This resource was created and owned by Pearson Edexcel

6666

June 2006 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	$\begin{cases} \frac{dy}{dx} \times \\ \frac{dy}{dx} = 0 \end{cases} = 6x - 4y \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} = 0$ $\begin{cases} \frac{dy}{dx} = \frac{6x + 2}{4y + 3} \end{cases}$	Differentiates implicitly to include either $\pm ky\frac{dy}{dx}$ or $\pm 3\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.) Correct equation.	M1 A1
	$\left\{\frac{dy}{dx} = \frac{6x+2}{4y+3}\right\}$	not necessarily required.	
	At (0, 1), $\frac{dy}{dx} = \frac{0+2}{4+3} = \frac{2}{7}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ \text{with}$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient';	M1;
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\ 'ax+by+c=0', \ \ where a, b and c are integers.$	A1 oe cso
			[7]
			7 marks

Beware: $\frac{dy}{dx} = \frac{2}{7}$ does not necessarily imply the award of all the first four marks in this question.

So please ensure that you check candidates' initial differentiation before awarding the first A1 mark.

Beware: The final accuracy mark is for completely correct solutions. If a candidate flukes the final line then they must be awarded A0.

Beware: A candidate finding an m(T) = 0 can obtain A1ft for $m(N) = \infty$, but obtains M0 if they write $y - 1 = \infty(x - 0)$. If they write, however, N: x = 0, then can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write y - 1 = 0(x - 0) or y = 1.

Beware: The final **cso** refers to the whole question.

1. $ \begin{cases} \frac{dx}{dy} \times \end{cases} $) M1 A1
Way 2 Correct equation	
Way 2 $ \left\{ \frac{dx}{dy} = \frac{4y+3}{6x+2} \right\} $ not necessarily required	
At (0, 1), $\frac{dx}{dy} = \frac{4+3}{0+2} = \frac{7}{2}$ Substituting x = 0 & y = 1 into an equation involving $\frac{dx}{dy}$ to give	dM1;
Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$ Uses m(T) or $\frac{dx}{dy}$ to 'correctly' find m(N) Can be ft using "-1. $\frac{dx}{dy}$ "	1 1 1 1 00
$y-1=m(x-0) \text{ wit}$ Either \mathbf{N} : $y-1=-\frac{7}{2}(x-0)$ 'their tangent, $\frac{dx}{dy}$ or normal gradient or \mathbf{N} : $y=-\frac{7}{2}x+1$ or uses $y=mx+1$ with 'their tangent' $\frac{dx}{dy}$ or normal gradient'	; M1;
Correct equation in the form $ax + by + c = 0$ where a, b and c are integers	, A1 oe , cso

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter 1.	$2y^2 + 3y - 3x^2 - 2x - 5 = 0$		
Way 3	$\left(y + \frac{3}{4}\right)^2 - \frac{9}{16} = \frac{3x^2}{2} + X + \frac{5}{2}$		
	$y = \sqrt{\left(\frac{3x^2}{2} + x + \frac{49}{16}\right)} - \frac{3}{4}$		
	dy 1 () Differentiates using the	_	M1;
	$\frac{dy}{dx} = \frac{1}{2} \left(\frac{3x^2}{2} + x + \frac{49}{16} \right)^{-\frac{1}{2}} (3x + 1)$ Correct express	sion for $\frac{dy}{dx}$.	A1 oe
	At (0, 1), $\frac{dy}{dx} = \frac{1}{2} \left(\frac{49}{16}\right)^{-\frac{1}{2}} = \frac{1}{2} \left(\frac{4}{7}\right) = \frac{2}{7}$ Substituting x = 0 into an equation to	involving $\frac{dy}{dx}$; give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1 A1 cso
	Hence $m(\mathbf{N}) = -\frac{7}{2}$ Uses $m(\mathbf{T})$ to 'correctly Can be ft from "their tangents"	• • • • • • • • • • • • • • • • • • • •	A1√
	their tangent or norm or \mathbf{N} : $\mathbf{V} = -\frac{2}{3}\mathbf{X} + 1$ or uses $\mathbf{y} = \mathbf{m}\mathbf{x} + 1$ with 'their		M1
	N : $7x + 2y - 2 = 0$ Correct equation in the form 'ax + where a, b and c		A1 oe
			[7]
		-	7 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4 6666

