

# Mark Scheme (Results) January 2008

**GCE** 

GCE Mathematics (6666/01)



## January 2008 6666 Core Mathematics C4 **Mark Scheme**

| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                       |                                                                                                |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| 1. (a)              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                       |                                                                                                |  |
| (b)<br><b>Way 1</b> | Area $\approx \frac{1}{2} \times \frac{\pi}{4}$ ; $\times \{0+2(1.84432+4.81048+8.87207)+0\}$ Correct expressinside brackets which all be multiplied by their "our const."                                                                                                                   | B1 [2]  Skets 0.79 B1  or $\frac{\pi}{8}$ cium  cium  must tside $\frac{\mathbf{A1}}{\sqrt{}}$ |  |
|                     | $= \frac{\pi}{8} \times 31.05374 = 12.19477518 = \underline{12.1948} $ (4dp)                                                                                                                                                                                                                 | 1948 A1 cao [4]                                                                                |  |
| AP.                 | Area $\approx \frac{\pi}{4} \times \left\{ \frac{0+1.84432}{2} + \frac{1.84432+4.81048}{2} + \frac{4.81048+8.87207}{2} + \frac{8.87207+0}{2} \right\}$ $0 \text{ of 2 on all terms in brace}$                                                                                                | hside B1 kets.                                                                                 |  |
| Aliter (b) Way 2    | which is equivalent to:  Area $\approx \frac{1}{2} \times \frac{\pi}{4}$ ; $\times \left\{ 0 + 2(1.84432 + 4.81048 + 8.87207) + 0 \right\}$ One of first and last ordin two of the middle ordin inside brackets ignoring to Correct expression in brackets if $\frac{1}{2}$ was a factorised | nates $\underline{M1}\sqrt{}$ ne 2. side so be $\underline{A1}\sqrt{}$                         |  |
|                     | $= \frac{\pi}{4} \times 15.52687 = 12.19477518 = \underline{12.1948} $ (4dp)                                                                                                                                                                                                                 | 1948 A1 cao                                                                                    |  |
|                     |                                                                                                                                                                                                                                                                                              | [4]<br>6 marks                                                                                 |  |

Note an expression like Area  $\approx \frac{1}{2} \times \frac{\pi}{4} + 2(1.84432 + 4.81048 + 8.87207)$  would score B1M1A0A0

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Mark       | ΚS  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 2. (a)             | ** represents a constant (which must be consistent for first accuracy mark) $(8-3x)^{\frac{1}{3}} = (8)^{\frac{1}{3}} \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}} = 2\left(1 - \frac{3x}{8}\right)^{\frac{1}{3}}$ Takes 8 outside the bracket to give any of $(8)^{\frac{1}{3}} = 2 \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}} = 2 \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}}$ |                                                                                                                                                                                                | <u>B1</u>  |     |
|                    | gives $= 2\left\{ \frac{1 + (\frac{1}{3})(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^3 + \dots \right\}  \text{A corr}$ with $** \neq 1$                                                                                                                                                                  | pands $(1+**x)^{\frac{1}{3}}$ to be a simplified or an un-simplified $1+(\frac{1}{3})(**x)$ ; sect simplified or an un-simplified unu-simplified unu-simplified unu-simplified through $(**x)$ | M1;<br>A1√ |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                  | rd SC M1 if you see<br>**x) <sup>2</sup> + $\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^3$                                                                                       |            |     |
|                    | $=2-\frac{1}{4}x;-\frac{1}{32}x^2-\frac{5}{768}x^3-\dots$                                                                                                                                                                                                                                                                                                                        | $2\left\{1-\frac{1}{8}x\right\} \text{ or anything that cancels to } 2-\frac{1}{4}x;$ ified $-\frac{1}{32}x^2-\frac{5}{768}x^3$                                                                | A1;<br>A1  | [5] |
| (b)                | $(7.7)^{\frac{1}{3}} \approx 2 - \frac{1}{4}(0.1) - \frac{1}{22}(0.1)^2 - \frac{3}{769}(0.1)^3 - \dots$ $x = 0.$                                                                                                                                                                                                                                                                 | ttempt to substitute 1 into a candidate's pinomial expansion.                                                                                                                                  | M1         |     |
|                    | = 1.97468099                                                                                                                                                                                                                                                                                                                                                                     | awrt 1.9746810                                                                                                                                                                                 | A1 7 mar   | [2] |

You would award B1M1A0 for

$$=2\left\{\underbrace{1+(\frac{1}{3})(-\frac{3x}{8})+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(-\frac{3x}{8})^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(-3x)^3+\ldots}\right\}$$

because \*\* is not consistent.

