

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Core Mathematics 1 (6663A/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037647 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

Winter 2014

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the • question to obtain this mark
- isw ignore subsequent working •
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate) •
- dep dependent •
- indep independent •
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1.	(a) $(2\sqrt{x})^2 = 4x$ (b) $\frac{(5+\sqrt{7})}{(2+\sqrt{7})} \times \frac{(2-\sqrt{7})}{(2-\sqrt{7})}$	B1 (1)
	$=\frac{10-7+2\sqrt{7}-5\sqrt{7}}{-3}$	M1, A1
	$= -1 + \sqrt{7}$	A1
		(3)
		(4 marks)
	Notes	
(a)	B1 4 <i>x</i> .Accept alternatives such as $x4$, $4 \times x$, $x \times 4$	
	M1 For multiplying numerator and denominator by $2-\sqrt{7}$ and attemptin brackets. There is no requirement to get the expanded numerator or denominato seeing the brackets removed is sufficient.	g to expand the or correct-
(b)	A1 All four terms correct (unsimplified) on the numerator OR the correct of -3	t denominator
	A1 Correct answer $-1 + \sqrt{7}$. Accept $\sqrt{7} - 1$, $-1 + 1\sqrt{7}$ and other fully correct simplified forms	

Mathematics C1

Question Number	Scheme	Marks
2.	(a) $2x^2 - \frac{4}{\sqrt{x}} + 1 = 2x^2 - 4x^{-\frac{1}{2}} + 1$	
	$dv = 1 -\frac{3}{2}$	
	$\frac{dy}{dx} = 2 \times 2x - 4 \times -\frac{1}{2} x^{2} (+0) (x^{n} \to x^{n-1})$	M1
	$\frac{dy}{dx} = 4x + 2x^{-\frac{3}{2}}$ or $4x + \frac{2}{x^{\frac{3}{2}}}$ oe	A1,A1
		(3)
	(b) $x^n \rightarrow x^{n-1}$ $d^2 y = 5$ 3	M1
	$\frac{d^2 y}{dx^2} = 4 - 3x^{\frac{1}{2}}$ or $4 - \frac{3}{x^{\frac{5}{2}}}$	A1
		(2) (5 marks)
	Notes	I
(a)	M1 $x^n \to x^{n-1}$ for any term. The sight of $2x^2 \to Ax$ OR $Cx^{-\frac{1}{2}x} \to Dx^{-\frac{3}{2}x}$ Osufficient	PR 1 \rightarrow 0 is
	Do not follow through on an incorrect index of $\frac{4}{\sqrt{x}}$ for this mark.	
	A1 One of the first two terms correct and simplified. Either $4x$ or $2x^{-\frac{3}{2}}$	
	Accept equivalents such as $4 \times x$ and $2 \times x^{-\frac{3}{2}} = \frac{2}{x^{1.5}}$	
	Ignore +c for this mark. Do not accept unsimplified terms like $2 \times 2x$	
	A1 A completely correct solution with no +c. That is $4x + 2x^{-\frac{3}{2}}$	
	Accept simplified equivalent expressions such as $4 \times x + 2 \times x^{-\frac{1}{2}}$ or	$4x + \frac{2}{x^{\frac{3}{2}}}$
	There is no requirement to give the lhs ie $\frac{dy}{dx} = .$	л
	However if the lhs is incorrect withhold the last A1	
(b)	M1 For either $4x \rightarrow 4$ or $x^n \rightarrow x^{n-1}$ for a fractional term. Follow through answers in (a).	on incorrect
	A1 A completely correct solution $4-3x^{\frac{5}{2}}$	
	Award for expressions such as $4-3 \times x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$ or $-3 \times x^{-2.5}$	+ 4
	There is no requirement to give the lhs ie $\frac{d^2y}{dx^2} = \dots$.	
	However if the lhs is incorrect withhold the last A1	

justified by a sketch.

Question Number	Sch	Marks			
3.	x = 2y + 1	2y = x - 1			
	$(2y+1)^2 + 4y^2 - 10(2y+1) + 9 = 0$	$x^2 + (x-1)^2 - 10x + 9 = 0$	M1		
	$8y^2 - 16y = 0$	$2x^2 - 12x + 10 = 0$	M1,A1		
	8y(y-2) = 0 Alt $y(8y-16) = 0$	2(x-1)(x-5) = 0 Alt $(2x-2)(x-5) = 0$	M1		
	y = 0, y = 2	x = 1, x = 5			
	$y = 0$ in $x = 2y + 1 \Longrightarrow x = 1$	$x = 1$ in $y = \frac{x-1}{2} = 0$	M1		
	$y = 2$ in $x = 2y + 1 \Longrightarrow x = 5$	$x = 5$ in $y = \frac{x-1}{2} = 2$			
	x=1, y=0 and x=5, y=2	x=1, y=0 and x=5, y=2	A1,A1		
			(7 marks)		
		Notes			
	M1 Rearrange $x-2y-1=0$ into $x=$, or $y=$, or $2y=$ and attempt to furint 2^{nd} equation. It does not need to be correct but a clear attempt must be made. Condone missing brackets $(2y+1)^2+4y^2-10\times 2y+1+9=0$				
	M1 Collect like terms to produce a qu	hadratic equation in x (or y) =0			
	A1 Correct quadratic equation in x ((or y)=0. Either $A(y^2 - 2y) = 0$ or $B(x^2)$	-6x+5)=0		
	M1 Attempt to solve, with usual rules. Check the first and last terms only for face See appendix for completing the square and use of formula. Condone a solu cancelling in a case like $A(y^2 - 2y) = 0$. They must proceed to find at least solution $x =$ or $y =$				
	M1 Substitute at least one value of their <i>x</i> to find <i>y</i> or vice versa. This may be implied by their solution- you will need to check!				
	 A1 Both x's or both y's correct or a correct matching pair. Accept as a coor Do not accept correct answers that are obtained from incorrect equation A1 Both 'pairs' correct. Accept as coordinates (1,0) (5,2) 				
	Special Cases where candidates write awarded above. One correct solution – B2. Two correct solutions – B2, B2	down answers with little or no working	g as can be		
	To score all 7 marks candidates must	prove that there are only two solutions.	. This could be		

Question Number	Scheme	Marks
4.	(a) Horizontal translation of ± 4 Minimum point on they- axis at (0,2)	M1 A1 (2)
	(b) $y = 2f(2x)$ (0,6) $y = 2f(2x)P'(4,4)p'(4,4)y$ intercept (0,6) and P'(4,4)	M1 A1 (2)
		(4 marks)
	Notes	
(a)	M1 A horizontal translation of ± 4 . The y coordinate of P remains unchanged at 2. Look for $P' = (0,2)$ or $(8,2)$. Condone U shaped curves A1 The shape remains unchanged and has a minimum at $(0,2)$. Condone U shaped curves	
(b)	M1 The curve remains in quadrant 1 and quadrant 2 with the minimum in quadrant 1. The shape must be correct. Condone U shaped curves. P' must have been adapted. The mark cannot be scored for drawing the original curve with $P'=(4,2)$.	
	 A1 Correct shape, condoning U shapes with the <i>y</i> intercept at (0, 6) and <i>P'</i>=(4,4) The coordinates of the points may appear in the text or besides the diagram. This is acceptable but if they contradict the diagram, the diagram takes precedence. 	

