Past Paper (Mark Scheme)

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6663/01)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2009 6663 Core Mathematics C1 **Mark Scheme**

Question Number		Scheme	Ma	arks
1	(a)	$5 (\pm 5 \text{ is B0})$	B1	(1)
	(b)	$\frac{1}{\left(\text{their 5}\right)^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$	M1	
		$= \frac{1}{25} \text{ or } 0.04 \qquad (\pm \frac{1}{25} \text{ is A0})$	A1	(2) [3]
	(b)	M1 follow through their value of 5. Must have reciprocal and square.		
		5^{-2} is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this.		
		A negative introduced at any stage can score the M1 but not the A1,		
		e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0		
		$125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0.		
		Correct answer with no working scores both marks.		
		Alternative: $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{\left(125^2\right)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared) $\left(=\frac{1}{\sqrt[3]{15625}}\right)$		
		$=\frac{1}{25} \qquad A1$		

Past Paper (Mark Scheme)

Mathematics C1

6663

Question Number	Scheme	Marks
	Scheme $ (I =) \frac{12}{6}x^6 - \frac{8}{4}x^4 + 3x + c $ $ = 2x^6 - 2x^4 + 3x + c $ M1 for an attempt to integrate $x^n \to x^{n+1}$ (i.e. ax^6 or ax^4 or ax , where a is any non-zero constant). Also, this M mark can be scored for just the $+c$ (seen at some stage), even if no other terms are correct. 1st A1 for $2x^6$ 2^{nd} A1 for $-2x^4$ 3^{rd} A1 for $3x + c$ (or $3x + k$, etc., any appropriate letter can be used as the constant) Allow $3x^1 + c$, but $not = 3x^1 + c$. Note that the A marks can be awarded at separate stages, e.g. $ \frac{12}{6}x^6 - 2x^4 + 3x \qquad \text{scores } 2^{nd}$ A1	Marks M1 A1A1A1 [4]
	$\frac{12}{6}x^6 - 2x^4 + 3x + c \text{scores } 3^{\text{rd}} \text{ A1}$ $2x^6 - 2x^4 + 3x \text{scores } 1^{\text{st}} \text{ A1 (even though the } c \text{ has now been lost)}.$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^6 - 2x^4 + 3x + c dx.$	

6663

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
3	$\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2, \text{ or } 7 - 4 \text{ or an exact equivalent such as } \sqrt{49} - 2^2$ $= 3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. e.g. $7+2\sqrt{7}-2\sqrt{7}-2$ is M1 (one wrong term -2) $7+2\sqrt{7}+2\sqrt{7}+4$ is M1 (two wrong signs $+2\sqrt{7}$ and $+4$) $7+2\sqrt{7}+2\sqrt{7}+2$ is M1 (one wrong term $+2$, one wrong sign $+2\sqrt{7}$) $\sqrt{7}+2\sqrt{7}-2\sqrt{7}+4$ is M1 (one wrong term $\sqrt{7}$, one wrong sign $+4$) $\sqrt{7}+2\sqrt{7}-2\sqrt{7}-2$ is M0 (two wrong terms $\sqrt{7}$ and -2) $7+\sqrt{14}-\sqrt{14}-4$ is M0 (two wrong terms $\sqrt{14}$ and $-\sqrt{14}$) If only 2 terms are given, they must be correct, i.e. $(7-4)$ or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks.	

Past Paper (Mark Scheme)

Mathematics C1

_	_		
æ	æ	につ	
- C)	r)	เวเว	

Question Number	Scheme	Mark	ΚS
4	$\left(f(x) = \right) \frac{3x^3}{3} - \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - 7x(+c)$	M1	
	$= x^{3} - 2x^{\frac{3}{2}} - 7x (+c)$ $f(4) = 22 \implies 22 = 64 - 16 - 28 + c$ $c = 2$	A1A1 M1 A1cso	(5) [5]
	1st M1 for an attempt to integrate (x^3 or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the + c is insufficient. 1st A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) 2nd A1 for all three x terms correct and simplified (the simplification may be seen later). The + c is not required for this mark. Allow $-7x^1$, but $\underline{\text{not}} - \frac{7x^1}{1}$. 2nd M1 for an attempt to use $x = 4$ and $y = 22$ in a changed function (even if differentiated) to form an equation in c . 3rd A1 for $c = 2$ with no earlier incorrect work (a final expression for $f(x)$ is not required).		