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Be wary of calculator value of  $(7.7)^{\frac{1}{3}} = 1.974680822...$ 

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        | Marks         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Aliter 2. (a)      | $(8-3x)^{\frac{1}{3}}$                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |               |
| Way 2              | $= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(**x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(**x)^{3} + \dots \end{cases}$ with $** \neq 1$                                                                                                                                  | 2 or $(8)^{\frac{1}{3}}$ (See note $\downarrow$ )  Expands $(8-3x)^{\frac{1}{3}}$ to give an un-simplified or simplified $(8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x);$ A correct un-simplified or simplified $\{\underline{\dots}\}$ expansion with candidate's followed through $(**x)$ | B1 M1; A1√    |
|                    | $= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(-3x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(-3x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(-3x)^{3} + \dots \end{cases}$ $= \left\{ 2 + (\frac{1}{3})(\frac{1}{4})(-3x) + (-\frac{1}{9})(\frac{1}{32})(9x^{2}) + (\frac{5}{81})(\frac{1}{256})(-27x^{3}) + \dots \right\}$ | Award SC M1 if you see $\frac{\frac{\binom{1}{3}(-\frac{2}{3})}{2!}(8)^{\frac{1}{3}}(**x)^{2}}{2!} + \frac{\binom{\binom{1}{3}(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{\frac{1}{3}}(**x)^{3}}$                                                                                                            |               |
|                    | $=2-\frac{1}{4}x;-\frac{1}{32}x^2-\frac{5}{768}x^3-\dots$                                                                                                                                                                                                                                                                                                                                                  | Anything that cancels to $2-\frac{1}{4}x$ ; or $2\left\{1-\frac{1}{8}x \dots\right\}$<br>Simplified $-\frac{1}{32}x^2-\frac{5}{768}x^3$                                                                                                                                                                | A1;<br>A1 [5] |

Attempts using Maclaurin expansion should be escalated up to your team leader.

Be wary of calculator value of  $(7.7)^{\frac{1}{3}} = 1.974680822...$ 

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

### www.mystudybro.com

This resource was created and owned by Pearson Edexcel

## Mathematics C4 edexcel 66666

5 marks

| Question<br>Number | Scheme                                                                                         |                                                                                  | Marks    |
|--------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|
| 3.                 | Volume = $\pi \int_a^b \left(\frac{1}{2x+1}\right)^2 dx = \pi \int_a^b \frac{1}{(2x+1)^2} dx$  | Use of $V = \pi \int y^2 dx$ .<br>Can be implied. Ignore limits.                 | B1       |
|                    | $= \pi \int_a^b (2x+1)^{-2} dx$                                                                |                                                                                  |          |
|                    | $= (\pi) \left[ \frac{(2x+1)^{-1}}{(-1)(2)} \right]_a^b$                                       |                                                                                  |          |
|                    | $= \left(\pi\right) \left[ \begin{array}{c} -\frac{1}{2}(2x+1)^{-1} \end{array} \right]_a^b$   | Integrating to give $\frac{\pm p(2x+1)^{-1}}{-\frac{1}{2}(2x+1)^{-1}}$           | M1<br>A1 |
|                    | $= (\pi) \left[ \left( \frac{-1}{2(2b+1)} \right) - \left( \frac{-1}{2(2a+1)} \right) \right]$ | Substitutes limits of <i>b</i> and <i>a</i> and subtracts the correct way round. | dM1      |
|                    | $= \frac{\pi}{2} \left[ \frac{-2a - 1 + 2b + 1}{(2a+1)(2b+1)} \right]$                         |                                                                                  |          |
|                    | $= \frac{\pi}{2} \left[ \frac{2(b-a)}{(2a+1)(2b+1)} \right]$                                   |                                                                                  |          |
|                    | $=\frac{\pi(b-a)}{(2a+1)(2b+1)}$                                                               | $\pi(b-a)$ $(2a+1)(2b+1)$                                                        | A1 aef   |
|                    |                                                                                                |                                                                                  | [5]      |

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or  $\frac{-\pi (a-b)}{(2a+1)(2b+1)}$  or  $\frac{\pi (b-a)}{4ab+2a+2b+1}$  or  $\frac{\pi b - \pi a}{4ab+2a+2b+1}$ 

Note that  $\pi$  is not required for the middle three marks of this question.

This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                                                                           |                                                                              | Marks       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|
| Aliter 3. Way 2    | Volume = $\pi \int_a^b \left(\frac{1}{2x+1}\right)^2 dx = \pi \int_a^b \frac{1}{(2x+1)^2} dx$                                                    | Use of $V = \underline{\pi \int y^2} dx$ .<br>Can be implied. Ignore limits. | B1          |
|                    | $= \pi \int_a^b (2x+1)^{-2} dx$                                                                                                                  |                                                                              |             |
|                    | Applying substitution $u = 2x + 1 \Rightarrow \frac{du}{dx} = 2$ and changing limits $x \to u$ so that $a \to 2a + 1$ and $b \to 2b + 1$ , gives |                                                                              |             |
|                    | $= (\pi) \int_{2a+1}^{2b+1} \frac{u^{-2}}{2}  \mathrm{d}u$                                                                                       |                                                                              |             |
|                    | $= (\pi) \left[ \frac{u^{-1}}{(-1)(2)} \right]_{2a+1}^{2b+1}$                                                                                    |                                                                              |             |
|                    | $= (\pi) \left[ \frac{-\frac{1}{2}u^{-1}}{2a+1} \right]_{2a+1}^{2b+1}$                                                                           | Integrating to give $\pm pu^{-1}$ $-\frac{1}{2}u^{-1}$                       | M1<br>A1    |
|                    | $= (\pi) \left[ \left( \frac{-1}{2(2b+1)} \right) - \left( \frac{-1}{2(2a+1)} \right) \right]$                                                   | Substitutes limits of $2b+1$ and $2a+1$ and subtracts the correct way round. | dM1         |
|                    | $= \frac{\pi}{2} \left[ \frac{-2a - 1 + 2b + 1}{(2a+1)(2b+1)} \right]$                                                                           |                                                                              |             |
|                    | $= \frac{\pi}{2} \left[ \frac{2(b-a)}{(2a+1)(2b+1)} \right]$                                                                                     |                                                                              |             |
|                    | $=\frac{\pi(b-a)}{(2a+1)(2b+1)}$                                                                                                                 | $\pi(b-a)$ $(2a+1)(2b+1)$                                                    | A1 aef      |
|                    |                                                                                                                                                  |                                                                              | [5] 5 marks |

Note that  $\pi$  is not required for the middle three marks of this question.

