Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mark Scheme (Results) January 2010

GCE

GCE Core Mathematics C4 (6666/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA022713
All the material in this publication is copyright
© Edexcel Ltd 2010

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

January 2010 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks	
Q1	(a) $(1-8x)^{\frac{1}{2}} = 1 + (\frac{1}{2})(-8x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2}(-8x)^2 + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}(-8x)^3 + \dots$ = $1-4x-8x^2; -32x^3 - \dots$	M1 A1 A1; A1	(4)
	(b) $\sqrt{(1-8x)} = \sqrt{(1-\frac{8}{100})}$	M1	
	$=\sqrt{\frac{92}{100}} = \sqrt{\frac{23}{25}} = \frac{\sqrt{23}}{5} $ * cso	A1	(2)
	(c) $1-4x-8x^2-32x^3=1-4(0.01)-8(0.01)^2-32(0.01)^3$		
	=1-0.04-0.0008-0.000032=0.959168	M1	
	$\sqrt{23} = 5 \times 0.959168$	M1	
	= 4.795 84 cao	A1	(3) [9]

Question Number	Scheme	Marks	S
Q2	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5$ ()	B1	
	$= \dots \left(0 + 2\left(0.608 + 1.386 + 2.291 + 3.296 + 4.385\right) + 5.545\right)$	M1	
	= $0.25(0+2(0.608+1.386+2.291+3.296+4.385)+5.545)$ ft their (a) = $0.25 \times 29.477 \dots \approx 7.37$ cao	A1ft A1	(4)
	(c)(i) $\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$ $= \frac{x^2}{2} \ln x - \int \frac{x}{2} dx$	M1 A1	
	$= \frac{x^2}{2} \ln x - \frac{x^2}{4} (+C)$	M1 A1	
	(ii) $\left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]_1^4 = (8\ln 4 - 4) - \left(-\frac{1}{4}\right)$	M1	
	$=8\ln 4 - \frac{15}{4}$		
	$= 8(2\ln 2) - \frac{15}{4} \qquad \ln 4 = 2\ln 2 \text{ seen or implied}$	M1	
	$= \frac{1}{4} (64 \ln 2 - 15) \qquad a = 64, b = -15$	A1	(7)
	4		[13]

Question Number	Scheme	Marks	
Q3	(a) $-2\sin 2x - 3\sin 3y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{2\sin 2x}{3\sin 3y}$ Accept $\frac{2\sin 2x}{-3\sin 3y}$, $\frac{-2\sin 2x}{3\sin 3y}$	M1 A1	(3)
	(b) At $x = \frac{\pi}{6}$, $\cos\left(\frac{2\pi}{6}\right) + \cos 3y = 1$ $\cos 3y = \frac{1}{2}$ $3y = \frac{\pi}{3} \Rightarrow y = \frac{\pi}{9}$ awrt 0.349	M1 A1 A1 ((3)
	(c) At $\left(\frac{\pi}{6}, \frac{\pi}{9}\right)$, $\frac{dy}{dx} = -\frac{2\sin 2\left(\frac{\pi}{6}\right)}{3\sin 3\left(\frac{\pi}{9}\right)} = -\frac{2\sin \frac{\pi}{3}}{3\sin \frac{\pi}{3}} = -\frac{2}{3}$ $y - \frac{\pi}{9} = -\frac{2}{3}\left(x - \frac{\pi}{6}\right)$	M1 M1	
	Leading to $6x + 9y - 2\pi = 0$		(3) 9]

Question Number	Scheme	Marks
Q4	(a) $A: (-6, 4, -1)$ Accept vector forms	B1 (1)
	(b) $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} = 12 + 4 + 3 = \sqrt{4^2 + (-1)^2 + 3^2} \sqrt{3^2 + (-4)^2 + 1^2} \cos \theta$	M1 A1
	$\cos \theta = \frac{19}{26}$ awrt 0.73	A1 (3)
	(c) X : $(10, 0, 11)$ Accept vector forms	B1 (1)
	(d) $\overrightarrow{AX} = \begin{pmatrix} 10\\0\\11 \end{pmatrix} - \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$ Either order	M1
	$= \begin{pmatrix} 16 \\ -4 \\ 12 \end{pmatrix} $ cao	A1 (2)
	(e) $ \overrightarrow{AX} = \sqrt{16^2 + (-4)^2 + 12^2}$ $= \sqrt{416} = \sqrt{16 \times 26} = 4\sqrt{26}$ * Do not penalise if consistent incorrect signs in (d)	M1 A1 (2)
	(f) $ \frac{4\sqrt{26}}{A} = \cos \theta $ Use of correct right angled triangle $ \frac{ \overrightarrow{AX} }{d} = \cos \theta $ $ d = \frac{4\sqrt{26}}{\frac{19}{26}} \approx 27.9 \text{awrt 27.9} $	M1 M1 A1 (3) [12]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
Q5	(a) $\int \frac{9x+6}{x} dx = \int \left(9 + \frac{6}{x}\right) dx$ $= 9x + 6 \ln x \ (+C)$	M1 A1	(2)
	(b) $\int \frac{1}{y^{\frac{1}{3}}} dy = \int \frac{9x+6}{x} dx$ Integral signs not necessary	B1	
	$\int y^{-\frac{1}{3}} \mathrm{d}y = \int \frac{9x+6}{x} \mathrm{d}x$		
	$\frac{y^{\frac{2}{3}}}{\frac{2}{3}} = 9x + 6\ln x \ (+C) $ $\pm ky^{\frac{2}{3}} = \text{their (a)}$	M1	
	$\frac{3}{2}y^{\frac{2}{3}} = 9x + 6\ln x \ (+C)$ ft their (a)	A1ft	
	y = 8, x = 1		
	$\frac{3}{2}8^{\frac{2}{3}} = 9 + 6\ln 1 + C$	M1	
	C = -3	A1	
	$y^{\frac{2}{3}} = \frac{2}{3} (9x + 6 \ln x - 3)$		
	$y^2 = (6x + 4 \ln x - 2)^3$ $\left(= 8(3x + 2 \ln x - 1)^3 \right)$	A1	(6)
			[8]