Question Number	Scheme	Marks
5.	(a) $\sum_{r=1}^{5} a_r = 12 + 4 \times 5^2 =$	M1
	= 112	A1
		(2)
	(b) $\sum_{r=1}^{6} a_r = 12 + 4 \times 6^2$	M1
	$a_6 = \sum_{r=1}^{r=6} a_r - (\text{part } a)$	dM1
	$a_6 = 156 - 112 = 44$	A1 (3)
		(5 marks)
	Notes	
(a)	M1 Substitutes $n=5$ into the expression $12 + 4n^2$ and attempt to find a number of the expression $12 + 4n^2$ and $12 + 4n^2$ an^2 an and $12 + 4n^2$ and	merical answer
	for $\sum_{r=1}^{5} a_r$.	
	Accept as evidence expressions such as $12+4\times 5 =, 12+4(5) = .$., even
	12+20 = 412 Accept for this mark solutions which add	
	$12+4\times1^2$, $12+4\times2^2$, $12+4\times3^2$, $12+4\times4^2$, $12+4\times5^2$ and as a result	112 appears in a
	sum.A1 cao 112. Accept this answer with no incorrect working for both mark consequently summed it will be scored A0	xs. If it is
(b)	M1 Substitutes <i>n</i> =6 into the expression $12 + 4n^2$	
	Accept as evidence $12+4\times 6^2 =, 12+4(6^2) =12+24^2 =$ or inde	ed 156.
	You can accept the appearance of $12+4\times 6^{\circ} =$ In a sum of terms.	
	dM1 Attempts to find their answer to $\sum_{r=1}^{\infty} a_r$ – their answer to part a	
	This is dependent upon the previous M mark. $_{6}$ 5	
	Also accept a restart where they attempt $\sum_{r=1}^{r} a_r - \sum_{r=1}^{r} a_r$	
	A1 cao 44	
	Alternative to 5(b) M1 Writes down an expression for	
	$a_n = (12 + 4n^2) - (12 + 4(n-1)^2) = 4(n^2 - (n-1)^2) = 4(2n-1)$	
	dM1 Subs $n = 6$ into the expression for $a_n = 4(2n-1) =$	
	A1 cao 44	

Question Number	Scheme	Marks
6.	(a) (i) $\frac{3}{2}$ or equivalents such as 1.5	B1
	(ii) (0, 3.5) Accept $y=3\frac{1}{2}$	B1 (2)
	(b) Perpendicular gradient $l_2 = -\frac{2}{3}$	(2) B1ft
	Equation of line is: $y-5 = -\frac{2}{3}(x-1)$	M1A1
	3y + 2x - 17 = 0	A1 (4)
	(c) Point C: $y=0 \Rightarrow 2x=17 \Rightarrow x=8.5$ oe	M1, A1
	$AB = \sqrt{(1-0)^2 + (5-3.5)^2} = \left(\frac{\sqrt{13}}{2}\right)$	M1 (either)
	$BC = \sqrt{(8.5-1)^2 + (5-0)^2} = \left(\frac{\sqrt{325}}{2}\right)$	
	Area rectangle = $AB \times BC = \frac{\sqrt{13}}{2} \times \frac{\sqrt{325}}{2} = \frac{\sqrt{13}}{2} \times \frac{\sqrt{13}\sqrt{25}}{2} = \frac{5 \times 13}{4} = 16.25 \text{ oe}$	dM1A1
		(5) (11 marks)
	Notes	
(a)	B1 cao gradient =1.5. Accept equivalences such as $\frac{3}{2}$	
	B1 cao intercept =(0,3.5). Accept 3.5, y=3.5 and equivalences such as $\frac{7}{2}$	
(b)	B1ft For using the perpendicular gradient rule, $m_1 = -\frac{1}{m_2}$ on their '1.5'.	
	Accept $-\frac{1}{1.5}$ or this as part of their equation for l_2 Eg. $-\frac{1}{1.5} = \frac{y-1}{x-1}$	<u></u>
	M1 For an attempt at finding the equation of l_2 using (1,5) and their adap	ted gradient.
	Condone for this mark a gradient of $\frac{3}{2}$ going to $\frac{2}{3}$. Eg. Allow for $\frac{y}{x}$	$\frac{3}{-1} = \frac{2}{3}$
	If the form $y = mx + c$ is used it must be a full method to find <i>c</i> with adapted gradient. A1 For an a correct unsimplified equation of the line through (1,5) with t gradient.	(1,5) and an he correct
	Allow $\frac{y-5}{x-1} = -\frac{2}{3}$ and $5 = -\frac{2}{3} \times 1 + c \Rightarrow c = \frac{17}{3}$ All $\cos \pm (3y+2x-17) = 0$	
	An example of B1ftM0A0A0 would be $-\frac{1}{z} = \frac{y-5}{z}$ following a gradient of	f '3' in part (a)
	An example of B1ftM1A0A0 would be $-\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	f '3' in part (a)
	An example of B0ftM1A0A0 would be $\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	f '3' in part (a)