Question Number	Scheme		Mark	S
2 . (a)	$3x-1\equiv A(1-2x)+B$	Considers this identity and either substitutes $X = \frac{1}{2}$, equates coefficients or solves simultaneous equations	complet	te
	Let $X = \frac{1}{2}$; $\frac{3}{2} - 1 = B$ \Rightarrow $B = \frac{1}{2}$	·		
	Equate x terms; $3 = -2A \implies A = -\frac{3}{2}$	$A=-\frac{3}{2}$; $B=\frac{1}{2}$	A1;A1	
	(No working seen , but A and B correctly stated ⇒ award all three marks. If one of A or B correctly stated give two out of the three marks available for this part.)			[3]
(b)	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1	
	$=-\frac{3}{2}\left\{ \frac{1+(-1)(-2x);+\frac{(-1)(-2)}{2!}(-2x)^2+\frac{(-1)(-2)(-3)}{3!}(-2x)^3+\ldots }{3!} \right\}$	Either 1±2x or 1±4x from either first or second expansions respectively	dM1;	
	$+\frac{1}{2}\left\{ \underbrace{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+\ldots} \right\}$	Ignoring $-\frac{3}{2}$ and $\frac{1}{2}$, any one correct $\left\{ \underline{\dots} \right\}$ expansion. Both $\left\{ \underline{\dots} \right\}$ correct.	A1 A1	
	$= -\frac{3}{2} \left\{ 1 + 2x + 4x^2 + 8x^3 + \ldots \right\} + \frac{1}{2} \left\{ 1 + 4x + 12x^2 + 32x^3 + \ldots \right\}$			
	$= -1 - x ; +0x^2 + 4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1	[6]
			9 mar	ks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4

Question Number	Scheme		Marks
Aliter 2. (b) Way 2	$f(x) = (3x-1)(1-2x)^{-2}$	Moving power to top	M1
way 2	$= (3x-1) \times \left(1 + (-2)(-2x); + \frac{(-2)(-3)}{2!}(-2x)^2 + \frac{(-2)(-3)(-4)}{3!}(-2x)^3 + \dots\right)$	$\begin{array}{c} 1\pm 4x;\\ \text{Ignoring (3x-1), correct}\\ \left(\right)\text{ expansion} \end{array}$	dM1; A1
	$= (3x-1)(1+4x+12x^2+32x^3+)$		
	$= 3x + 12x^2 + 36x^3 - 1 - 4x - 12x^2 - 32x^3 + \dots$	Correct expansion	A1
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]
Aliter 2. (b) Way 3	Maclaurin expansion		
Way 5	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Bringing both powers to top	M1
	$f'(x) = -3(1-2x)^{-2} + 2(1-2x)^{-3}$	Differentiates to give $a(1-2x)^{-2} \pm b(1-2x)^{-3}$; $-3(1-2x)^{-2} + 2(1-2x)^{-3}$	M1; A1 oe
	$f''(x) = -12(1-2x)^{-3} + 12(1-2x)^{-4}$		
	$f'''(x) = -72(1-2x)^{-4} + 96(1-2x)^{-5}$	Correct $f''(x)$ and $f'''(x)$	A1
	f(0) = -1, $f'(0) = -1$, $f''(0) = 0$ and $f'''(0) = 24$		
	gives $f(x) = -1 - x$; $+ 0x^2 + 4x^3 +$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]

[6]