Question Number	Scheme	Marks
Q6	$\frac{\mathrm{d}A}{\mathrm{d}t} = 1.5$	B1
	$A = \pi r^2 \implies \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	B1
	When $A = 2$ $2 = \pi r^2 \implies r = \sqrt{\frac{2}{\pi}} \ (= 0.797 \ 884 \dots)$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$	
	$1.5 = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1.5}{2\pi\sqrt{\frac{2}{\pi}}} \approx 0.299$ awrt 0.299	A1
	\ <i>u</i>	[5]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
Q7	(a) $y = 0 \implies t(9-t^2) = t(3-t)(3+t) = 0$		
	t = 0, 3, -3 Any one correct value	B1	
	At $t = 0$, $x = 5(0)^2 - 4 = -4$ Method for finding one value of x	M1	
	At $t = 3$, $x = 5(3)^2 - 4 = 41$		
	(At $t = -3$, $x = 5(-3)^2 - 4 = 41$)		
	At A, $x = -4$; at B, $x = 41$ Both	A1 (3	3)
	(b) $\frac{dx}{dt} = 10t$ Seen or implied	B1	
	$\int y dx = \int y \frac{dx}{dt} dt = \int t \left(9 - t^2\right) 10t dt$	M1 A1	
	$=\int \left(90t^2-10t^4\right)\mathrm{d}t$		
	$=\frac{90t^3}{3} - \frac{10t^5}{5} (+C) \qquad (=30t^3 - 2t^5 (+C))$	A1	
	$\left[\frac{90t^3}{3} - \frac{10t^5}{5}\right]_0^3 = 30 \times 3^3 - 2 \times 3^5 (=324)$	M1	
	$A = 2\int y \mathrm{d}x = 648 \left(\mathrm{units}^2\right)$	A1 (6)	•

Question Number	Scheme	Marks
Q8	(a) $\frac{\mathrm{d}x}{\mathrm{d}u} = -2\sin u$	B1
	$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx = \int \frac{1}{(2\cos u)^2 \sqrt{4 - (2\cos u)^2}} \times -2\sin u du$	M1
	$= \int \frac{-2\sin u}{4\cos^2 u \sqrt{4\sin^2 u}} du \qquad \text{Use of } 1 - \cos^2 u = \sin^2 u$	M1
	$= -\frac{1}{4} \int \frac{1}{\cos^2 u} du \qquad \pm k \int \frac{1}{\cos^2 u} du$	M1
	$= -\frac{1}{4} \tan u \ \left(+C\right) \qquad \qquad \pm k \tan u$	M1
	$x = \sqrt{2} \implies \sqrt{2} = 2\cos u \implies u = \frac{\pi}{4}$	
	$x=1 \implies 1=2\cos u \implies u=\frac{\pi}{3}$	M1
	$\left[-\frac{1}{4} \tan u \right]_{\frac{\pi}{3}}^{\frac{\pi}{4}} = -\frac{1}{4} \left(\tan \frac{\pi}{4} - \tan \frac{\pi}{3} \right)$	
	$=-\frac{1}{4}\left(1-\sqrt{3}\right) \left(=\frac{\sqrt{3}-1}{4}\right)$	A1 (7)
	(b) $V = \pi \int_{1}^{\sqrt{2}} \left(\frac{4}{x(4-x^2)^{\frac{1}{4}}} \right)^2 dx$	M1
	$=16\pi \int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} dx$ 16\pi \text{ integral in (a)}	M1
	$=16\pi\left(\frac{\sqrt{3}-1}{4}\right)$ 16\pi \times \text{ their answer to part (a)}	A1ft (3)
		[10]

Winter 2010

Mathematics C4

6666

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Winter 2010

Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

6666

Mathematics C4

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA022713 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH