Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6666/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2008 6666 Core Mathematics C4 Mark Scheme

Question			Sch	ieme					Marks
1. (a)	<u> </u>	0 e ⁰	0.4 e ^{0.08}	0.8 e ^{0.32}	1.2 e ^{0.72}	1.6 e ^{1.28}	2 e ²		
	or y	1	1.08329	1.37713	2.05443	3.59664	7.38906		
						av	er e ^{0.32} and e ^{1.28} wrt 1.38 and 3 nixture of e's a decima	.60 and	B1 [1]
							Outside brack $\frac{1}{2} \times 0.4$ or		B1;
(b) Way 1	Area $\approx \frac{1}{2}$	<0.4 ;×[$e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} + e^{0.72}$	$e^{1.28}$ + e^2	ļ	<u>For structure</u> <u>trapezi</u> rule	<u>of</u> um	<u>M1</u> √
	= 0.2 × 24	.612031	64 = 4.92	2406 = <u>4.9</u>	<u>22</u> (4sf)		<u>4.92</u>	<u>22</u>	A1 cao [3]
<i>Aliter</i> (b) Way 2	Area ≈ 0	$.4 \times \left[\frac{e^{0}+1}{2}\right]$	$\frac{e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2}$	$+ + \frac{e^{0.32} + e^{0.72}}{2} +$	$\frac{e^{0.72}+e^{1.28}}{2}+\frac{e^{1.2}}{2}$	$\frac{2^{28}+e^2}{2}$ 0.4 and all terms	l a divisor of 2 s inside bracke	on ets.	B1
Way 2	which is e Area $\approx \frac{1}{2}$		ent to: $e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} + e^{0.72}$	$e^{1.28} + e^{2}$	ordi middle	e of first and l nates, two of t e ordinates ins ts ignoring the	the ide	<u>M1</u> √
	= 0.2 × 24	.612031	64 = 4.92	2406 = <u>4.9</u>	<u>22</u> (4sf)		<u>4.92</u>	<u>22</u>	A1 cao [3]
									4 marks

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for

The M1 mark for structure is for the material found in the curly brackets ie $\int \text{first } y \text{ ordinate} + 2(\text{intermediate ft } y \text{ ordinate}) + \text{final } y \text{ ordinate}$

Question Number	Scheme		Marks
2. (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$\int x e^{x} dx = x e^{x} - \int e^{x} dx$	Use of 'integration by parts' mula in the correct direction. (See note.) Correct expression. (Ignore dx)	M1 A1
	$= x e^x - \int e^x dx$		
	$= x e^{x} - e^{x} (+ c) $	orrect integration with/without $+ c$	A1 [3]
(b)	$\begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$\int x^2 e^x dx = x^2 e^x - \int e^x .2x dx$	e of 'integration by parts' formula in the correct direction . Correct expression. (Ignore dx)	M1 A1
	$= x^2 e^x - 2 \int x e^x dx$		
	$= x^2 e^x - 2\left(x e^x - e^x\right) + c$ Ye	Correct expression including + c. (seen at any stage! in part (b)) ou can ignore subsequent working.	A1 ISW [3]
	$\begin{cases} = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c \\ = e^{x}(x^{2} - 2x + 2) + c \end{cases}$	Ignore subsequent working	[3]
			6 marks

Note integration by parts in the **correct direction** means that u and $\frac{dv}{dx}$ must be assigned/used as u = x and $\frac{dv}{dx} = e^x$ in part (a) for example

+ *c* is not required in part (a).

Question Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0.032$ seen or implied from working.	B1
	$\left\{A = \pi x^2 \implies \frac{dA}{dx} = \right\} 2\pi x$ $2\pi x \text{ by itself seen or implied from working}$	I B I
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032)\frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ 0.032 ÷ Candidate's $\frac{\mathrm{d}A}{\mathrm{d}x};$	M1;
	When $x = 2 \text{ cm}$, $\frac{dx}{dt} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹) awrt 0.00255	A1 cso [4]
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)} \text{ or } \underline{5\pi x^3}$	B1
	$\frac{dV}{dx} = 15\pi x^2$ or ft from candidate's V in one variable	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$ Candidate's $\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t};$	M1 √
	When $x = 2 \text{ cm}$, $\frac{dV}{dt} = 0.24(2) = 0.48 \text{ (cm}^3 \text{ s}^{-1})$ 0.48 or awrt 0.48	A1 cso
		[4]
		8 marks