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter 2. (b) Way 4	$f(x) = -3(2-4x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1
nay 4	$=-3\left\{ \begin{aligned} &(2)^{-1}+(-1)(2)^{-2}(-4x);+\frac{(-1)(-2)}{2!}(2)^{-3}(-4x)^2\\ &+\frac{(-1)(-2)(-3)}{3!}(2)^{-4}(-4x)^3+ \end{aligned} \right\}$	Either $\frac{1}{2} \pm x$ or $1 \pm 4x$ from either first or second expansions respectively	dM1;
	$+\frac{1}{2}\left\{ \frac{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+\ldots \right\}$	Ignoring -3 and $\frac{1}{2}$, any one correct $\left\{ \underline{\dots} \right\}$ expansion. Both $\left\{ \underline{\dots} \right\}$ correct.	A1 A1
	$= -3\left\{\frac{1}{2} + x + 2x^2 + 4x^3 +\right\} + \frac{1}{2}\left\{1 + 4x + 12x^2 + 32x^3 +\right\}$		
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
3. (a)	Area Shaded = $\int_{0}^{2\pi} 3 \sin(\frac{x}{2}) dx$		
	$= \left[\frac{-3\cos\left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_0^{2\pi}$	Integrating $3\sin\left(\frac{x}{2}\right)$ to give $k\cos\left(\frac{x}{2}\right) \text{ with } k \neq 1.$ Ignore limits.	M1
	$= \left[-6\cos\left(\frac{x}{2}\right)\right]_0^{2\pi}$	$-6\cos\left(\frac{x}{2}\right) \text{ or } \frac{-3}{\frac{1}{2}}\cos\left(\frac{x}{2}\right)$	A1 oe.
	$= [-6(-1)] - [-6(1)] = 6 + 6 = \underline{12}$	<u>12</u>	A1 cao
	(Answer of 12 with no working scores M0A0A0.)		[3]
(b)	Volume = $\pi \int_{0}^{2\pi} \left(3\sin\left(\frac{x}{2}\right)\right)^2 dx = 9\pi \int_{0}^{2\pi} \sin^2\left(\frac{x}{2}\right) dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	M1
	$\begin{bmatrix} NB: \ \underline{\cos 2x = \pm 1 \pm 2 \sin^2 x} \ \ \text{gives } \sin^2 x = \frac{1 - \cos 2x}{2} \end{bmatrix}$ $\begin{bmatrix} NB: \ \underline{\cos x = \pm 1 \pm 2 \sin^2 \left(\frac{x}{2}\right)} \ \ \text{gives } \sin^2 \left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \end{bmatrix}$	Consideration of the Half Angle Formula for $\sin^2\left(\frac{x}{2}\right)$ or the Double Angle Formula for $\sin^2 x$	M1*
	$\therefore \text{Volume} = 9(\pi) \int_{0}^{2\pi} \left(\frac{1 - \cos x}{2} \right) dx$	Correct expression for Volume Ignore limits and π .	A1
	$=\frac{9(\pi)}{2}\int\limits_0^{2\pi}\frac{(1-\cos x)}{\cos x}dx$		
	$=\frac{9(\pi)}{2}\left[\underline{x-\sin x}\right]_0^{2\pi}$	Integrating to give $\pm ax \pm b \sin x$; Correct integration $k - k \cos x \rightarrow kx - k \sin x$	depM1*;
	$=\frac{9\pi}{2}\big[(2\pi-0)-(0-0)\big]$		
	$=\frac{9\pi}{2}(2\pi)=\frac{9\pi^2}{2}$ or 88.8264	Use of limits to give either 9 π^2 or awrt 88.8 Solution must be completely correct. No flukes allowed.	A1 cso [6]
			9 marks

Question Number	Scheme		Marks
4. (a)	$x = sint$, $y = sin(t + \frac{\pi}{6})$		
	l dv dv	differentiate both x and to give two terms in cos Correct dx/dt and dy/dt	M1 A1
	When $t = \frac{\pi}{6}$, substitution $\cos\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = \frac{1}{2}$ 1 supplies $\cos\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = \frac{1}{2}$ 1 gr	Divides in correct way and utes for t to give any of the four underlined oe: nore the double negative if andidate has differentiated sin → −cos	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	their point $ T: \underline{y - \frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \left(x - \frac{1}{2} \right) $ $ y =$	equation of a tangent with and their tangent gradient or finds c and uses (their gradient)x + "c". XACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3}} \right]$		[6]
(b)	$y = \sin\left(t + \frac{\pi}{6}\right) = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}$ Use of c	ompound angle formula for sine.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$1 \cdot X - SIUI \text{ divide } COSI - 111 - X_2 1$	trig identity to find $\cos t$ in $\cos^2 t$ in terms of x.	M1
	$\therefore y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	gives $y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$ AG sint, or	Substitutes for $\cos \frac{\pi}{6}$, $\cos t$ and $\sin \frac{\pi}{6}$ to give y in terms of x.	A1 cso [3]
			9 marks