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C1

Question Number		Scheme	Marks
	Notes for Question 6 continued		
(c)	(c) M1 An attempt to use their equation found in part b to find the x coordinate of C They must either use the equation of l_2 and set $y = 0 \Rightarrow x =$ or use its gradien $17.5 = 3 \Rightarrow x =$		
	A 1	$x \xrightarrow{-2} x \xrightarrow{-1} x$	
	AI	C = (8.5, 0). Allow equivalents such as $x = 8.5$ at C	
	M1 An attempt to use $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for <i>AB</i> or <i>BC</i> . There is no need to 'calculate' these.		
	dM1	Evidence of an attempt would be $AB^2 = 1^2 + 1.5^2 \implies AB =$ Multiplying together their values of AB and BC to find area ABCD It is dependent upon both M's having been scored.	
	A1	cao16.25 or equivalents such as $\frac{65}{4}$.	

Question Number	Scheme	Marks
7.	(a) $14000+8\times1500=14000+12000$ =£26000	M1 A1* (2)
	(b) $S_n = \frac{n}{2}(a+l) = \frac{9}{2} \times (14000 + 26000)$	M1
	OR $S_9 = \frac{n}{2}(2a + (n-1)d) = \frac{9}{2} \times (28000 + 8 \times 1500)$	
	=£180000	A1 (2)
	(c) Use $a + (n-1)d$ to find A	
	$A + (10 - 1) \times 1000 = 26000$ A = 17000	M1 A1
	Use $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ to find S for Anna	
	$S_{10} = \frac{10}{2}(17000 + 26000) (= \pounds 215000) \text{ or } S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000) (= \pounds 215000)$	M1A1
	Shelim earns 180000+26000 in 10 years =(£206000)	B1ft
	Difference= $\pounds 9000$	A1 (6)
		(10 marks)
	Notes	
(a)	 M1 Uses S = a + (n-1)d with a=14000, d=1500 and n=8, 9 or 10 in an at salary in year 9 Accept a sequence written out only if all terms up to year 9 are includerrors. A1* csa 26000. It is acceptable to write a sequence for both the 2 marks FYI the terms are 14000,15500,17000,18500,20000,21500,23000,24 Alt (a) Alternative working backwards 	tempt to find led-Allow no 4500, 26000
	M1 Uses $S = a + (n-1)d$ with $a=14000$, $d=1500$ and $S = 26000$ in attemp must reach $n=$ A1 $n=9$	t to find <i>n</i> . It
(b)	M1 Uses $S_n = \frac{n}{2}(a+l)$ with $a=14000$, $l=26000$ and $n=8$, 9 or 10. Do not incorrect <i>l</i> 's. Alternatively uses $S_n = \frac{n}{2}(2a+(n-1)d)$ with $a=14000$, $d=1500$ and $d=15000$ and $d=1500$ an	allow ft's on n=8, 9 or 10. as long as all

