Past Paper (Mark Scheme) January 2006 www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C4**

6666

Question Number	Scheme						Ma	ırks
1.	Differentiates						M1	
	to obtain : $6x + 8y \frac{dy}{dx} - 2$,							
	$\begin{bmatrix} dy \\ dx \end{bmatrix} = \frac{2 - 6x - 6y}{6x + 8y}$							
	Substitutes $x = 1$, $y = -2$ into expression involving $\frac{dy}{dx}$, to give $\frac{dy}{dx} = -\frac{8}{10}$							
	Uses line equation with numerical 'gradient' $y - (-2) = (\text{their gradient})(x - 1)$ or finds <i>c</i> and uses $y = (\text{their gradient}) x + "c"$ To give $5y+4x+6=0$ (or equivalent = 0)						M1	
							A1√	[7]
2. (a)	x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$		
	y	1	1.01959	1.08239	1.20269	1.41421	M1 A1	
	M1 for one of	correct, A1 for	all correct					(2)
(b)	Integral = $\frac{1}{2} \times \frac{\pi}{16} \times \{1 + 1.4142 + 2(1.01959 + + 1.20269)\}$ $\left(= \frac{\pi}{32} \times 9.02355 \right) = 0.8859$					M1 A1√ A1 cao	(3)	
(c)	Percentage error = $\frac{approx - 0.88137}{0.88137} \times 100 = 0.51$ % (allow 0.5% to 0.54% for A1)					M1 A1	(2) [7]	
	M1 gained for (\pm) $\frac{approx - \ln(1 + \sqrt{2})}{\ln(1 + \sqrt{2})}$							

Question

Number

3.

Past Paper (Mark Scheme) January 2006

www.mystudybro.com

6666

Mathematics C4

[8]

This resource was created and owned by Pearson Edexcel 6666 Core Mathematics C4 Mark Scheme Scheme Marks M1 Uses substitution to obtain $x = f(u) \left| \frac{u^2 + 1}{2} \right|$, and to obtain $u \frac{du}{dx} = \text{const. or equiv.}$ M1 Reaches $\int \frac{3(u^2+1)}{2u} u du$ or equivalent A1 M1 Simplifies integrand to $\int \left(3u^2 + \frac{3}{2}\right) du$ or equiv. M1 A1√ Integrates to $\frac{1}{2}u^3 + \frac{3}{2}u$ A1 $\sqrt{}$ dependent on all previous Ms Uses new limits 3 and 1 substituting and subtracting (or returning to function of x M1 with old limits) A1 To give 16 CSO "By Parts" Attempt at " right direction" by parts M1 $\begin{bmatrix} 3x\left(2x-1\right)^{\frac{1}{2}} \end{bmatrix} - \{\int 3\left(2x-1\right)^{\frac{1}{2}} dx\} \end{bmatrix}$ M1{M1A1} – $(2x-1)^{\frac{3}{2}}$ M1A1 $\sqrt{$ Uses limits 5 and 1 correctly; [42 - 26] 16 M1A1 2

Past Paper (Mark Scheme) January 2006

Mathematics C4

www.mystudybro.com This resource was created and owned by Pearson Edexcel

6666

4.	Attempts $V = \pi \int x^2 e^{2x} dx$	M1
	$=\pi \left[\frac{x^2 e^{2x}}{2} - \int x e^{2x} dx\right] $ (M1 needs parts in the correct direction)	M1 A1
	= $\pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \int \frac{e^{2x}}{2} dx \right) \right]$ (M1 needs second application of parts)	M1 A1√
	M1A1 $\sqrt{1}$ refers to candidates $\int x e^{2x} dx$, but dependent on prev. M1	
	$= \pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \frac{e^{2x}}{4} \right) \right]$	A1 cao
	Substitutes limits 3 and 1 and subtracts to give [dep. on second and third Ms]	dM1
	= $\pi \left[\frac{13}{4} e^6 - \frac{1}{4} e^2 \right]$ or any correct exact equivalent.	A1 [8]
	[Omission of π loses first and last marks only]	[0]