Question Number	Scheme		Marks
Aliter 4. (a)	$x = \sin t$, $y = \sin(t + \frac{\pi}{6}) = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}$	(Do not give this for part (b))	
Way 2		Attempt to differentiate x and y wrt t to give $\frac{dx}{dt}$ in terms of cos	M1
		and $\frac{dy}{dt}$ in the form $\pm a \cos t \pm b \sin t$	
	$\frac{dx}{dt} = \cos t, \frac{dy}{dt} = \cos t \cos \frac{\pi}{6} - \sin t \sin \frac{\pi}{6}$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos\frac{\pi}{6}\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\sin\frac{\pi}{6}}{\cos\left(\frac{\pi}{6}\right)}$	Divides in correct way and substitutes for t to give any of the	A1
	$=\frac{\frac{3}{4}-\frac{1}{4}}{\frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	four underlined oe:	,
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c".	dM1
		Correct EXACT equation of <u>tangent</u> oe.	<u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (\frac{1}{2}) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T : $ \left[y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3} \right] $		
			[6]

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter 4. (a)	$y = \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{(1 - x^2)}$		
Way 3	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - x^2\right)^{-\frac{1}{2}} \left(-2x\right)$	Attempt to differentiate two terms using the chain rule for the second term. Correct dy/dx	M1 A1
	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - (0.5)^2\right)^{-\frac{1}{2}} \left(-2(0.5)\right) = \frac{1}{\sqrt{3}}$	Correct substitution of $x = \frac{1}{2}$ into a correct $\frac{dy}{dx}$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (their\ gradient)x + "c"$. Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (\frac{1}{2}) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
Aliter	or T : $\left[\underline{y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3}} \right]$		[6]
4. (b)	$x = sint gives y = \frac{\sqrt{3}}{2} sint + \frac{1}{2} \sqrt{(1 - sin^2 t)}$	Substitutes $x = \sin t$ into the equation give in y.	M1
Way 2	Nb: $\sin^2 t + \cos^2 t = 1 \implies \cos^2 t = 1 - \sin^2 t$		
	$\cos t = \sqrt{\left(1 - \sin^2 t\right)}$	Use of trig identity to deduce that $\cos t = \sqrt{\left(1-\sin^2 t\right)} .$	M1
	gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	Hence $y = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6} = \sin(t + \frac{\pi}{6})$	Using the compound angle formula to prove y = sin $\left(t + \frac{\pi}{6}\right)$	A1 cso [3]
			9 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
5. (a)	Equating i ; $0 = 6 + \lambda \implies \lambda = -6$	$\frac{\lambda = -6}{\text{Can be implied}}$	B1 ⇒ d
	Using $\lambda = -6$ and	Can be implied	
	equating j ; $a = 19 + 4(-6) = -5$	For inserting their stated λ into either a correct j or k component Can be implied.	M1⇒ d
	equating k ; $b = -1 - 2(-6) = 11$	a = -5 and $b = 11$	A1 [3]
	With no working only one of a or b stated correctly gains the first 2 marks both a and b stated correctly gains 3 marks.		[3]
(b)	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{OP} \perp I_1 \Rightarrow \overrightarrow{OP} \bullet d = 0$	Allow this statement for M1 if \overrightarrow{OP} and \mathbf{d} are defined as above.	
	ie. $ \begin{pmatrix} 6+\lambda \\ 19+4\lambda \\ -1-2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = 0 \left(\text{or } \underline{x+4y-2z=0} \right) $	Allow either of these two <u>underlined</u> <u>statements</u>	M1
	$\therefore 6 + \lambda + 4(19 + 4\lambda) - 2(-1 - 2\lambda) = 0$	Correct equation	A1 oe
	$6+\lambda+76+16\lambda+2+4\lambda=0$	Attempt to solve the equation in λ	dM1
	$21\lambda + 84 = 0 \Rightarrow \lambda = -4$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)\mathbf{i} + (19+4(-4))\mathbf{j} + (-1-2(-4))\mathbf{k}$	Substitutes their λ into an expression for $\overrightarrow{\text{OP}}$	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	2i + 3j + 7k or P(2, 3, 7)	A1
			[6]