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Question Number		Scheme	Marks
		Notes for Question 7 continued	
(c)	M1	M1 Use $l = a + (n-1)d$ to find A.	
	A1	It must be a full method with $d=1000$, $l=26000a=A$ and $n=9$, 10 or 11 value for A A=17000	leading to a
	Accept $A=17000$ written down for 2 marks as long as no incorrect work calculation.		
	M1 Use $S_n = \frac{n}{2}(a+l)$ to find S for Anna. Follow through on their A, but $l=26000$		
<i>n</i> =9, 10 or 11			
	Alternatively uses $S_n = \frac{n}{2}(2a + (n-1)d)$ with their numerical value of A, $d=1000$		<i>A</i> , <i>d</i> =1000 and
		<i>n</i> =9, 10 or 11 Accept a series of terms with their value of A, rising in £1000's up to £26000.	a maximum of
	A1 Anna earns $S_{10} = \frac{10}{2}(17000 + 26000)$ OR $S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000)$ in		10 years
	DIC	This is an intermediate answer. There is no requirement to state the v	alue £215 000
	A1	Shellm earns (b)+26000 in 10 years. This may be scored at the start o CAO and CSO Difference = ± 9000	of part c.

Winter 2014 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathemati

Mathematics C1 6663

Question	Cohomo	Marka
Number	Scheme	Marks
8.	(a) $b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k+2)$	M1A1
	$b^2 - 4ac > 0 \Longrightarrow 4k^2 - 4 \times 2 \times (k+2) > 0 \Longrightarrow k^2 - 2k - 4 > 0$	A1*
		(3)
	(b) $k^2 - 2k - 4 = 0 \Longrightarrow (k - 1)^2 = 5$	M1
	$k = 1 \pm \sqrt{5}$ oe	A1
	$k > 1 + \sqrt{5}, k < 1 - \sqrt{5}$	dM1A1
		(4) (7 marks)
	Alt (a) $b^2 > 4ac \Rightarrow (2k)^2 > 4 \times 2 \times (k+2)$	M1A1
	$\Rightarrow k^2 - 2k - 4 > 0$	A1*
		(3)
	Notos	
(a)	Notes M1 For attempting to use $b^2 - 4ac$ with the values of a, b and c from the s	riven equation
	Condone invisible brackets. $2k^2 - 4 \times 2 \times k + 2$ could be evidence	rien equation.
	A1 Fully correct (unsimplified) expression for $b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k^2)^2 + 4 \times (k^2)^2 + $	(k+2)
	The bracketing must be correct. You can accept with or without any in	nequality signs.
	Accept $a = 2, b = 2k, c = k+2 \Rightarrow b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k+2)$	1 2 2
	A1* Full proof, no errors, this is a given answer. It must be stated or implie	ed that
	$b^2 - 4ac > 0$	
	Do not accept recovery from poor or incorrect bracketing or incorrect Do not accept the answer written down without seeing on intermediat	inequalities.
	bo not accept the answer written down without seeing an intermediate $4k^2 - 4 \times 2 \times (k+2) > 0 \implies k^2 - 2k - 4 > 0$	e nne such as
	$\operatorname{Or} 4k^2 - 8k - 8 > 0 \longrightarrow k^2 - 2k - 4 > 0$	
	The inequality must have been seen at least once before the final line have been awarded.	for this mark to
	Eg accept $D = 4k^2 - 8k - 8 \Longrightarrow 4k^2 - 8k - 8 > 0 \Longrightarrow k^2 - 2k - 2 > 0$	
(b)	M1 Attempt to solve the given 3 term quadratic (=0) by formula or compare.	leting the
	Do NOT accept an attempt to factorise in this question.	
	If the formula is given it must be correct.	
	It can be implied by seeing either $\frac{-(-2)\pm\sqrt{(-2)}-4\times1\times-4}{2\times1}$ or	
	$-2\pm\sqrt{-2^2-4\times1\times-4}$	
	2×1	
	If completing the square is used it can be implied by $(k-1)^2 \pm 1 - 4 =$	$0 \Rightarrow k = \dots$
	A1 Obtains critical values of $1 \pm \sqrt{5}$. Accept $\frac{2 \pm \sqrt{20}}{2}$	
	dM1 Outsides of their values chosen. It is dependent upon the previous M been awarded. States $k >$ their largest value, $k <$ their smallest value	mark having
	Do not award simply for a diagram or a table- they must have chosen	their 'outside
	regions'	
	A1 Correct answer only. Accept $k > 1 + \sqrt{5}$ or $k < 1 - \sqrt{5}$, $k > 1 + \sqrt{5}$ $k < 1 - \sqrt{5}$, $k > 1 + \sqrt{5}$	$1 - \sqrt{5}$,
	$(-\infty,1-\sqrt{5})\cup(1+\sqrt{5},\infty)$	
	but not $k > 1 + \sqrt{5}$ and $k < 1 - \sqrt{5}$, $1 + \sqrt{5} < k < 1 - \sqrt{5}$	