Question Number	Scheme	Marks	
5 (a)	Shape \nearrow , touching the <i>x</i> -axis at its maximum. Through $(0,0)$ & -3 marked on <i>x</i> -axis, or $(-3,0)$ seen. Allow $(0,-3)$ if marked on the <i>x</i> -axis. Marked in the correct place, but 3, is A0. Min at $(-1,-1)$	M1 A1	(3)
(b)	Correct shape \bigvee (top left - bottom right) Through -3 and max at $(0, 0)$. Marked in the correct place, but 3, is B0. Min at $(-2,-1)$	B1 B1 B1	(3) (6]
(a)	M1 as described above. Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 1 st A1 for curve passing through -3 and the origin. Max at (-3,0) 2 nd A1 for minimum at (-1,-1). Can simply be indicated on sketch.		
(b)	1st B1 for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 2nd B1 for curve passing through (-3,0) having a max at (0,0) and no other max. 3rd B1 for minimum at (-2,-1) and no other minimum. If in correct quadrant but labelled, e.g. (-2,1), this is B0. In each part the (0,0) does not need to be written to score the second mark having the curve pass through the origin is sufficient. The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, (-2,-1) marked in the wrong quadrant). The mark for the minimum is not given for the coordinates just marked on the axes unless these are clearly linked to the minimum by vertical and horizontal lines.		

Question Number	Scheme	Marks
	$2x^{\frac{3}{2}} \qquad \text{or} p = \frac{3}{2} \qquad (\underline{\text{Not}} \ 2x\sqrt{x} \)$	B1
(b)	$ \begin{vmatrix} -x & \text{or } -x^1 & \text{or } q = 1 \\ \left(\frac{dy}{dy} - \right) & 20x^3 + 2 \times \frac{3}{2} \frac{x^{1/2}}{2} - 1 $	B1 (2)
	$2x^{\frac{3}{2}} \qquad \text{or} p = \frac{3}{2} \qquad (\underline{\text{Not}} \ 2x\sqrt{x} \)$ $-x \text{or} -x^{1} \text{or} q = 1$ $\left(\frac{dy}{dx} = \right) 20x^{3} + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1$ $= \underline{20x^{3} + 3x^{\frac{1}{2}} - 1}$	A1A1ftA1ft (4) [6]
(a)	$1^{\text{st}} B1$ for $p = 1.5$ or exact equivalent $2^{\text{nd}} B1$ for $q = 1$	
(b)	M1 for an attempt to differentiate $x^n \to x^{n-1}$ (for any of the 4 terms) 1^{st} A1 for $20x^3$ (the -3 must 'disappear') 2^{nd} A1ft for $3x^{\frac{1}{2}}$ or $3\sqrt{x}$. Follow through their p but they must be differentiating $2x^p$, where p is a fraction, and the coefficient must be simplified if necessary. 3^{rd} A1ft for -1 (not the unsimplified $-x^0$), or follow through for correct differentiation of their $-x^q$ (i.e. coefficient of x^q is -1). If the is applied, the coefficient must be simplified if necessary. Simplified coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single $+$ or $-$ sign is allowed (e.g. $-$ must be replaced by $+$). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Multiplying by \sqrt{x} : (assuming this is a restart) e.g. $y = 5x^4\sqrt{x} - 3\sqrt{x} + 2x^2 - x^{\frac{3}{2}}$ $\left(\frac{dy}{dx} = \right)\frac{45}{2}x^{\frac{7}{2}} - \frac{3}{2}x^{-\frac{1}{2}} + 4x - \frac{3}{2}x^{\frac{1}{2}}$ scores M1 A0 A0 (p not a fraction) A1ft. Extra term included: This invalidates the final mark. e.g. $y = 5x^4 - 3 + 2x^2 - x^{\frac{3}{2}} - x^{\frac{1}{2}}$ scores M1 A1 A0 (p not a fraction) A0. Numerator and denominator differentiated separately: For this, neither of the last two (ft) marks should be awarded. Quotient/product rule: Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