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or  $\frac{-\pi (a-b)}{(2a+1)(2b+1)}$  or  $\frac{\pi (b-a)}{4ab+2a+2b+1}$  or  $\frac{\pi b - \pi a}{4ab+2a+2b+1}$ .

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| <b>4.</b> (i)      | $\int \ln\left(\frac{x}{2}\right) dx = \int 1.\ln\left(\frac{x}{2}\right) dx \implies \begin{cases} u = \ln\left(\frac{x}{2}\right) & \Rightarrow & \frac{du}{dx} = \frac{\frac{1}{2}}{\frac{x}{2}} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow & v = x \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |
|                    | $\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - \int x \cdot \frac{1}{x} dx$ Use of 'integration by par formula in the correction direction Correct expression of the co | ect M1<br>on.   |  |
|                    | $= x \ln\left(\frac{x}{2}\right) - \int \underline{1}  dx$ An attempt to multiply $x$ by candidate's $\frac{a}{x}$ or $\frac{1}{bx}$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 41/11         |  |
|                    | $= x \ln\left(\frac{x}{2}\right) - x + c$ Correct integration with -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 aef [4]      |  |
| (ii)               | $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x  dx$ $\left[ \text{NB: } \frac{\cos 2x = \pm 1 \pm 2 \sin^2 x}{2} \text{ or } \frac{\sin^2 x = \frac{1}{2} (\pm 1 \pm \cos 2x)}{2} \right]$ $= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2}  dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left( \frac{1 - \cos 2x}{2} \right)  dx$ Consideration of double and for cos 2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |
|                    | $= \frac{1}{2} \left[ \frac{x - \frac{1}{2}\sin 2x}{x - \frac{1}{4}\sin 2x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $= \frac{1}{2} \left[ \frac{x - \frac{1}{2}\sin 2x}{x - \frac{1}{4}\sin 2x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ Correct result of anythic equivalent to $\frac{1}{2}x - \frac{1}{4}\sin 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng dMI          |  |
|                    | $= \frac{1}{2} \left[ \left( \frac{\pi}{2} - \frac{\sin(\pi)}{2} \right) - \left( \frac{\pi}{4} - \frac{\sin(\frac{\pi}{2})}{2} \right) \right]$ Substitutes limits of $\frac{\pi}{2}$ and and subtracts the correct we roun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ay ddM1         |  |
|                    | $= \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4}$ $= \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{2} \right) \text{ or } \frac{\pi}{8} + \frac{1}{4} \text{ or } \frac{\pi}{8} + \frac{1}{4}$ Candidate must collect th $\pi$ term and constant te together for $\pi$ . No fluked answers, hence $\mathbf{c}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eir<br>rm<br>A1 |  |

Note: 
$$\int \ln(\frac{x}{2}) dx = (\text{their } v) \ln(\frac{x}{2}) - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) dx$$
 for M1 in part (i).

Note  $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$ 

## www.mystudybro.com

This resource was created and owned by Pearson Edexcel

| Question<br>Number  | Scheme                                                                                                                                                                       | Marks  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Aliter 4. (i) Way 2 | $\int \ln\left(\frac{x}{2}\right) dx = \int (\ln x - \ln 2) dx = \int \ln x dx - \int \ln 2 dx$                                                                              |        |
|                     | $\int \ln x  dx = \int 1 \cdot \ln x  dx \Rightarrow \begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow v = x \end{cases}$ |        |
|                     | $\int \ln x  dx = x \ln x - \int x \cdot \frac{1}{x}  dx$ Use of 'integration by parts' formula in the correct direction.                                                    | M1     |
|                     | $= x \ln x - x + c$ Correct integration of $\ln x$ with or without $+ c$                                                                                                     | A1     |
|                     | $\int \ln 2  dx = x \ln 2 + c$ Correct integration of $\ln 2$ with or without $+ c$                                                                                          | M1     |
|                     | Hence, $\int \ln(\frac{x}{2}) dx = x \ln x - x - x \ln 2 + c$ Correct integration with $+ c$                                                                                 | A1 aef |
|                     |                                                                                                                                                                              | [4]    |

Note: 
$$\int \ln x \, dx = (\text{their } v) \ln x - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) \, dx$$
 for M1 in part (i).