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C1

Question Number	Scheme	Marks
	Notes for Question 8 continued	
	Also accept exact alternatives as a simplified form is not explicitly asked for in the question	
	Accept versions such as $k > \frac{2 + \sqrt{20}}{2}$ or $k < \frac{2 - \sqrt{20}}{2}$	

Mathematics C1 6663

Question Number	Scheme	Marks
9.	(a) $f'(x) = (x-2)(3x+4)$	
	$=3x^2-2x-8$	B1
	$y = \int 3x^2 - 2x - 8dx = 3 \times \frac{x^3}{3} - 2 \times \frac{x^2}{2} - 8x + c$	M1A1
	$x = 3, y = 6 \Longrightarrow 6 = 27 - 9 - 24 + c$	
	<i>c</i> =	M1
	$f(x) = x^3 - x^2 - 8x + 12 \csc \theta$	A1 (5)
	(b) $f(x) = (x-2)^2(x+p) \ p = 3$	(3) B1
	$f(x) = (x^2 - 4x + 4)(x + 3)$	
	$f(x) = x^3 - 4x^2 + 3x^2 + 4x - 12x + 12$	
	$f(x) = x^3 - x^2 - 8x + 12 \cos \theta$	M1A1
		(3)
	(c)	
	(0,12) $(-3,0)$ $(2$	B1 B1 B1ft B1 (4)
		(12 marks)
	Notes	
(a)	B1 Writes $(x-2)(3x+4)$ as $3x^2-2x-8$	
	M1 $x^n \rightarrow x^{n+1}$ in any one term. For this M to be scored there must have been an attempt to expand obtain a quadratic expression	the brackets and
	A1 Correct (unsimplified) expression for $f(x)$, no need for +c. Accept 3	$3\frac{x^3}{2}-2\frac{x^2}{2}-8x$
	M1 Substitutes $x=3$ and $y=6$ into their $f(x)$ containing a constant 'c' and its value.	proceed to find
	A1 $\operatorname{Csof}(x) = x^3 - x^2 - 8x + 12$. Allow $y =$	
	Do not accept an answer produced from part (b)	
	D1 States 2	
(0)	This may be obtained from subbing (3.6) into $f(x) = (x-2)^2(x+p)$	
	M1 Multiplies out a pair of brackets first, usually $(x-2)^2$ and then attem by the third. The minimum criteria should be the first multiplication i with correct first and last terms and the second is a 4T cubic with co- last terms. Accept an expression involving p for M1 $(x-2)^2(x+p) = (x^2 +x+4)(x+p) = x^3 +x^2 +x+4$	pts to multiply s a 3T quadratic prrect first and <i>p</i>
	A1 $\cos f(x) = x^3 - x^2 - 8x + 12$, which must be the same as their answer f	for part (a)

Winter 2014 Past Paper (Mark Scheme)