Winter 2006 Past Paper (Mark Scheme) January 2006

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
5. (a)	Considers $3x^2 + 16 = A(2+x)^2 + B(1-3x)(2+x) + C(1-3x)$ and substitutes $x = -2$, or $x = 1/3$, or compares coefficients and solves simultaneous equations	
	To obtain A = 3, and C = 4 Compares coefficients or uses simultaneous equation to show $B = 0$.	A1, A1 B1 (4)
(b)	Writes $3(1-3x)^{-1} + 4(2+x)^{-2}$ = $3(1+3x,+9x^2+27x^3+) + \frac{4}{4}(1+\frac{(-2)}{1}(\frac{x}{2})+\frac{(-2)(-3)}{1.2}(\frac{x}{2})^2+\frac{(-2)(-3)(-4)}{1.2.3}(\frac{x}{2})^3+)$	
	= 4 + 8x, + 27 $\frac{3}{4}x^2$ + 80 $\frac{1}{2}x^3$ + Or uses $(3x^2 + 16)(1 - 3x)^{-1}(2 + x)^{-2}$	A1, A1 (7)
	$(3x^{2}+16)(1+3x)+9x^{2}+27x^{3}+) \times $ $(3x^{2}+16)(1+3x)+9x^{2}+27x^{3}+) \times $ $(1+\frac{(-2)}{1}\left(\frac{x}{2}\right)+\frac{(-2)(-3)}{1.2}\left(\frac{x}{2}\right)^{2}+\frac{(-2)(-3)(-4)}{1.2.3}\left(\frac{x}{2}\right)^{3})$	(M1A1)× (M1A1)
	$= 4 + 8x, + 27\frac{3}{4}x^2 + 80\frac{1}{2}x^3 + \dots$	A1, A1 (7) [11]

Mathematics C4

6666

Past Paper (Mark Scheme)
January 2006

www.mystudybro.com This resource was created and owned by Pearson Edexcel

6. (a)	$\lambda = -4 \rightarrow a = 18, \qquad \mu = 1 \rightarrow b = 9$	M1 A1, A1 (3)
(b)	$ \begin{pmatrix} 8+\lambda\\12+\lambda\\14-\lambda \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = 0 $	M1
	$\therefore 8 + \lambda + 12 + \lambda - 14 + \lambda = 0$ Solves to obtain λ ($\lambda = -2$) Then substitutes value for λ to give P at the point (6, 10, 16) (any form)	A1 dM1 M1, A1 (5)
(c)	Then substitutes value for λ to give P at the point (6, 10, 16) (any form) OP = $\sqrt{36+100+256}$ (= $\sqrt{392}$) = $14\sqrt{2}$	M1 A1 cao (2) [10]
7. (a)	$\frac{dV}{dr} = 4\pi r^2$	B1 (1)
(b)	Uses $\frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dV}$ in any form, $= \frac{1000}{4\pi r^2 (2t+1)^2}$	M1,A1 (2)
(c)	$V = \int 1000(2t+1)^{-2} dt \text{ and integrate to } p (2t+1)^{-1}, = -500(2t+1)^{-1}(+c)$ Using V=0 when t=0 to find c, (c = 500, or equivalent)	M1, A1 M1 A1
(d)	$\therefore V = 500(1 - \frac{1}{2t + 1}) (\text{any form})$ (i) Substitute t = 5 to give V, then use $r = \sqrt[3]{\left(\frac{3V}{4\pi}\right)}$ to give r , = 4.77	(4) M1, M1, A1 (3)
	(ii) Substitutes t = 5 and r = 'their value' into 'their' part (b) $\frac{dr}{dt} = 0.0289 (\approx 2.90 x 10^{-2}) (\text{ cm/s}) * \text{AG}$	M1 A1 [12]

Past Paper (Mark Scheme) January 2006

Mathematics C4

6666

6666 Core Mathematics C4 Mark Scheme

Solves $y = 0 \implies \cos t = \frac{1}{2}$ to obtain $t = \frac{\pi}{3}$ or $\frac{5\pi}{3}$ (need both for A1) 8. (a) Or substitutes **both** values of *t* and shows that y = 0 $\frac{dx}{dt} = 1 - 2\cos t$ (b) Area= $\int y dx = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)(1 - 2\cos t) dt = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 dt * AG$ Area = $\int 1 - 4\cos t + 4\cos^2 t dt$ 3 terms (C) = $\int 1 - 4\cos t + 2(\cos 2t + 1)dt$ (use of correct double angle formula) $= \int 3 - 4\cos t + 2\cos 2t dt$ $= [3t - 4\sin t + \sin 2t]$ Substitutes the two correct limits $t = \frac{5\pi}{3}$ and $\frac{\pi}{3}$ and subtracts. $=4\pi + 3\sqrt{3}$