| Question<br>Number  | Scheme                                                                                                                                                                                               | Marks  | s   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| Aliter 4. (i) Way 3 | $\int \ln\left(\frac{x}{2}\right) dx$                                                                                                                                                                |        |     |
|                     | $u = \frac{x}{2} \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}$                                                                                                                             |        |     |
|                     | Applying substitution correctly to give $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u \ du$ $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u \ du$ Decide to award 2 <sup>nd</sup> M1 here! |        |     |
|                     | $\int \ln u  dx = \int 1. \ln u  du$                                                                                                                                                                 |        |     |
|                     | $\int \ln u  dx = u \ln u - \int u \cdot \frac{1}{u}  du$ Use of 'integration by parts' formula in the correct direction.                                                                            | M1     |     |
|                     | $= u \ln u - u + c$ Correct integration of $\ln u$ with or without $+ c$                                                                                                                             | A1     |     |
|                     | Decide to award<br>2 <sup>nd</sup> M1 here!                                                                                                                                                          | M1     |     |
|                     | $\int \ln\left(\frac{x}{2}\right) dx = 2\left(u \ln u - u\right) + c$                                                                                                                                |        |     |
|                     | Hence, $\int \ln(\frac{x}{2}) dx = x \ln(\frac{x}{2}) - x + c$ Correct integration with $+ c$                                                                                                        | A1 aef | [4] |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel



| Question<br>Number   | Scheme                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | Marks          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Aliter 4. (ii) Way 2 | $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x  dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x . \sin x  dx  \text{and}  I = \int \sin^2 x  dx$                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |                |
|                      | $\begin{cases} u = \sin x & \Rightarrow \frac{du}{dx} = \cos x \\ \frac{dv}{dx} = \sin x & \Rightarrow v = -\cos x \end{cases}$                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                |
|                      | $\therefore I = \left\{ -\sin x \cos x + \int \cos^2 x  dx \right\}$                                                                                                                                                                                                                                                                                    | An attempt to use the correct by parts formula.                                                                                                                                                                                                                                                                             | M1             |
|                      | $\therefore I = \left\{ -\sin x \cos x + \int (1 - \sin^2 x) dx \right\}$                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             |                |
|                      | $\int \sin^2 x  dx = \left\{ -\sin x \cos x + \int 1  dx - \int \sin^2 x  dx \right\}$                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                |
|                      | $2\int \sin^2 x  dx = \left\{ -\sin x \cos x + \int 1  dx \right\}$                                                                                                                                                                                                                                                                                     | For the LHS becoming 2 <i>I</i>                                                                                                                                                                                                                                                                                             | dM1            |
|                      | $2\int \sin^2 x  \mathrm{d}x = \{-\sin x \cos x + x\}$                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                |
|                      | $\int \sin^2 x  dx = \left\{ \frac{-\frac{1}{2}\sin x \cos x + \frac{x}{2}}{2} \right\}$                                                                                                                                                                                                                                                                | Correct integration                                                                                                                                                                                                                                                                                                         | A1             |
|                      | $\therefore \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x  dx = \left[ \left( -\frac{1}{2} \sin(\frac{\pi}{2}) \cos(\frac{\pi}{2}) + \frac{\binom{\pi}{2}}{2} \right) - \left( -\frac{1}{2} \sin(\frac{\pi}{4}) \cos(\frac{\pi}{4}) + \frac{\binom{\pi}{4}}{2} \right) \right]$ $= \left[ (0 + \frac{\pi}{4}) - (-\frac{1}{4} + \frac{\pi}{8}) \right]$ | Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.                                                                                                                                                                                                                              | ddM1           |
|                      | $= \frac{\pi}{8} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                         | $\frac{\frac{1}{2}\left(\frac{\pi}{4} + \frac{1}{2}\right)}{\text{Candidate must collect their}}  \text{or}  \frac{\pi}{8} + \frac{1}{4}  \text{or}  \frac{\pi}{8} + \frac{2}{8}$ $\text{Candidate must collect their}$ $\pi \text{ term and constant term}$ $\text{together for A1}$ No fluked answers, hence <b>cso</b> . | Al aef cso [5] |

Note  $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$ 

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

## **Mathematics C4**

Past Paper (Mark Scheme)

|         | 3666 |
|---------|------|
| edexcel |      |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                | Marks     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|
| 5. (a)             | $x^{3}-4y^{2} = 12xy \qquad (\text{ eqn } *)$ $x = -8 \implies -512-4y^{2} = 12(-8)y$ $-512-4y^{2} = -96y$ Substitutes $x = -8$ (at least once) into * to obtain a three term quadratic in $y$ . Condone the loss of $= 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | I1        |
|                    | $4y^{2}-96y+512=0$ $y^{2}-24y+128=0$ $(y-16)(y-8)=0$ An attempt to solve the either factorising or by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | M1        |
|                    | $y = \frac{24 \pm \sqrt{576 - 4(128)}}{2}$ either factorising or by the formula or by completing the square. $y = 16 \text{ or } y = 8.$ Both $y = 16$ and $y = 8$ . or $(-8, 8)$ and $(-8, 16)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | 1<br>[3]  |
| (b)                | $\{ \stackrel{\longleftarrow}{\longleftrightarrow} \times \}  3x^2 - 8y \stackrel{\longleftarrow}{\longrightarrow} =  12y + 12x \stackrel{\longleftarrow}{\longrightarrow}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{dy}{dx}$ . Ignore $\frac{dy}{dx} =$ ect LHS equation; A |           |
|                    | $\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\} $ not necessitive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essarily required.                                             |           |
|                    | (a) $(-8, 8)$ , $\frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{3}$ , Substitutes $x = -8$ and at $y$ -values to attempt to find $(-8, 16)$ , $\frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = 0$ .  Both gradients of -3 and $(-3, 16)$ Both gradients of -3 and | nd any one of $\frac{dy}{dx}$ .                                | M1        |
|                    | $(a)(-8, 16), \frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne gradient found. A                                           |           |
|                    | dx = 12(-8) + 8(16) = 32 Both gradients of <u>-3</u> and <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o correctly found. A                                           | 1 cso [6] |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                              | marks     |

## www.mystudybro.com

This resource was created and owned by Pearson Edexcel

## **Mathematics C4**

Both gradients of  $\underline{-3}$  and  $\underline{0}$  *correctly* found.