Question Number	Scheme		Marks
4. (a)	$3x^2 - y^2 + xy = 4$ (eqn *)		
	$\left\{ \underbrace{\underbrace{\mathbf{X}}}_{\mathbf{X}} \times \right\} \underline{\mathbf{6x} - 2y \frac{\mathrm{d}y}{\mathrm{d}x}} + \left(\underbrace{\mathbf{y} + x \frac{\mathrm{d}y}{\mathrm{d}x}}_{\mathbf{x}} \right) = \underline{0}$	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $x \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} =\right)$) Correct application $(\underline{)}$ -of product rule $(3x^2 - y^2) \rightarrow \left(6x - 2y \frac{dy}{dx}\right)$ and $(4 \rightarrow \underline{0})$	M1 B1 <u>A1</u>
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6x - y}{x - 2y}\right\} \text{or} \left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + y}{2y - x}\right\}$	not necessarily required.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	Substituting $\frac{dy}{dx} = \frac{8}{3}$ into their equation.	M1 *
	giving $-18x - 3y = 8x - 16y$		
	giving $13y = 26x$	Attempt to combine either terms in x or terms in y together to give either ax or by .	dM1 *
	Hence, $y = 2x \Rightarrow \underline{y - 2x = 0}$	simplifying to give $y - 2x = 0$ AG	A1 cso [6]
(b)	At P & Q , $y = 2x$. Substituting into eqn *		
	gives $3x^2 - (2x)^2 + x(2x) = 4$	Attempt replacing y by $2x$ in at least one of the y terms in eqn *	M1
	Simplifying gives, $x^2 = 4 \implies \underline{x = \pm 2}$	Either $x = 2$ or $x = -2$	<u>A1</u>
	$y = 2x \implies y = \pm 4$		
	Hence coordinates are $(2,4)$ and $(-2,-4)$	Both $(2,4)$ and $(-2,-4)$	<u>A1</u> [3]
			9 marks

Question Number	Scheme		Marks
	** represents a constant (which must be consistent f	or first accuracy mark)	
	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = \underline{(4)}^{-\frac{1}{2}} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}} = \frac{1}{\underline{2}} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}}$	$(4)^{-\frac{1}{2}}$ or $\frac{1}{2}$ outside brackets	<u>B1</u>
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ with ** \ne 1	Expands $(1 + **x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1 + (-\frac{1}{2})(**x)$; A correct simplified or an un- simplified [] expansion with candidate's followed through (**x)	M1; A1√
	$=\frac{1}{2}\left[\frac{1+(-\frac{1}{2})(-\frac{3x}{4})+\frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^{2}+\dots}{2!}\right]$	Award SC M1 if you see $(-\frac{1}{2})(**x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2$	
	$= \frac{1}{2} \left[1 + \frac{3}{8}x; + \frac{27}{128}x^2 + \dots \right]$	$\frac{\frac{1}{2} \left[1 + \frac{3}{8}x; \dots \right]}{\text{SC: } K \left[1 + \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right]}$ $\frac{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]}{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]}$	
	$\left\{=\frac{1}{2}+\frac{3}{16}x;+\frac{27}{256}x^2+\ldots\right\}$	Ignore subsequent working	
(b)	$(x+8)\left(\frac{1}{2} + \frac{3}{16}x + \frac{27}{256}x^2 + \dots\right)$	Writing (x+8) multiplied by candidate's part (a) expansion.	[5] M1
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^{2} + \dots}{4 + \frac{3}{2}x + \frac{27}{32}x^{2} + \dots}$	Multiply out brackets to find a constant term, two x terms and two x^2 terms.	M1
	$= 4 + 2x; + \frac{33}{32}x^2 + \dots$	Anything that cancels to $4 + 2x; \frac{33}{32}x^2$	↓ ↓A1; A1
			[4]
			9 marks

Question Number	Scheme		Marks
6. (a)	Lines meet where:		
	$\begin{pmatrix} -9\\0\\10 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} + \mu \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$		
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\lambda = 3 \& \mu = -2$	A1
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line l_1 or l_2 respectively. This mark can be implied by any two correct components of $(-3, 3, 7)$.	ddM1
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = \underline{-3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$	$ \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} \text{ or } \underline{-3\mathbf{i}+3\mathbf{j}+7\mathbf{k}} $ or $(-3,3,7)$	A1
	Either check k: $\lambda = 3$: LHS = 10 - $\lambda = 10 - 3 = 7$ $\mu = -2$: RHS = 17 + 5 $\mu = 17 - 10 = 7$	Either check that $\lambda = 3$, $\mu = -2$ in a third equation or check that $\lambda = 3$, $\mu = -2$ give the same coordinates on the other line. Conclusion not needed.	B1
	(As LHS = RHS then the lines intersect.)	conclusion not needed.	[6
(b)	$\mathbf{d}_{1} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} , \mathbf{d}_{2} = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$ As $\mathbf{d}_{1} \bullet \mathbf{d}_{2} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \underline{(2 \times 3) + (1 \times -1) + (-1 \times 5)} = 0$ Then l_{1} is perpendicular to l_{2} .	Dot product calculation between the <i>two direction vectors</i> : $\frac{(2\times3)+(1\times-1)+(-1\times5)}{\text{ or } 6-1-5}$ Result '=0' and appropriate conclusion	M1 A1 [2

