies to give the correct numerator. Ignore omission of denominator	A1
	$= \frac{(x+4)(x-3)}{[(x+4)(x-2)]}$	An attempt to factorise the numerator.	dM1
	$=\frac{(x-3)}{(x-2)}$	Correct result	A1 cso AG (5)
(b)	$g(x) = \frac{e^x - 3}{e^x - 2} x \in \mathbb{R}, \ x \neq \ln 2.$		
	Apply quotient rule: $\begin{cases} u = e^{x} - 3 & v = e^{x} - 2 \\ \frac{du}{dx} = e^{x} & \frac{dv}{dx} = e^{x} \end{cases}$		
	$g'(x) = \frac{e^{x}(e^{x}-2) - e^{x}(e^{x}-3)}{(e^{x}-2)^{2}}$	Applying $\frac{vu' - uv'}{v^2}$ Correct differentiation	M1 A1
	$= \frac{e^{2x} - 2e^{x} - e^{2x} + 3e^{x}}{(e^{x} - 2)^{2}}$		
	$= \frac{\mathrm{e}^x}{(\mathrm{e}^x - 2)^2}$	Correct result	A1 AG cso (3)

Question Number	Scheme	Marks
(c)	$g'(x) = 1 \implies \frac{e^x}{(e^x - 2)^2} = 1$	
	$e^{x} = (e^{x} - 2)^{2}$ $e^{x} = e^{2x} - 2e^{x} - 2e^{x} + 4$ Puts their differentiated numerator equal to their denominator.	M1
	$\underline{e^{2x} - 5e^x + 4} = 0 \qquad \qquad \underline{e^{2x} - 5e^x + 4}$	A1
	$(e^{x} - 4)(e^{x} - 1) = 0$ Attempt to factorise or solve quadratic in e^{x}	M1
	$e^x = 4$ or $e^x = 1$	
	$x = \ln 4 \text{ or } x = 0 \qquad \qquad \text{both } x = 0, \ \ln 4$	A1 (4)
		[12]

6665

Ques Num		Scheme			Mark	S
Q8	(a)	$\sin 2x = \underline{2\sin x \cos x}$	$2\sin x \cos x$	B1	aef	(1)
	(b)	$\csc x - 8\cos x = 0 , \qquad 0 < x < \pi$				
		$\frac{1}{\sin x} - 8\cos x = 0$	Using $\operatorname{cosec} x = \frac{1}{\sin x}$	M1		
		$\frac{1}{\sin x} = 8\cos x$				
		$1 = 8\sin x \cos x$				
		$1 = 4(2\sin x \cos x)$				
		$1 = 4\sin 2x$				
		$\underline{\sin 2x} = \frac{1}{4}$	$\sin 2x = k$, where $-1 < k < 1$ and $k \neq 0$ $\underline{\sin 2x = \frac{1}{4}}$	M1 <u>A1</u>		
		Radians $2x = \{0.25268, 2.88891\}$ Degrees $2x = \{14.4775, 165.5225\}$				
		Radians $x = \{0.12634, 1.44445\}$ Degrees $x = \{7.23875, 82.76124\}$	Either arwt 7.24 or 82.76 or 0.13 or 1.44 or 1.45 or awrt 0.04π or awrt 0.46π .	A1		
		$x = \{1.25015, 02.10124\}$	Both <u>0.13</u> and <u>1.44</u> Solutions for the final two A marks must be given in <i>x</i> only. If there are any EXTRA solutions inside the range $0 < x < \pi$ then	A1	cao	(5)
			withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $0 < x < \pi$.			[6]
						Ľ