A1 cso

[6]

|                     |                                                                                                                                                                                                               |                                                                                                                                                                                 | T                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Question<br>Number  | Scheme                                                                                                                                                                                                        |                                                                                                                                                                                 | Marks             |
| Aliter 5. (b) Way 2 | $\left\{\frac{2x}{2x}\times\right\}  3x^2\frac{dx}{dy} - 8y; = \left(12y\frac{dx}{dy} + 12x\right)$                                                                                                           | Differentiates implicitly to include either $\pm kx^2 \frac{dx}{dy}$ or $12y \frac{dx}{dy}$ . Ignore $\frac{dx}{dy} =$ Correct LHS equation Correct application of product rule | M1<br>A1;<br>(B1) |
|                     | $\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$                                                                                                                              | not necessarily required.                                                                                                                                                       |                   |
|                     | $ (2)(-8,8),  \frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-32}, $ $ (2)(-8,16),  \frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = \underline{0}. $ | Substitutes $x = -8$ and <i>at least one</i> of their y-values to attempt to find any one of $\frac{dy}{dx}$ or $\frac{dx}{dy}$ .                                               | dM1               |
|                     | $(a)(-8,16), \frac{dy}{dx} = \frac{3(04)-12(16)}{12(-8)+8(16)} = \frac{0}{32} = 0.$                                                                                                                           | One gradient found. Both gradients of -3 and 0 <i>correctly</i> found.                                                                                                          | A1<br>A1 cso      |



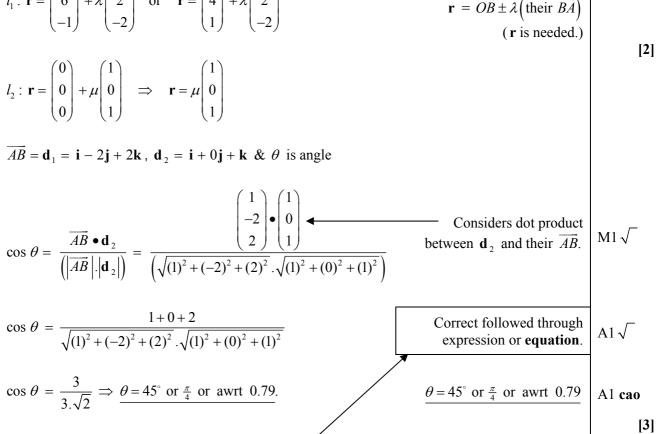
| Question<br>Number   | Scheme                                                                                                                                                    |                                                                                                                                                           | Marks        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <b>Aliter 5.</b> (b) | $x^3 - 4y^2 = 12xy \text{ (eqn *)}$                                                                                                                       |                                                                                                                                                           |              |
| Way 3                | $4y^2 + 12xy - x^3 = 0$                                                                                                                                   |                                                                                                                                                           |              |
|                      | $y = \frac{-12x \pm \sqrt{144x^2 - 4(4)(-x^3)}}{8}$                                                                                                       |                                                                                                                                                           |              |
|                      | $y = \frac{-12x \pm \sqrt{144x^2 + 16x^3}}{8}$                                                                                                            |                                                                                                                                                           |              |
|                      | $y = \frac{-12x \pm 4\sqrt{9x^2 + x^3}}{8}$                                                                                                               |                                                                                                                                                           |              |
|                      | $y = -\frac{3}{2}x \pm \frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$                                                                                             |                                                                                                                                                           |              |
|                      | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$ | A credible attempt to make $y$ the subject and an attempt to differentiate either $-\frac{3}{2}x$ or $\frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$ .            | M1           |
|                      | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{18x + 3x^2}{4(9x^2 + x^3)^{\frac{1}{2}}}$                                                       | $\frac{dy}{dx} = -\frac{3}{2} \pm k \left(9x^2 + x^3\right)^{-\frac{1}{2}} \left(g(x)\right)$                                                             | A1           |
|                      |                                                                                                                                                           | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$ | A1           |
|                      | (a) $x = -8$ $\frac{dy}{dx} = -\frac{3}{2} \pm \frac{18(-8) + 3(64)}{4(9(64) + (-512))^{\frac{1}{2}}}$                                                    | Substitutes $x = -8$ find any one of $\frac{dy}{dx}$ .                                                                                                    | dM1          |
|                      | $= -\frac{3}{2} \pm \frac{48}{4\sqrt{(64)}} = -\frac{3}{2} \pm \frac{48}{32}$                                                                             |                                                                                                                                                           |              |
|                      | $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{3}{2} = \underline{-3},  \underline{0}.$                                             | One gradient correctly found. Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.                                                     | A1<br>A1 [6] |