7 (a) $b^2 - 4ac > 0 \Rightarrow 16 - 4k(5 - k) > 0$ or equiv., e.g. $16 > 4k(5 - k) > 0$ or equiv., e.g. $16 > 4k(5 - k) > 0$ (b) Critical Values $(k - 4)(k - 1) = 0$ $k =$	$k + k^2 > 0 $ (*)	M1A1	
(b) Critical Values $(k-4)(k-1)=0$ $k=$		A1cso	(3)
k = 1 or 4		M1 A1	
.,	Choosing "outside" region	M1	
$\underline{k} < 1 \text{ or } k > 4$		A1	(4) [7]
For this question, ignore (a) and (b) labels and award marks	wherever correct work is see	en.	
M1 for attempting to use the discriminant of the initial equation of a , b and c in the correct formula is required). If the formula $b^2 - 4ac$ is seen, at least 2 of a , b and c . If the formula $b^2 - 4ac$ is not seen, all 3 (a , b and c) and c and	c must be correct. must be correct. ac is within the quadratic for $4ac$ (with substitution). with > symbol. NB must approximate $b^2 - 4ac > 0$ or 'discriminate equent work is correct and coing seen. convincing.	ormula. Dear befor ant positiv	re ve'.
 (b) 1st M1 for attempt to solve an appropriate 3TQ 1st A1 for both k = 1 and 4 (only the critical values are requested 2nd M1 for choosing the "outside" region. A diagram or tab Follow through their values of k. The set of values must be 'narrowed down' to score k < 1, 1 < k < 4, k > 4 is M0. 2nd A1 for correct answer only, condone "k < 1, k > 4" and but "1 > k > 4" is A0. ** Often the statement k > 1 and k > 4 is followed by the corested in part (b), condone working with x's except for the final mathematical of values of k (i.e. 3 marks out of 4). Use of ≤ (or ≥) in the final answer loses the final mark. 	uired, so accept, e.g. $k > 1$ and the alone is not sufficient. It this M mark listing every lieven " $k < 1$ and $k > 4$ ", The rect final answer. Allow full by implication.	thing I marks.	

_	stion nber	Scheme	Mar	·ks	
8	(a)	$(a=) (1+1)^2 (2-1) = 4$ (1, 4) or $y = 4$ is also acceptable	B1	(1)	
	(b)	(i) Shape \(\sqrt{\sq}}}}}}}}}}}}}} \signtimes\signtimes\sqnt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}} \signtimes\signtimes\sqnt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \signtimes\signtimes\sq\sintittand{\signt{\sqrt{\sq}}}}}}}}}} \simes\simptinititin}}}	B1		
		Min at $(-1,0)$ can be -1 on x -axis. Allow $(0,-1)$ if marked on the x -axis. Marked in the correct place, but 1, is B0.	B1		
		(2, 0) and $(0, 2)$ can be 2 on axes	B1		
		(ii) Top branch in 1 st quadrant with 2 intersections	B1		
		Bottom branch in 3 rd quadrant (ignore any intersections)	B1	(5)	
	(c)	(2 intersections therefore) <u>2</u> (roots)	B1ft	(1) [7]	
	(b)	1 st B1 for shape or Can be anywhere, but there must be one max. and one min. a further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line seg but there must be a discernible 'curve' at the max. and min. 2 nd B1 for minimum at (-1,0) (even if there is an additional minimum point shown) 3 rd B1 for the sketch meeting axes at (2,0) and (0, 2). They can simply mark 2 on the axes The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsew			
		4 th B1 for the branch fully within 1 st quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the a appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these:			
		5 th B1 for a branch fully in the 3 rd quadrant (ignore any intersections with the other curve for branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the appears to turn 'inwards' rather than approaching the axes.			
	(c)	B1ft for a statement about the number of roots - compatible with their sketch. No sketch answer 2 <u>incompatible with the sketch</u> is B0 (ignore any algebra seen). If the sketch shows the 2 correct intersections <u>and</u> , for example, one other intersections answer here should be 3, not 2, to score the mark.			

