6665

June 2006 6665 Core Mathematics C3 Mark Scheme

Question number	Scheme	Marks	
1. (a)	$\frac{(3x+2)(x-1)}{(x+1)(x-1)}, = \frac{3x+2}{x+1}$	M1B1, A1	(3)
(b)	Notes M1 attempt to factorise numerator, usual rules B1 factorising denominator seen anywhere in (a), A1 given answer If factorisation of denom. not seen, correct answer implies B1 Expressing over common denominator		
	$\frac{3x+2}{x+1} - \frac{1}{x(x+1)} = \frac{x(3x+2)-1}{x(x+1)}$	M1	
	[Or "Otherwise": $\frac{(3x^2 - x - 2)x - (x - 1)}{x(x^2 - 1)}$] Multiplying out numerator and attempt to factorise	M1	
	$\left[3x^2 + 2x - 1 \equiv (3x - 1)(x + 1)\right]$		
	Answer: $\frac{3x-1}{x}$	A1	(3)
		Total 6 ma	arks
2. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x} + \frac{1}{x}$	B1M1A1	(3)
	Notes		
	B1 $3e^{3x}$		
	M1: $\frac{a}{bx}$ A1: $3e^{3x} + \frac{1}{x}$		
(b)	$(5+x^2)^{\frac{1}{2}}$	B1	
	$ (5 + x^{2})^{\frac{1}{2}} $ $ \frac{3}{2} (5 + x^{2})^{\frac{1}{2}} \cdot 2x = 3x(5 + x^{2})^{\frac{1}{2}} $ M1 for $ kx(5 + x^{2})^{m} $	M1 A1	(3)
	$\int_{0}^{\infty} kx(5+x^{2})^{m}$		
		Total 6 ma	arks

	estion mber	Sche	me	Marks
3.	(a)	45 S	Mod graph, reflect for $y < 0$ (0, 2), (3, 0) or marked on axes	M1 A1
		(3.0)	Correct shape, including cusp	A1 (3)
	(b) 3 (o,3)	Attempt at reflection in $y = x$	M1	
			Curvature correct	A1
		-2, 0), (0, 3) or equiv.	B1 (3)	
			Attempt at 'stretches'	M1
	(c)	(0,0) ×	(0, -1) or equiv.	B1
			(1, 0)	B1 (3)
				Total 9 marks

Mathematics C3 6665

Summer 2006 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Que	stion	Scheme	Marks	
Nun	nber	Scheme	Wanks	
4	(a)	425 °C	B1	(1)
4.	(a)		DI	(1)
	(<i>b</i>)	$300 = 400 e^{-0.05t} + 25 \qquad \Rightarrow 400 e^{-0.05t} = 275$	N/1	
		sub. $T = 300$ and attempt to rearrange to $e^{-0.05t} = a$, where $a \in \mathbb{Q}$	M1	
		$e^{-0.05t} = \frac{275}{400}$	A1	
		M1 correct application of logs	M1	
		t = 7.49	A1	(4)
	(c)	$\frac{dT}{dt} = -20 e^{-0.05 t}$ (M1 for $k e^{-0.05 t}$)	M1 A1	
		At $t = 50$, rate of decrease = $(\pm) 1.64$ °C/min	A1	(3)
	(<i>d</i>)	$T > 25$, (since $e^{-0.05 t} \rightarrow 0$ as $t \rightarrow \infty$)	B1	(1)
			Total 9 m	arks

Question Number	Scheme	Marks
5. (a)	Using product rule: $\frac{dy}{dx} = 2 \tan 2x + 2(2x - 1) \sec^2 2x$	M1 A1 A1
	Use of " $\tan 2x = \frac{\sin 2x}{\cos 2x}$ " and " $\sec 2x = \frac{1}{\cos 2x}$ " $\left[= 2 \frac{\sin 2x}{\cos 2x} + 2(2x - 1) \frac{1}{\cos^2 2x} \right]$	M1
	Setting $\frac{dy}{dx} = 0$ and multiplying through to eliminate fractions $[\Rightarrow 2\sin 2x \cos 2x + 2(2x - 1) = 0]$	M1
	Completion: producing $4k + \sin 4k - 2 = 0$ with no wrong working seen and at least previous line seen. AG	A1* (6)
(b)	$x_1 = 0.2670, x_2 = 0.2809, x_3 = 0.2746, x_4 = 0.2774,$	M1 A1 A1 (3)
	Note: M1 for first correct application, first A1 for two correct, second A1 for all four correct Max -1 deduction, if ALL correct to > 4 d.p. M1 A0 A1 SC: degree mode: M1 $x_1 = 0.4948$, A1 for $x_2 = 0.4914$, then A0; max 2	
(c)	Choose suitable interval for k : e.g. [0.2765, 0.2775] and evaluate $f(x)$ at these values	M1
	Show that $4k + \sin 4k - 2$ changes sign and deduction	A1 (2)
	$[f(0.2765) = -0.000087, \ f(0.2775) = +0.0057]$, ,
	Note: Continued iteration: (no marks in degree mode) Some evidence of further iterations leading to 0.2765 or better M1; Deduction A1	
		(11 marks)