This resource was created and owned by Pearson Edexcel

## Mathematics C4 edexcel 6666

Past Paper (Mark Scheme)

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>6.</b> (a)      | $\overrightarrow{OA} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} & & \overrightarrow{OB} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
|                    | $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ Finding the difference between $\overrightarrow{OB}$ and $\overrightarrow{OA}$ .  Correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1 ±                 |
| (b)<br>(c)         | An expression of the form $ (\text{vector}) \pm \lambda (\text{vector}) $ $ \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} $ or $ \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} $ or $ \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} $ or $ \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} $ or $ \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} $ or $ \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} $ $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{BA}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (\text{their } \overline{AB}) $ or $ \mathbf{r} = \partial B \pm \lambda (the$ | [2]<br>M1 A1√aef [2] |



This means that  $\cos \theta$  does not necessarily have to be the subject of the equation. It could be of the form  $3\sqrt{2}\cos\theta = 3$ .

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel



| Question<br>Number        | Scheme                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      | Marks           |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>6.</b> (d)             | If $l_1$ and $l_2$ intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$                                                                                                          |                                                                                                                                                                      |                 |
|                           | <b>i</b> : $2 + \lambda = \mu$ (1)<br><b>j</b> : $6 - 2\lambda = 0$ (2)<br><b>k</b> : $-1 + 2\lambda = \mu$ (3)                                                                                                                                                                               | <b>Either</b> seeing equation (2) written down correctly with or without any other equation <b>or</b> seeing equations (1) and (3) written down correctly.           | M1√             |
|                           | (2) yields $\lambda = 3$<br>Any two yields $\lambda = 3$ , $\mu = 5$                                                                                                                                                                                                                          | Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find                                                                  | dM1             |
|                           | $l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ \underline{5} \end{pmatrix}  or  \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ \underline{5} \end{pmatrix}$ | either one of $\lambda$ or $\mu$ correct.                                                                                                                            | A1 cso [4]      |
| Aliter<br>6. (d)<br>Way 2 | If $l_1$ and $l_2$ intersect then: $ \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} $                                                                                                         |                                                                                                                                                                      |                 |
|                           | <b>i</b> : $3 + \lambda = \mu$ (1)<br><b>j</b> : $4 - 2\lambda = 0$ (2)<br><b>k</b> : $1 + 2\lambda = \mu$ (3)                                                                                                                                                                                | <b>Either</b> seeing equation (2) written down correctly with or without any other equation <b>or</b> seeing equations (1) and (3) written down correctly.           | M1√             |
|                           | (2) yields $\lambda = 2$<br>Any two yields $\lambda = 2$ , $\mu = 5$                                                                                                                                                                                                                          | Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of $\lambda$ or $\mu$ correct.                        | dM1             |
|                           | $l_1: \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}  or  \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$                                                | $ \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } 5\mathbf{i} + 5\mathbf{k} $ Fully correct solution & no incorrect values of $\lambda$ or $\mu$ seen earlier. |                 |
|                           |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | [4]<br>11 marks |
|                           |                                                                                                                                                                                                                                                                                               | 111 . 111 . 1 . 1                                                                                                                                                    | 11 marks        |

**Note:** Be careful!  $\lambda$  and  $\mu$  are not defined in the question, so a candidate could interchange these or use different scalar parameters.



| Question            | 0.1                                                                                                                                                                                                                                                                  |                                                                                                                                                                    | ) ( 1      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Number              | Scheme                                                                                                                                                                                                                                                               |                                                                                                                                                                    | Marks      |
| Aliter 6. (d) Way 3 | If $l_1$ and $l_2$ intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$                                                                                |                                                                                                                                                                    |            |
|                     | i: $2 - \lambda = \mu$ (1)<br>j: $6 + 2\lambda = 0$ (2)<br>k: $-1 - 2\lambda = \mu$ (3)                                                                                                                                                                              | <b>Either</b> seeing equation (2) written down correctly with or without any other equation <b>or</b> seeing equations (1) and (3) written down correctly.         | M1 √       |
|                     | (2) yields $\lambda = -3$<br>Any two yields $\lambda = -3$ , $\mu = 5$                                                                                                                                                                                               | Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of $\lambda$ or $\mu$ correct.                      | dM1        |
|                     | $l_1: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}  or  \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ | $\begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } 5\mathbf{i} + 5\mathbf{k}$ Fully correct solution & no incorrect values of $\lambda$ or $\mu$ seen earlier. | A1 cso [4] |
| Aliter 6. (d) Way 4 | If $l_1$ and $l_2$ intersect then: $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$                                                                                 |                                                                                                                                                                    |            |
|                     | i: $3 - \lambda = \mu$ (1)<br>j: $4 + 2\lambda = 0$ (2)<br>k: $1 - 2\lambda = \mu$ (3)                                                                                                                                                                               | <b>Either</b> seeing equation (2) written down correctly with or without any other equation <b>or</b> seeing equations (1) and (3) written down correctly.         | M1√        |
|                     | (2) yields $\lambda = -2$<br>Any two yields $\lambda = -2$ , $\mu = 5$                                                                                                                                                                                               | Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of $\lambda$ or $\mu$ correct.                      | dM1        |
|                     | $l_1: \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} - 2 \begin{pmatrix} -1\\2\\-2 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}  or  \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\5 \end{pmatrix}$                      | $ \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}   or 5\mathbf{i} + 5\mathbf{k} Fully correct solution & no incorrect values of \lambda or \mu seen earlier.$           | A1 cso     |
|                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | [4]        |
|                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | 11 marks   |