6663

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

-	stion nber	Scheme	Mar	ks
9	(a) (b)	a + 17d = 25 or equiv. (for 1 st B1), $a + 20d = 32.5$ or equiv. (for 2 nd B1), Solving (Subtract) $3d = 7.5$ so $d = 2.5$ $a = 32.5 - 20 \times 2.5$ so $a = -17.5$ (*)	B1, B1 M1 A1cso	(2)
	(c)	$2750 = \frac{n}{2} \left[-35 + \frac{5}{2} (n-1) \right]$ $\{ 4 \times 2750 = n(5n-75) \}$ $4 \times 550 = n(n-15)$ $\underline{n^2 - 15n = 55 \times 40} \qquad (*)$	M1A1ft M1 A1cso	(4)
	(d)	$n^{2}-15n-55\times40=0$ or $n^{2}-15n-2200=0$ (n-55)(n+40)=0 $n=\underline{n=55} (ignore - 40)$	M1 M1 A1	(3) [11]
	(a)	Mark parts (a) and (b) as 'one part', ignoring labelling. Alternative: $1^{\text{st}} B1: d = 2.5$ or equiv. or $d = \frac{32.5 - 25}{3}$. No method required, but $a = -17.5$ must not	t be assu	med.
	(b) 2 nd B1: Either $a + 17d = 25$ or $a + 20d = 32.5$ seen, or used with a value of d or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms. M1: In main scheme: for a full method (allow numerical or sign slips) leading to solut without assuming $a = -17.5$ In alternative scheme: for using a d value to find a value for a .			
		A1: Finding correct values for both a and d (allowing equiv. fractions such as $d = \frac{15}{6}$), incorrect working seen.	with no	
	(c)	In the main scheme, if the given a is used to find d from one of the equations, then allow both values are <u>checked</u> in the 2^{nd} equation.	w M1A1	if
	 1st M1 for attempt to form equation with correct S_n formula and 2750, with values 1st A1ft for a correct equation following through their d. 2nd M1 for expanding and simplifying to a 3 term quadratic. (d) 2nd A1 for correct working leading to printed result (no incorrect working seen). 1st M1 forming the correct 3TQ = 0. Can condone missing "= 0" but all terms must First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it 2nd M1 for attempt to solve 3TQ, by factorisation, formula or completing the square 		e on one o be scor	side. ed). al
		marking principles at end of scheme). If this mark is earned for the 'completing method or if the factors are written down directly, the 1 st M1 is given by implic A1 for <i>n</i> = 55 dependent on both Ms. Ignore – 40 if seen. No working or 'trial and improvement' methods in (d) score all 3 marks for the answer otherwise no marks.	ation.	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

Ques Num		Scheme	Mark	s
10	(a)	$y-5 = -\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2} = -\frac{1}{2}$, $y = -\frac{1}{2}x+6$	M1A1, A1cao	(3)
	(b)	$x = -2 \Rightarrow y = -\frac{1}{2}(-2) + 6 = 7$ (therefore <i>B</i> lies on the line)	B1	(1)
	(c)	(or equivalent verification methods) $(AB^2 =) (2-2)^2 + (7-5)^2$, $= 16+4=20$, $AB = \sqrt{20} = 2\sqrt{5}$	M1, A1,	A1 (3)
	(d)	C is $(p, -\frac{1}{2}p+6)$, so $AC^2 = (p-2)^2 + \left(-\frac{1}{2}p+6-5\right)^2$	M1	, ,
	` ,	Therefore $25 = p^2 - 4p + 4 + \frac{1}{4}p^2 - p + 1$	M1	
		$25 = 1.25p^2 - 5p + 5$ or $100 = 5p^2 - 20p + 20$ (or better, RHS simplified to 3 terms) Leading to: $0 = p^2 - 4p - 16$ (*)	A1 A1cso	(4) [11]
	(a) (b)	 M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. y - y₁ = m(x - x₁)) is seen, otherwise M0. If (2, 5) is substituted into y = mx + c to find c, the M mark is for attempting this and the 1st A mark is for c = 6. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through (-2.7) with gradient. has the same egg, as found in part (a) 	-	
		that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a), or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases		
	(c)	a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting AB^2 or AB . Allow one slip (sign or number) <u>inside</u> a bracket, i.e. do <u>not</u> allow $(2-2)^2 - (7-5)^2$.		
		1^{st} A1 for 20 (condone bracketing slips such as $-2^2 = 4$)		
	(d)	2^{nd} A1 for $2\sqrt{5}$ or $k=2$ (Ignore \pm here). 1^{st} M1 for $(p-2)^2$ + (linear function of p) 2 . The linear function may be unsimplified but must be equivalent to $ap+b$, $a \neq 0$, $b \neq 0$. 2^{nd} M1 (dependent on 1^{st} M) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. 1^{st} A1 for collecting like p terms and having a correct expression. 2^{nd} A1 for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p = 2 \pm 2\sqrt{5})$ and use one or both of the two solutions to find the		
		length of AC^2 or $C_1C_2^2$: e.g. $AC^2 = (2 + 2\sqrt{5} - 2)^2 + (5 - \sqrt{5} - 5)^2$ scores 1 st M1, and 1 st A1 if fully correct.		
		Finding the length of AC or AC^2 for both values of p , or finding C_1C_2 with some evidence of halving (or intending to halve) scores the 2^{nd} M1.		
		Getting $AC = 5$ for both values of p , or showing $\frac{1}{2}C_1C_2 = 5$ scores the 2^{nd} A1 (cso).		