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter (b) Way 2	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
Way 2	$\overrightarrow{AP} = (6 + \lambda - 0)\mathbf{i} + (19 + 4\lambda + 5)\mathbf{j} + (-1 - 2\lambda - 11)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{AP} \perp \overrightarrow{OP} \Rightarrow \overrightarrow{AP} \bullet \overrightarrow{OP} = 0$	Allow this statement for M1 if \overrightarrow{AP} and \overrightarrow{OP} are defined as above.	
	ie. $ \frac{\begin{pmatrix} 6+\lambda \\ 24+4\lambda \\ -12-2\lambda \end{pmatrix}}{\begin{pmatrix} -1-2\lambda \end{pmatrix}} $	underlined statement	M1
	$\therefore (6+\lambda)(6+\lambda) + (24+4\lambda)(19+4\lambda) + (-12-2\lambda)(-1-2\lambda) = 0$	Correct equation	A1 oe
	$36 + 12\lambda + \lambda^2 + 456 + 96\lambda + 76\lambda + 16\lambda^2 + 12 + 24\lambda + 2\lambda + 4\lambda^2 = 0$	Attempt to solve the equation in λ	dM1
	$21\lambda^2 + 210\lambda + 504 = 0$		
	$\lambda^2 + 10\lambda + 24 = 0 \implies (\lambda = -6) \underline{\lambda = -4}$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)i + (19+4(-4))j + (-1-2(-4))k$	Substitutes their λ into an expression for \overrightarrow{OP}	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	2i + 3j + 7k or $P(2, 3, 7)$	A1
			[6]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
5. (c)	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$		
3. (6)			
	$\overrightarrow{OA} = 0i - 5j + 11k$ and $\overrightarrow{OB} = 5i + 15j + k$		
	$\overrightarrow{AP} = \pm (2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}), \overrightarrow{PB} = \pm (3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k})$ $\overrightarrow{AB} = \pm (5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k})$	Subtracting vectors to find any two of \overrightarrow{AP} , \overrightarrow{PB} or \overrightarrow{AB} ; and both are correctly ft using candidate's \overrightarrow{OA} and \overrightarrow{OP} found in parts (a) and	M1; A1ñ
		(b) respectively.	
	As $\overrightarrow{AP} = \frac{2}{3}(3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{2}{3}\overrightarrow{PB}$	$\overrightarrow{AP} = \frac{2}{3} \overrightarrow{PB}$	
	or $\overrightarrow{AB} = \frac{5}{2}(2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{5}{2}\overrightarrow{AP}$ or $\overrightarrow{AB} = \frac{5}{3}(3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{5}{3}\overrightarrow{PB}$	or $\overrightarrow{AB} = \frac{5}{2} \overrightarrow{AP}$ or $\overrightarrow{AB} = \frac{5}{3} \overrightarrow{PB}$	
	or $\overrightarrow{PB} = \frac{3}{3}(2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{3}{3}\overrightarrow{AP}$	or $\overrightarrow{PB} = \frac{3}{2} \overrightarrow{AP}$	
	or $\overrightarrow{AP} = \frac{2}{5} (5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k}) = \frac{2}{5} \overrightarrow{AB}$	or $\overrightarrow{AP} = \frac{2}{5} \overrightarrow{AB}$	
	or $\overrightarrow{PB} = \frac{3}{5} (5i + 20j - 10k) = \frac{3}{5} \overrightarrow{AB}$ etc	or $\overrightarrow{PB} = \frac{3}{5} \overrightarrow{AB}$	
	alternatively candidates could say for example that $\overrightarrow{AP} = 2(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$ $\overrightarrow{PB} = 3(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$		
	then the points A, P and B are collinear.	A, P and B are collinear Completely correct proof.	A1
	∴ \overrightarrow{AP} : \overrightarrow{PB} = 2:3	2:3 or 1: $\frac{3}{2}$ or $\sqrt{84}$: $\sqrt{189}$ aef	B1 oe
		allow SC $\frac{2}{3}$	[4]
Aliter 5. (c)	At B; $\underline{5=6+\lambda}$, $\underline{15=19+4\lambda}$ or $\underline{1=-1-2\lambda}$ or at B; $\lambda=-1$	Writing down any of the three underlined equations.	M1
Way 2	gives $\lambda = -1$ for all three equations. or when $\lambda = -1$, this gives ${\bm r} = 5{\bm i} + 15{\bm j} + {\bm k}$	$\lambda = -1 \text{for all three equations}$ or $\lambda = -1 \text{ gives } \boldsymbol{r} = 5\boldsymbol{i} + 15\boldsymbol{j} + \boldsymbol{k}$	A1
	Hence B lies on I_1 . As stated in the question both A and P lie on I_1 . \therefore A, P and B are collinear.	Must state B lies on $I_1 \Rightarrow$ A, P and B are collinear	A1
	$\therefore \overrightarrow{AP} : \overrightarrow{PB} = 2:3$	2:3 or aef	B1 oe
			[4]
			13 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4