Mathematics C4

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel



| Question<br>Number | Scheme                                                                                                                                                                   |                                                                                                                                                                                              | Marks      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 7. (a)             | $\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t+2}$                                                            | Must state $\frac{dx}{dt} = \frac{1}{t+2}$                                                                                                                                                   | B1         |
|                    | Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$ ; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$                                            | Area = $\int \frac{1}{t+1} dx$ . Ignore limits. $\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt$ . Ignore limits.                                                      | M1;        |
|                    | Changing limits, when:<br>$x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$<br>$x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$ | changes limits $x \to t$<br>so that $\ln 2 \to 0$ and $\ln 4 \to 2$                                                                                                                          | B1         |
|                    | Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$                                                                                                                      |                                                                                                                                                                                              | [4]        |
| (b)                | $\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$ $1 = A(t+2) + B(t+1)$                                                                            | $\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found                                                                                                                                       | M1         |
|                    | 1 = A(t+2) + B(t+1)                                                                                                                                                      |                                                                                                                                                                                              |            |
|                    | Let $t = -1$ , $1 = A(1)$ $\Rightarrow \underline{A = 1}$<br>Let $t = -2$ , $1 = B(-1)$ $\Rightarrow \underline{B = -1}$                                                 | Finds both A and B correctly. Can be implied. (See note below)                                                                                                                               | A1         |
|                    | $\int_0^2 \frac{1}{(t+1)(t+2)} dt = \int_0^2 \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$                                                                                       |                                                                                                                                                                                              |            |
|                    | $= \left[\ln(t+1) - \ln(t+2)\right]_0^2$                                                                                                                                 | Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$<br>Both ln terms correctly ft.                                                                                                                   | dM1<br>A1√ |
|                    | $= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$                                                                                                                                    | Substitutes <i>both</i> limits of 2 and 0 and subtracts the correct way round.                                                                                                               | ddM1       |
|                    | $= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$                                                                                                 | $\frac{\ln 3 - \ln 4 + \ln 2 \text{ or } \ln\left(\frac{3}{4}\right) - \ln\left(\frac{1}{2}\right)}{\text{or } \ln 3 - \ln 2 \text{ or } \ln\left(\frac{3}{2}\right)}$ (must deal with ln 1) | A1 aef isw |
|                    |                                                                                                                                                                          | (must dear with iii 1)                                                                                                                                                                       | [6]        |

Takes out brackets.

Writing down 
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$$
 means first M1A0 in (b).

Writing down 
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$$
 means first M1A1 in (b).

Domain: x > 0

(d)

### www.mystudybro.com

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

## Mathematics C4

x > 0 or just > 0

[1]

15 marks

Question Scheme Marks Number  $x = \ln(t+2)$ ,  $y = \frac{1}{t+1}$  $e^x = t + 2 \implies t = e^x - 2$ Attempt to make t = ... the subject M17. (c) giving  $t = e^x - 2$ **A**1 Eliminates t by substituting in ydM1  $y = \frac{1}{e^x - 2 + 1}$   $\Rightarrow$   $y = \frac{1}{e^x - 1}$ giving  $y = \frac{1}{e^x - 1}$ **A**1 [4]  $t+1 = \frac{1}{v} \implies t = \frac{1}{v} - 1 \text{ or } t = \frac{1-y}{v}$ Attempt to make t = ... the subject M1 Aliter 7. (c)  $y(t+1)=1 \implies yt+y=1 \implies yt=1-y \implies t=\frac{1-y}{y}$  Giving either  $t=\frac{1}{y}-1$  or  $t=\frac{1-y}{y}$ Way 2 **A**1  $x = \ln\left(\frac{1}{v} - 1 + 2\right)$  or  $x = \ln\left(\frac{1 - y}{v} + 2\right)$ Eliminates t by substituting in xdM1  $x = \ln\left(\frac{1}{y} + 1\right)$  $e^x - 1 = \frac{1}{y}$ giving  $y = \frac{1}{e^x - 1}$ [4]

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

## **Mathematics C4** edexcel

| Question<br>Number  | Scheme                                                                       |                                                                                                      | Marks    |     |
|---------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|-----|
| Aliter 7. (c) Way 3 | $e^x = t + 2 \implies t + 1 = e^x - 1$                                       | Attempt to make $t + 1 =$ the subject giving $t + 1 = e^x - 1$                                       | M1<br>A1 |     |
|                     | $y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$                           | Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$                                     |          | [4] |
| Aliter 7. (c) Way 4 | $t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$   | Attempt to make $t + 2 =$ the subject<br>Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1+y}{y}$ | M1<br>A1 |     |
|                     | $x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$ | Eliminates $t$ by substituting in $x$                                                                | dM1      |     |
|                     | $x = \ln\left(\frac{1}{y} + 1\right)$                                        |                                                                                                      |          |     |
|                     | $e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$                       |                                                                                                      |          |     |
|                     | $y = \frac{1}{e^x - 1}$                                                      | giving $y = \frac{1}{e^x - 1}$                                                                       |          | [4] |