This resource was created and owned by Pearson Edexcel

Ques Numb		Scheme	Marks	
11	(a)	$\left(\frac{dy}{dx}\right) = -4 + 8x^{-2}$ (4 or $8x^{-2}$ for M1 sign can be wrong)	M1A1	
		$x=2 \Rightarrow m=-4+2=-2$	M1	
		$y = 9 - 8 - \frac{8}{2} = -3$ The first 4 marks <u>could</u> be earned in part (b)	B1	
		Equation of tangent is: $y+3=-2(x-2) \rightarrow y=1-2x$ (*)	M1 A1cso (6)	
	(b)	Gradient of normal = $\frac{1}{2}$	B1ft	
		Equation is: $\frac{y+3}{x-2} = \frac{1}{2}$ or better equivalent, e.g. $y = \frac{1}{2}x - 4$	M1A1	
	(c)	$(A:) \frac{1}{2}, \qquad (B:) 8$	B1, B1 (3)	
		Area of triangle is: $\frac{1}{2}(x_B \pm x_A) \times y_P$ with values for all of x_B, x_A and y_P	M1	
		$\frac{1}{2} \left(8 - \frac{1}{2} \right) \times 3 = \frac{45}{4} \text{ or } 11.25$	A1 (4) [13]	
	(a)	1^{st} M1 for 4 or $8x^{-2}$ (ignore the signs). 1^{st} A1 for both terms correct (including signs).		
		2^{nd} M1 for substituting $x = 2$ into their $\frac{dy}{dx}$ (must be different from their y)		
		B1 for $y_P = -3$, but not if clearly found from the given equation of the <u>tangent</u> .		
		3^{rd} M1 for attempt to find the equation of tangent at P, follow through their m and y_P .		
		Apply general principles for straight line equations (see end of scheme). NO DIFFERENTIATION ATTEMPTED: Just assuming $m = -2$ at this stage 2^{nd} A1cso for correct work leading to printed answer (allow equivalents with $2x$, y , a such as $2x + y - 1 = 0$).		
	(b)	B1ft for correct use of the perpendicular gradient rule. Follow through their m, but i there must be clear evidence that the m is thought to be the gradient of the tange		
		M1 for an attempt to find normal at P using their changed gradient and their y_P .		
		Apply general principles for straight line equations (see end of scheme). Al for any correct form as specified above (correct answer only).		
	(c)	1st B1 for $\frac{1}{2}$ and 2nd B1 for 8.		
		M1 for a full method for the area of triangle ABP. Follow through their x_1 , x_2 , and	their v _n but	

for a full method for the area of triangle ABP. Follow through their x_A, x_B and their y_P , but the mark is to be awarded 'generously', condoning sign errors..

Determinant: Area = $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2}\begin{vmatrix} 2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1 \end{vmatrix} = \dots$ (Attempt to multiply out required for M1)

<u>Alternative</u>: $AP = \sqrt{(2-0.5)^2 + (-3)^2}$, $BP = \sqrt{(2-8)^2 + (-3)^2}$, Area = $\frac{1}{2}AP \times BP = ...$ M1<u>Intersections with y-axis instead of x-axis</u>: Only the M mark is available B0 B0 M1 A0.

6663/01 GCE Mathematics January 2009