Question Number			Scheme				Marks
6. (a)							
, ,	X	1	1.5	2	2.5	3	
	у	0	0.5 ln 1.5	In 2	1.5 ln 2.5	2 ln 3	
	or y	0	0.2027325541 	ln2	1.374436098	2 ln 3	
						or awrt 0.20 and 1.37 mixture of decimals and In's)	B1 [1]
(b)(i)	$l_1 \approx \frac{1}{2} \times 1 \times \frac{1}{2}$	(0+2(ln2	$)+2\ln 3$			$\frac{\text{For structure of trapezium}}{\text{rule}\left\{ \right\}};$	M1;
	$=\frac{1}{2}\times 3.$	58351893	88 = 1.79175	59 = 1.79	92 (4sf)	1.792	A1 cao
(ii)	$I_2 \approx \frac{1}{2} \times 0.8$	5 ;×{0+2(0.5ln1.5 + ln2+	1.5ln2.5)	+ 2ln3}	Outside brackets $\frac{1}{2} \times 0.5$ For structure of trapezium rule $\left\{ \underbrace{\dots \dots} \right\}$;	B1; M1√
	$=\frac{1}{4}\times 6$.7378562	42 = 1.6844	64		awrt 1.684	A1 [5]
(c)			ates, <u>the line seg</u> n r to the curve.	nents at the	e top of	Reason or an appropriate diagram elaborating the correct reason.	B1 [1]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4 6666

Question Number	Scheme		Marks
6. (d)	$\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x - 1 & \Rightarrow v = \frac{x^2}{2} - x \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \left(\frac{x^2}{2} - x\right) \ln x - \int \frac{1}{x} \left(\frac{x^2}{2} - x\right) dx$	Correct expression	A1
	$= \left(\frac{x^2}{2} - x\right) \ln x - \underline{\int \left(\frac{x}{2} - 1\right) dx}$	An attempt to multiply at least one term through by $\frac{1}{x}$ and an attempt to	
	$= \left(\frac{x^2}{2} - x\right) \ln x - \left(\frac{x^2}{4} - x\right) (+c)$	integrate;	M1;
		correct integration	A1
	$\therefore I = \left[\left(\frac{x^2}{2} - x \right) \ln x - \frac{x^2}{4} + x \right]_1^3$		
	$= \left(\frac{3}{2}\ln 3 - \frac{9}{4} + 3\right) - \left(-\frac{1}{2}\ln 1 - \frac{1}{4} + 1\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + 0 - \frac{3}{4} = \frac{3}{2} \ln 3 AG$	$\frac{3}{2}$ ln3	A1 cso
			[6]
Aliter 6. (d) Way 2	$\int (x-1)\ln x dx = \int x \ln x dx - \int \ln x dx$		
Way 2	$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$=\frac{x^2}{2} \ln x - \frac{x^2}{4} $ (+ c)	Correct integration	A1
	$\int \ln x dx = x \ln x - \int x \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$= x \ln x - x (+c)$	Correct integration	A1
	$\therefore \int_{1}^{3} (x-1) \ln x dx = \left(\frac{9}{2} \ln 3 - 2\right) - \left(3 \ln 3 - 2\right) = \frac{3}{2} \ln 3 \text{ AG}$	Substitutes limits of 3 and 1 into both integrands and subtracts.	ddM1
		<u>3</u> 2 ln3	A1 cso [6]