Question Number	Scheme	Marks	
6. (a)	Dividing $\sin^2 \theta + \cos^2 \theta = 1$ by $\sin^2 \theta$ to give $\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$	M1	
	Completion: $1 + \cot^2 \theta = \csc^2 \theta \Rightarrow \csc^2 \theta - \cot^2 \theta = 1$ AG	A1*	(2)
(b)	$\cos ec^4 \theta - \cot^4 \theta = (\cos ec^2 \theta - \cot^2 \theta)(\cos ec^2 \theta + \cot^2 \theta)$	M1	
	$\equiv \left(\cos ec^2 \theta + \cot^2 \theta\right) \text{using (a)} AG$	A1*	(2)
	Notes: (i) Using LHS = $(1 + \cot^2 \theta)^2 - \cot^4 \theta$, using (a) & elim. $\cot^4 \theta$ M1, conclusion {using (a) again} A1* (ii) Conversion to sines and cosines: needs $\frac{(1-\cos^2 \theta)(1+\cos^2 \theta)}{\sin^4 \theta}$ for M1		
(c)	Using (b) to form $\csc^2 \theta + \cot^2 \theta = 2 - \cot \theta$	M1	
	Forming quadratic in $\cot \theta$	M1	
	$\Rightarrow 1 + \cot^2 \theta + \cot^2 \theta = 2 - \cot \theta \qquad \{\text{using (a)}\}\$		
	$2\cot^2\theta + \cot\theta - 1 = 0$	A1	
	Solving: $(2 \cot \theta - 1)(\cot \theta + 1) = 0$ to $\cot \theta =$	M1	
	$\left(\cot\theta = \frac{1}{2}\right) \text{or} \cot\theta = -1$	A1	
	$\theta = 135^{\circ}$ (or correct value(s) for candidate dep. on 3Ms)	A1√	(6)
	Note: Ignore solutions outside range Extra "solutions" in range loses A1√, but candidate may possibly have more than one "correct" solution.		
	nave more than one correct solution.	(10 mai	rks)

Question Number	Scheme	Marks
7. (a)	Log graph: Shape	B1
	Intersection with –ve x-axis	dB1
	$(0, \ln k), (1-k, 0)$	B1
	$(0, \ln k), (1 - k, 0)$ Mod graph :V shape, vertex on +ve x-axis	B1
	$(0, k) \text{ and } \left(\frac{k}{2}, 0\right)$ $f(x) \in \mathbb{R} , -\infty < f(x) < \infty \; , -\infty < y < \infty$	B1 (5)
(b)		B1 (1)
(c)	$fg\left(\frac{k}{4}\right) = \ln\{k + \left \frac{2k}{4} - k\right \} \text{or} f\left(\left -\frac{k}{2}\right \right)$	M1
	$= \ln\left(\frac{3k}{2}\right)$	A1 (2)
(d)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+k}$	B1
	Equating (with $x = 3$) to grad. of line; $\frac{1}{3+k} = \frac{2}{9}$	M1; A1
	$k = 1\frac{1}{2}$	A1√ (4)
		(12 marks)

Question Number	Scheme	Marks
8. (a)	Method for finding $\sin A$ $\sin A = -\frac{\sqrt{7}}{4}$	M1 A1 A1
(<i>b</i>)(i)	Note: First A1 for $\frac{\sqrt{7}}{4}$, exact. Second A1 for sign (even if dec. answer given) Use of $\sin 2A = 2\sin A\cos A$ $\sin 2A = -\frac{3\sqrt{7}}{8}$ or equivalent exact Note: \pm f.t. Requires exact value, dependent on 2nd M $\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) = \cos 2x \cos\frac{\pi}{3} - \sin 2x \sin\frac{\pi}{3} + \cos 2x \cos\frac{\pi}{3} + \sin 2x \sin\frac{\pi}{3}$	M1 A1√ (5) M1
	$\equiv 2\cos 2x \cos \frac{\pi}{3}$	A1
	[This can be just written down (using factor formulae) for M1A1] $\equiv \cos 2x \qquad AG$ Note:	A1* (3)
(<i>b</i>)(ii)	M1A1 earned, if $\equiv 2\cos 2x \cos \frac{\pi}{3}$ just written down, using factor theorem Final A1* requires some working after first result. $\frac{dy}{dx} = 6\sin x \cos x - 2\sin 2x$ or $6\sin x \cos x - 2\sin \left(2x + \frac{\pi}{3}\right) - 2\sin\left(2x - \frac{\pi}{3}\right)$	B1 B1
	$= 3\sin 2x - 2\sin 2x$ $= \sin 2x AG$ Note: First B1 for $6\sin x \cos x$; second B1 for remaining term(s)	M1 A1* (4) (12 marks)