Mathematics C1

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663 6663 Core Mathematics C1 Mark Scheme

Question number		Scheme	Marks
1.	$x(x^{2} - 4x + 3)$ $= x(x - 3)(x - 1)$	Factor of x . (Allow $(x-0)$) Factorise 3 term quadratic	M1 M1 A1
			(3) Total 3 marks
2.	(a) $u_2 = (-2)^2 = 4$		B1
	(a) $u_2 = (-2)^2 = 4$ $u_3 = 1, u_4 = 4$	For u_3 , ft $(u_2 - 3)^2$	B1ft, B1
			(3)
	(b) $u_{20} = 4$		B1ft
			(1)
			Total 4 marks
3.	(a) $y = 5 - (2 \times 3) = -1$	(or equivalent verification) (*)	B1 (1)
	(b) Gradient of L is $\frac{1}{2}$		B1
	$y - (-1) = \frac{1}{2}(x - 3)$	(ft from a <u>changed</u> gradient)	M1 A1ft
	x - 2y - 5 = 0	(or equiv. with integer coefficients)	A1
			(4)
			Total 5 marks

www.mystudybro.com

Mathematics C1

Past Paper (Mark Scheme) January 2006 This resource was created and owned by Pearson Edexcel 6663 Core Mathe

Pearson Edexcel 6663 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
4.	(a) $\frac{dy}{dx} = 4x + 18x^{-4}$ M1: $x^2 \to x \text{ or } x^{-3} \to x^{-4}$	M1 A1
		(2)
	(b) $\frac{2x^3}{3} - \frac{6x^{-2}}{-2} + C$ M1: $x^2 \to x^3 \text{ or } x^{-3} \to x^{-2} \text{ or } +$	- C M1 A1 A1
		(3)
	$\left(= \frac{2x^3}{3} + 3x^{-2} + C \right)$ First A1: $\frac{2x^3}{3} + C$	
	Second A1: $-\frac{6x^{-2}}{-2}$	
		Total 5 marks

5. (a)
$$3\sqrt{5}$$
 (or $a = 3$)

(b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$

(1) M1

(3- $\sqrt{5}$)(3+ $\sqrt{5}$) = 9-5 (= 4) (Used as or intended as denominator)

(3+ $\sqrt{5}$)(p ± q $\sqrt{5}$) = ... 4 terms (p ≠ 0, q ≠ 0) (Independent)

or (6+2 $\sqrt{5}$)(p ± q $\sqrt{5}$) = ... 4 terms (p ≠ 0, q ≠ 0)

[Correct version: (3+ $\sqrt{5}$)(3+ $\sqrt{5}$) = 9+3 $\sqrt{5}$ +3 $\sqrt{5}$ +5, or double this.]

$$\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$$
1st A1: b = 7, 2nd A1: c = 3

A1 A1

(5)

Past Paper (Mark Scheme) January 2006 This resource was created and owned by Pearson Edexcel 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
6.	(a) (See below)	M1
	\setminus Clearly through origin (or $(0, 0)$ seen)	A1
	3 labelled (or (3, 0) seen)	A1 (3)
	(b) \ ↑	
	Stretch parallel to y-axis	M1
	1 and 4 labelled (or $(1, 0)$ and $(4, 0)$ seen)	A1
	6 labelled (or (0, 6) seen)	A1 (3)
	(c) Stretch parallel to <i>x</i> -axis	M1
	2 and 8 labelled (or (2, 0) and (8, 0) seen)	A1
	3 labelled (or (0, 3) seen)	A1
		(3)
		Total 9 marks

7. (a)
$$500 + (500 + 200) = 1200$$
 or $S_2 = \frac{1}{2}2\{1000 + 200\} = 1200$ (*) B1 (1) (b) Using $a = 500$, $d = 200$ with $n = 7$, 8 or 9 $a + (n-1)d$ or "listing" M1 A1 (2) (c) Using $\frac{1}{2}n\{2a + (n-1)d\}$ or $\frac{1}{2}n\{a + l\}$, or listing and "summing" terms M1 $S_8 = \frac{1}{2}8\{2 \times 500 + 7 \times 200\}$ or $S_8 = \frac{1}{2}8\{500 + 1900\}$, or all terms in list correct A1 $= (\pounds)9600$ A1 (3) (d) $\frac{1}{2}n\{2 \times 500 + (n-1) \times 200\} = 32000$ M1: General S_n , equated to 32000 M1 A1 $n^2 + 4n - 320 = 0$ (or equiv.) M1: Simplify to 3 term quadratic M1 A1 $(n + 20)(n - 16) = 0$ $n = ...$ M1: Attempt to solve 3 t.q. M1 A1 A1cso,A1cso (7) Total 13 marks

Mathematics C1

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel 6663 Core Mathematics C1 Mark Scheme

6663

Question number	Scheme	Marks
8.	$\frac{5x^2 + 2}{x^{\frac{1}{2}}} = 5x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$ M1: One term correct.	M1 A1
	A1: Both terms correct, and no extra terms.	
	$f(x) = 3x + \frac{5x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}$ (+ C not required here)	M1 A1ft
	6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in C	M1
	C = -3	Alcso
	$3x + 2x^{\frac{5}{2}} + 4x^{\frac{1}{2}} - 3$ (simplified version required)	A1 (ft <i>C</i>) (7)
	[or: $3x + 2\sqrt{x^5} + 4\sqrt{x} - 3$ or equiv.]	
		Total 7 marks

9.	(a) $-2(P)$, $2(Q)$ ($\pm 2 \text{ scores B1 B1}$)		B1, B1	(2)
	(b) $y = x^3 - x^2 - 4x + 4$ (May be seen earlier) Multiply out, giving 4	terms	M1	(2)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 4$	(*)	M1 A1cso	
				(3)
	(c) At $x = -1$: $\frac{dy}{dx} = 3(-1)^2 - 2(-1) - 4 = 1$			
	Eqn. of tangent: $y-6 = 1(x-(-1)),$ $y = x+7$	(*)	M1 A1cso	(2)
	(d) $3x^2 - 2x - 4 = 1$ (Equating to "gradient of tangent")		M1	(2)
	$3x^2 - 2x - 5 = 0 (3x - 5)(x + 1) = 0 x = \dots$		M1	
	$x = \frac{5}{3}$ or equiv.		A1	
	$y = \left(\frac{5}{3} - 1\right)\left(\frac{25}{9} - 4\right), = \frac{2}{3} \times \left(-\frac{11}{9}\right) = -\frac{22}{27}$ or equiv.		M1, A1	
				(5)
			Total 12 m	arks

Mathematics C1 6663

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme		Marks	
10.	(a) $x^2 + 2x + 3 = (x+1)^2$, +2 (b)	(a = 1, b = 2) "U"-shaped parabola Vertex in correct quadrant (ft from $(-a, b)$ $(0, 3)$ (or 3 on y-axis)	B1, B1 M1 A1ft B1	(2)
	(c) $b^2 - 4ac = 4 - 12 = -8$ Negative, so curve does not cro (d) $b^2 - 4ac = k^2 - 12$ $k^2 - 12 < 0$ (Corr $-\sqrt{12} < k < \sqrt{12}$ (or -	(May be within the quadratic formula) rect inequality expression in any form)	B1 B1 M1 A1 M1 A1	(2)
			Total 11 n	narks