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
6. (d) Way 3	$\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = (x - 1) & \Rightarrow v = \frac{(x - 1)^2}{2} \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
way 3	$I = \frac{(x-1)^2}{2} \ln x - \int \frac{(x-1)^2}{2x} dx$	Correct expression	A1
	$= \frac{(x-1)^2}{2} \ln x - \int \frac{x^2 - 2x + 1}{2x} dx$	Candidate multiplies out numerator to obtain three terms	
	$= \frac{(x-1)^2}{2} \ln x - \int (\frac{1}{2}x - 1 + \frac{1}{2x}) dx$	multiplies at least one term through by $\frac{1}{x}$ and then attempts to	
	$= \frac{(x-1)^2}{2} \ln x - \underbrace{\left(\frac{x^2}{4} - x + \frac{1}{2} \ln x\right)}_{\text{(+c)}}$	integrate the result; <u>correct integration</u>	M1;
	$\therefore I = \left[\frac{(x-1)^2}{2} \ln x - \frac{x^2}{4} + x - \frac{1}{2} \ln x \right]_1^3$		
	$= \left(2\ln 3 - \frac{9}{4} + 3 - \frac{1}{2}\ln 3\right) - \left(0 - \frac{1}{4} + 1 - 0\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$=2\ln 3 - \frac{1}{2}\ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2}\ln 3 \mathbf{AG}$	$\frac{3}{2}$ ln 3	A1 cso
			[6]

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter	By substitution		
6. (d)	$u = \ln x$ $\Rightarrow \frac{du}{dx} = \frac{1}{x}$		
Way 4			
	$I = \int (e^u - 1).ue^u du$	Correct expression	
	$= \int \! u \! \left(e^{2u} - e^u \right) \! du$	Use of 'integration by parts' formula in the correct direction	M1
	$= u \left(\frac{1}{2}e^{2u} - e^{u}\right) - \int \left(\frac{1}{2}e^{2u} - e^{u}\right) dx$	Correct expression	A1
	$= u \left(\frac{1}{2} e^{2u} - e^{u} \right) - \left(\frac{1}{4} e^{2u} - e^{u} \right) (+c)$	Attempt to integrate;	M1;
	$ \frac{1}{2} \left(\frac{2}{2} \right) \left(\frac{4}{3} \right) \left(\frac{1}{3} \right) $	correct integration	A1
	$\therefore I = \left[\frac{1}{2} u e^{2u} - u e^{u} - \frac{1}{4} e^{2u} + e^{u} \right]_{ln1}^{ln3}$		
	$= \left(\frac{9}{2} \ln 3 - 3 \ln 3 - \frac{9}{4} + 3\right) - \left(0 - 0 - \frac{1}{4} + 1\right)$	Substitutes limits of In3 and In1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2} \ln 3 AG$	$\frac{3}{2}$ ln3	A1 cso
			[6]
			13 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
7. (a)	From question, $\frac{dS}{dt} = 8$ $\frac{dS}{dt} = 8$	B1
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$ $\frac{dS}{dx} = 12x$	B1
		M1; <u>A1</u> oe
		[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$ $\frac{dV}{dx} = 3x^2$	B1
	$ \frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^2 \cdot \left(\frac{2}{3x}\right); = 2x $ Candidate's $\frac{dV}{dx} \times \frac{dx}{dt}; \lambda x$	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	
		[4]
	Separates the variables with $\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$	
(c)	J V ³	B1
	2 dt on the other side.	
	integral signs not necessary. $\int V^{-\frac{1}{3}} dV = \int 2 dt$	
	Attempts to integrate and	
	$\frac{3}{2}V^{\frac{2}{3}}=2t (+c) \qquad \qquad \qquad \qquad \text{ must see } V^{\frac{4}{3}} \text{ and } 2t; \\ \text{Correct equation with/without + c.}$	M1; A1
	$\frac{3}{2}(8)^{\frac{2}{3}} = 2(0) + c \implies c = 6$ Use of V = 8 and t = 0 in a changed equation containing c; c = 6	M1*; A1
	Hence: $\frac{3}{2}V^{\frac{2}{3}} = 2t + 6$	
	Having found their "c" candidate	depM1
	$\left \begin{array}{c} \frac{3}{2} \left(16\sqrt{2} \right)^{\frac{2}{3}} = 2t + 6 \\ \end{array} \right \Rightarrow 12 = 2t + 6 \\ \end{array} \qquad \begin{array}{c} \text{ substitutes V} = 16\sqrt{2} \text{ into an equation involving V, t and "c".} \end{array}$	*
	giving $t = 3$. $t = 3$	A1 cao [7]
		15 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter 7. (b)	$x = V^{\frac{1}{3}} \& S = 6x^2 \implies S = 6V^{\frac{2}{3}}$	$S=6V^{\frac{2}{3}}$	B1 √
Way 2	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	B1
	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dV}{dS} = 8. \left(\frac{1}{4V^{-\frac{1}{3}}}\right); = \frac{2}{V^{-\frac{1}{3}}} = 2V^{\frac{1}{3}} \text{ AG}$	Candidate's $\frac{dS}{dt} \times \frac{dV}{dS}$; $2V^{\frac{1}{3}}$	M1; A1
		In ePEN, award Marks for Way 2 in the order they appear on this mark scheme.	F 41
			[4]
Aliter		Separates the variables with	
7. (c)	$\int \frac{dV}{2V^{\frac{1}{3}}} = \int 1 dt$	$\int \frac{dV}{2V^{\frac{1}{3}}}$ or $\int \frac{1}{2}V^{-\frac{1}{3}}dV$ oe on one	B1
		side and $\int 1 dt$ on the other side.	
Way 2		integral signs not necessary.	
	$\frac{1}{2}\int V^{-\frac{1}{3}} dV = \int 1 dt$		
		Attempts to integrate and	
	$\frac{1}{2} \int V^{-\frac{1}{3}} dV = \int 1 dt$ $(\frac{1}{2})(\frac{3}{2})V^{\frac{2}{3}} = t \text{ (+c)}$	must see $V^{\frac{2}{3}}$ and t; Correct equation with/without + c.	M1; A1
	$\frac{3}{4}(8)^{\frac{2}{3}} = (0) + c \implies c = 3$	Use of V = 8 and t = 0 in a changed equation containing c ; $c = 3$	M1*; A1
	Hence: $\frac{3}{4}V^{\frac{2}{3}} = t + 3$		
	_	Having found their "c" candidate	
	$\left \frac{3}{4} \left(16\sqrt{2} \right)^{\frac{2}{3}} = t + 3 \qquad \Rightarrow 6 = t + 3$	substitutes $V = 16\sqrt{2}$ into an equation involving V, t and "c".	depM1 *
	giving t = 3.	t = 3	A1 cao [7]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics C4**