Candidates who have experienced Core 2 could take their answer to (a) and factorise. The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $\frac{x^2}{x-2\sqrt{x^3}+}$ Alternatively the candidate could divide by (x^2-4x+4) to obtain $(x+)$ $x^2-4x+4\sqrt{x^3}+$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '-p' as long as $p < 2$		Notes for Ouestion 9 continued		
The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $x-2\overline{)x^3} + \dots + x^2$ Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$ $x^2 - 4x + 4\overline{)x^3} + \dots + x^2$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape + x^3 graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and - infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x - axis. B1ft Graph crosses the x - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x -axis. You may follow through on their values of '- p' as long as $p < 2$		Candidates who have experienced Core 2 could take their answer to (a) and factorise.		
Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$ $x^2 - 4x + 4)\overline{x^3 +}$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $x-2)\overline{x^3 + \dots + x^2}$		
$x^{2}-4x+4)\overline{x^{3}+}$ The A1 is scored for $f(x) = (x-2)^{2}(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^{2}(x+3)$ (c) B1 Shape $+x^{3}$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$		
The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i> - axis. B1ft Graph crosses the <i>x</i> - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i> -axis. You may follow through on their values of '- p' as long as $p < 2$		$x^2 - 4x + 4 \overline{\smash{\big)} x^3 + \dots}$		
(c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i> - axis. B1ft Graph crosses the <i>x</i> - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i> -axis. You may follow through on their values of '- p' as long as $p < 2$		The A1 is scored for $f(x) = (x-2)^2(x+3)$		
 (c) B1 Shape +x³ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 		The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$		
 (c) B1 Shape +x³ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 				
 B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 	(c)	B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable		
B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		B1 There is a turning point at $(2, 0)$. Accept 2 marked as a maximum or minimum on the <i>x</i> - axis.		
$D1 \qquad C \qquad 1 \qquad (0.10) \qquad A \qquad (10) $		B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of $\frac{1}{2}$ n' as long as $n < 2$		
B1 Graph crosses the y-axis at (0, 12). Accept 12 marked on the y- axis.		B1 Graph crosses the y-axis at $(0, 12)$. Accept 12 marked on the y- axis.		

Question Number	Scheme	Marks	
10.	(a) $x^n \rightarrow x^{n-1} \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2 \times 2x - 1$	M1A1	
	Sub x=2 $\frac{dy}{dx} = 3 \times 2^2 - 2 \times 4 - 1 = (3)$	M1	
	$3 = \frac{y-1}{x-2}$	dM1	
	$y = 3x - 5 \csc \theta$	A1* (5)	
	(b) At $Q \frac{dy}{dx} = 3x^2 - 4x - 1 = 3$		
	$3x^{2} - 4x - 4 = 0$ (3x+2)(x-2) = 0	-M1 -dM1	
	$x = -\frac{2}{3}$	A1	
	Sub $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$	dM1	
	$y = \frac{67}{27}$	A1	
		(5) (10 marks)	
	Notes		
(a)	M1 $x^n \rightarrow x^{n-1}$ for any term including $3 \rightarrow 0$.		
	A1 $\left(\frac{dy}{dx}\right) = 3x^2 - 2 \times 2x - 1$ There is no need to see any simplification		
	M1 Sub $x=2$ into their f'(x)		
	dM1 Uses their numerical gradient with (2, 1) to find an equation of a tan	gent to $y = f(x)$.	
(b)	It is dependent upon both M's. Accept their $\frac{dy}{dx}\Big _{x=2} = \frac{y-1}{x-2}$. Both sig	ns must be	
	correct If $y = mx + c$ is used then it must be a full attempt to find a numerical 'c'		
	A1* Cso $y = 3x-5$. This is a given answer and all steps must be correct. Look for gradient -3 having been achieved by differentiation		
	Look for gradient –5 having been demeved by differentiation.		
	M1 Sets their $\frac{dy}{dx} = 3$ and proceeds to a 3TQ=0. Condone errors on $\left(\frac{dy}{dx}\right)$		
	dM1 Factorises their 3TQ (usual rules) leading to a solution $x=$. It is de the previous M.	ependent upon	
	Award also for use of formula/ completion of square as long as the pr been awarded.	evious M has	
	A1 $x = -\frac{2}{3}$		
	d M1 Sub their $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$. It is dependent only upon	on the first M in	
	(b) having been scored		
	A1 Correct y coordinate $y = \frac{67}{27}$ or equivalent		