Question Number	Scheme		Marks
6. (c)	Equating i; $-9 + 2\lambda = 5 \implies \lambda = 7$ $\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 7 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 5\\7\\3 \end{pmatrix}$ $(= \overrightarrow{OA}.$ Hence the point A lies on l_1 .)	Substitutes candidate's λ = 7 into the line l_1 and finds $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. The conclusion on this occasion is not needed.	B1 [1]
(d)	Let $\overrightarrow{OX} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3\\3\\7 \end{pmatrix} - \begin{pmatrix} 5\\7\\3 \end{pmatrix} = \begin{pmatrix} -8\\-4\\4 \end{pmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$	Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \pm \left(\begin{pmatrix} -3\\ 3\\ 7 \end{pmatrix} - \begin{pmatrix} 5\\ 7\\ 3 \end{pmatrix} \right)$	M1√ ±
	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{2AA}$ $\overrightarrow{OB} = \begin{pmatrix} 5\\7\\3 \end{pmatrix} + 2 \begin{pmatrix} -8\\-4\\4 \end{pmatrix}$	$\begin{pmatrix} 5\\7\\3 \end{pmatrix} + 2 \left(\text{their } \overline{AX} \right)$	dM1√
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$	$ \begin{pmatrix} -11\\ -1\\ 11 \end{pmatrix} \text{ or } \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}} $ or $\underline{(-11, -1, 11)}$	A1
			[3] 12 marks

Question Number	Scheme		Marks
7. (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$		
	$2 \equiv A(2+y) + B(2-y)$	Forming this identity. NB: A & B are not assigned in this question	M1
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$		
	Let $y = 2$, $2 = A(4) \implies A = \frac{1}{2}$	Either one of $A = \frac{1}{2}$ or $B = \frac{1}{2}$	A1
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$	$\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef	<u>A1</u> cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)		[3]

Question	Cabama		Marks
Number	Scheme		_
7. (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} \mathrm{d}y = \int \tan x \mathrm{d}x$		
		$\ln(\sec x)$ or $-\ln(\cos x)$	B1
		Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$	M1;
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	their $\int \frac{1}{\cot x} dx =$ LHS correct with ft	_
		for their A and B and no error with the "2" with or without $+c$	A1 √
		Use of $y = 0$ and $x = \frac{\pi}{3}$ in an	
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2}\ln 2 + \frac{1}{2}\ln 2 = \ln\left(\frac{1}{\cos(\frac{\pi}{3})}\right) + c$	integrated equation containing c	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$\ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right)$		
	$\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2$	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\sec^2 x = \frac{8+4y}{2-y}$	$\frac{\sec^2 x = \frac{8+4y}{2-y}}{2-y}$	
			[8]
			11 marks

Question Number	Scheme		Marks
8. (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3} = 4\sin 2t}$	$\underline{4 = 8\cos t} \text{or} 2\sqrt{3} = 4\sin 2t$	M1
	\Rightarrow only solution is $t = \frac{\pi}{3}$ where 0,, t ,, $\frac{\pi}{2}$	$\frac{t = \frac{\pi}{3}}{\text{ stated in the range } 0,, t, \frac{\pi}{2}}$	A1 [2]
(b)	$x = 8\cos t , \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t , \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1 A1
	At P, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{dy}{dx}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method marks are dependent on M1*	
	Hence m(N) = $-\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N: $y - 2\sqrt{3} = -\sqrt{3}(x-4)$	Uses $y - 2\sqrt{3} = (\text{their } m_N)(x - 4)$ or finds c using $x = 4$ and $y = 2\sqrt{3}$ and uses $y = (\text{their } m_N)x + "c"$.	dM1*
	N: $y = -\sqrt{3}x + 6\sqrt{3}$ AG	$y = -\sqrt{3}x + 6\sqrt{3}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$ so N: $[y = -\sqrt{3}x + 6\sqrt{3}]$		
	$\sum_{j=1}^{\infty} \left[\sum_{j=1}^{j} \sqrt{2\lambda + 0} \sqrt{2} \right]$		[6]

6666

Question	Scheme		Marks
8. (c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4\sin 2t \cdot (-8\sin t) dt$	attempt at $A = \int \underline{y} \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t . \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) . \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64.\sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64.\sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 AG
			[4]
(d)	{Using substitution $u = \sin t \implies \frac{du}{dt} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ & when $t = \frac{\pi}{2}$, $u = 1$ }		
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ or $A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	Substitutes limits of either $\left(t = \frac{\pi}{2} \text{ and } t = \frac{\pi}{3}\right)$ or $\left(u = 1 \text{ and } u = \frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round.	dM1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	$\frac{\frac{64}{3} - 8\sqrt{3}}{\frac{1}{3}}$ Aef in the form $a + b\sqrt{3}$, with awrt 21.3 and anything that cancels to $a = \frac{64}{3}$ and	A1 aef isw [4]
	(Note that $a = \frac{64}{3}$, $b = -8$)	b=-8.	
			16 marks