Question Number	Scheme		Marks
Aliter	similar to way 1.		
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{dV}{dx} = 3x^2$	B1
Way 3			
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS} = 3x^2.8. \left(\frac{1}{12x}\right); = 2x$	Candidate's $\frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG	Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1
			[4]
Aliter		Congretes the veriables with	
		Separates the variables with	
(c)	$\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$	$\int \frac{dV}{V^{\frac{1}{3}}}$ or $\int V^{-\frac{1}{3}}dV$ on one side and	B1
	•	\int 2 dt on the other side.	
Way 3		integral signs not necessary.	
	$\int V^{-\frac{1}{3}} dV = \int 2 dt$ $V^{\frac{2}{3}} = \frac{4}{3}t \text{ (+c)}$,	
	•	Attempts to integrate and	
	V_{2}^{2} 44 ()	must see $V^{\frac{2}{3}}$ and $\frac{4}{3}$ t;	M1;
	$V^{\circ} = \frac{1}{3} (+c)$	Correct equation with/without + c.	A1
	$(8)^{\frac{2}{3}} = \frac{4}{3}(0) + c \implies c = 4$	Use of V = 8 and t = 0 in a changed equation containing c ; $c = 4$	M1*; A1
	Hence: $V^{\frac{2}{3}} = \frac{4}{3}t + 4$		
		Having found their "c" candidate	
	$(16\sqrt{2})^{\frac{2}{3}} = \frac{4}{3}t + 6$ \Rightarrow $8 = \frac{4}{3}t + 4$	substitutes $V = 16\sqrt{2}$ into an equation involving V, t and "c".	depM1 *
	giving $t = 3$.	t = 3	A1 cao
			[7]