| Question<br>Number | Scheme                                                                                                                                                                                                                                      |                                                                                                                                         | Marks            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <b>8.</b> (a)      | $\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h}  \text{or}  \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} ,$                                                                                                                       | Either of these statements                                                                                                              | M1               |
|                    | $(V = 4000h \implies) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$                                                                                                                                                                               | $\frac{dV}{dh} = 4000 \text{ or } \frac{dh}{dV} = \frac{1}{4000}$                                                                       | M1               |
|                    | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$                                                        |                                                                                                                                         |                  |
|                    | Either, $\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$<br>or $\frac{dh}{dt} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$ | Convincing proof of $\frac{dh}{dt}$                                                                                                     | A1 <b>AG</b>     |
| (b)                | When $h = 25$ water <i>leaks out such that</i> $\frac{dV}{dt} = 400$                                                                                                                                                                        |                                                                                                                                         | [3]              |
|                    | $400 = c\sqrt{h} \Rightarrow 400 = c\sqrt{25} \Rightarrow 400 = c(5) \Rightarrow c = 80$                                                                                                                                                    |                                                                                                                                         |                  |
|                    | From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required                                                                                                                                                                       | Proof that $k = 0.02$                                                                                                                   | B1 <b>AG</b> [1] |
| Aliter (b) Way 2   | $400 = 4000k\sqrt{h}$                                                                                                                                                                                                                       |                                                                                                                                         |                  |
|                    | $\Rightarrow 400 = 4000k\sqrt{25}$ $\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$                                                                                                                                    | Using 400, 4000 and $h = 25$ or $\sqrt{h} = 5$ . Proof that $k = 0.02$                                                                  | B1 <b>AG</b> [1] |
| (c)                | $\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$                                                                                                                             | Separates the variables with $\int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side with integral signs not necessary. | M1 oe            |
|                    | : time required = $\int_0^{100} \frac{1}{0.4 - 0.02\sqrt{h}} dh = \frac{\div 0.02}{\div 0.02}$                                                                                                                                              |                                                                                                                                         |                  |
|                    | time required = $\int_0^{100} \frac{50}{20 - \sqrt{h}}  \mathrm{d}h$                                                                                                                                                                        | Correct proof                                                                                                                           | A1 AG [2]        |



| Question<br>Number | Scheme                                                                                                                                             |                                                                                                      | Marks      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|
|                    | $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh  \text{with substitution}  h = (20 - x)^2$                                                               |                                                                                                      |            |
|                    | $\frac{dh}{dx} = 2(20-x)(-1)$ or $\frac{dh}{dx} = -2(20-x)$                                                                                        | Correct $\frac{dh}{dx}$                                                                              | B1 aef     |
|                    | $h = (20 - x)^2 \Rightarrow \sqrt{h} = 20 - x \Rightarrow x = 20 - \sqrt{h}$ $\int \frac{50}{20 - \sqrt{h}} dh = \int \frac{50}{x} - 2(20 - x) dx$ | $\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$ | M1         |
|                    | $=100\int \frac{x-20}{x}  \mathrm{d}x$                                                                                                             | J $20 - (20 - x)$<br>where $\lambda$ is a constant                                                   |            |
|                    | $= 100 \int \left(1 - \frac{20}{x}\right) dx$ $= 100(x - 20 \ln x) (+c)$                                                                           | $\pm \alpha x \pm \beta \ln x$ ; $\alpha, \beta \neq 0$                                              | M1         |
|                    | change limits: when $h = 0$ then $x = 20$ and when $h = 100$ then $x = 10$                                                                         | $100x - 2000 \ln x$                                                                                  | A1         |
|                    | $\int_0^{100} \frac{50}{20 - \sqrt{h}}  \mathrm{d}h = \left[ 100  x - 2000 \ln x \right]_{20}^{10}$                                                |                                                                                                      |            |
|                    | or $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh = \left[ 100 \left( 20 - \sqrt{h} \right) - 2000 \ln \left( 20 - \sqrt{h} \right) \right]_0^{100}$    | Correct use of limits, ie. putting them in the correct way round                                     |            |
|                    | $= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$                                                                                                    | Either $x = 10$ and $x = 20$<br>or $h = 100$ and $h = 0$                                             | ddM1       |
|                    | $= 2000 \ln 20 - 2000 \ln 10 - 1000$                                                                                                               | Combining logs to give  2000 ln 2 – 1000                                                             |            |
|                    | $= 2000 \ln 2 - 1000$                                                                                                                              | or $-2000 \ln \left(\frac{1}{2}\right) - 1000$                                                       | A1 aef [6] |
| (e)                | Time required = $2000 \ln 2 - 1000 = 386.2943611 \text{ sec}$                                                                                      |                                                                                                      |            |
|                    | = 386 seconds (nearest second)                                                                                                                     |                                                                                                      |            |
|                    | = 6 minutes and 26 seconds (nearest second)                                                                                                        | 6 minutes, 26 seconds                                                                                | B1 [1]     |
|                    |                                                                                                                                                    |                                                                                                      | 13 marks   |