

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C1 (6663)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2007 6663 Core Mathematics C1 Mark Scheme

Question number		Scheme	Marks
1.	9 – 5	or $3^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$ or $3^2 - (\sqrt{5})^2$	M1
	= <u>4</u>		A1cso (2)
	M1 e.g.	for an attempt to multiply out. There must be at least 3 correct terms. Allow only, no arithmetic errors. $3^2 + 3\sqrt{5} - 3\sqrt{5} + (\sqrt{5})^2$ is M1A0	w one sign slip
		$3^{2} + 3\sqrt{5} + 3\sqrt{5} - (\sqrt{5})^{2}$ is M1A0 as indeed is $9 \pm 6\sqrt{5} - 5$	
	BUT	$9 + \sqrt{15} - \sqrt{15} - 5(=4)$ is M0A0 since there is more than a sign error. $6 + 3\sqrt{5} - 3\sqrt{5} - 5$ is M0A0 since there is an arithmetic error.	
		If all you see is 9 ± 5 that is M1 but please check it has not come from inco	prrect working.
		Expansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0	
	A1cso	for 4 only. Please check that no incorrect working is seen.	
		Correct answer only scores both marks.	

Question number	Scheme	Marks	
2.	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$	M1	
	= <u>16</u>	A1	(2)
	(b) $5x^{\frac{1}{3}}$ 5, $x^{\frac{1}{3}}$	B1, B1	(2) 4
(a)	M1 for: 2 (on its own) or $(2^3)^{\frac{4}{3}}$ or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$ 8 ³ or 512 or $(4096)^{\frac{1}{3}}$ is M0 A1 for 16 only		
(b)	1 st B1 for 5 on its own or × something. So e.g. $\frac{5x^{\frac{4}{3}}}{x}$ is B1 But $5^{\frac{1}{3}}$ is B0 An expression showing cancelling is not sufficient (see first expression of QC0184500123945 the mark is scored for the second	nd expressior	n)
	2 nd B1 for $x^{\frac{1}{3}}$ Can use ISW (incorrect subsequent working) e.g $5x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5x^4}$ which we ignore as ISW. Correct answers only score full marks in both parts.		

_	-
	~~~~
	666.

Question number	Scheme	Marks	
3.	(a) $\left(\frac{dy}{dx}\right) = 6x^1 + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$	M1 A1	(2)
	(b) $6 + -x^{-\frac{3}{2}}$ or $6 + -1 \times x^{-\frac{3}{2}}$	M1 A1ft	(2)
	(c) $x^3 + \frac{8}{3}x^{\frac{3}{2}} + C$ A1: $\frac{3}{3}x^3$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ A1: both, simplified and $+C$	M1 A1 A1	(3)
	(2)		7
(a)	M1 for <u>some</u> attempt to differentiate: $x^n \to x^{n-1}$ Condone missing $\frac{dy}{dx}$ or $y = \dots$		
	A1 for both terms correct, as written or better. No + <i>C</i> here. Of course $\frac{2}{\sqrt{x}}$ is	s acceptable.	
(b)	M1 for some attempt to differentiate again. Follow through their $\frac{dy}{dx}$ , at least of or correct follow through.	one term corre	ct
	A1f.t. as written or better, follow through must have 2 distinct terms and simplifi	ed e.g. $\frac{4}{4} = 1$ .	
(c)	M1 for some attempt to integrate: $x^n \to x^{n+1}$ . Condone misreading $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ (+ <i>C</i> alone is not sufficient)	² for <i>y</i> .	
	1 st A1 for either $\frac{3}{3}x^3$ or $\frac{4x^2}{\left(\frac{3}{2}\right)}$ (or better) $\frac{2}{3} \times 4x^{\frac{3}{2}}$ is OK here too but not for 2 nd	A1.	
	$2^{nd}$ A1 for <u>both</u> $x^3$ and $\frac{8}{3}x^{\frac{3}{2}}$ or $\frac{8}{3}x\sqrt{x}$ i.e. simplified terms <u>and</u> +C all on one 1	line.	
	$2\frac{2}{3}$ instead of $\frac{8}{3}$ is OK		

Question number		Marks					
4.	(a) Ide	(a) Identify $a = 5$ and $d = 2$ (May be implied)					
	( <i>u</i> ₂	$a_{00} = a + (200 - 1)d \qquad (= 5 + (200 - 1) \times 2)$	M1				
		= <u>403(p)</u> or (£) <u>4.03</u>					
	(b)	$(S_{200} =) \frac{200}{2} [2a + (200 - 1)d]$ or $\frac{200}{2} (a + "\text{their } 403")$	M1				
		$=\frac{200}{2} \left[ 2 \times 5 + (200 - 1) \times 2 \right] \text{ or } \frac{200}{2} \left( 5 + \text{"their 403"} \right)$	A1				
		= <u>40 800</u> or <u>£408</u>	A1 (3)				
			6				
(a)	B1	can be implied if the correct answer is obtained. If 403 is not obtained the	n the values of				
		a and d must be clearly identified as $a = 5$ and $d = 2$ .					
		This mark can be awarded at any point.					
	M1 for attempt to use <i>n</i> th term formula with $n = 200$ . Follow through their <i>a</i> and <i>d</i> .						
	Must have use of $n = 200$ and one of a or d correct or correct follow through.						
	Must be 199 not 200.						
	A1 for 403 or 4.03 (i.e. condone missing £ sign here). Condone £403 here.						
N.B.		$a = 3$ , $d = 2$ is B0 and $a + 200d$ is M0 <u>BUT</u> $3 + 200 \times 2$ is B1M1 and A1 if	f it leads to 403.				
		Answer only of 403 (or 4.03) scores 3/3.					
(b)	M1	for use of correct sum formula with $n = 200$ . Follow through their <i>a</i> and <i>d</i>	and their 403.				
		Must have <u>some</u> use of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and some of $a$ , $d$ or $l$ correct or correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ , and $l$ correct following the second states of $n = 200$ .	low through.				
	$1^{st} A1$	for any correct expression (i.e. must have $a = 5$ and $d = 2$ ) but can f.t. their	: 403 still.				
	2 nd A1	for 40800 or £408 (i.e. the £ sign is required before we accept 408 this time	e).				
		40800p is fine for A1 but £40800 is A0.					
ALT	Listing						
(a)	They r	night score B1 if $a = 5$ and $d = 2$ are clearly identified. Then award M1A1 t	ogether for 403.				
(b)	$\sum_{r=1}^{200} (2r+3)$ . Give M1 for $2 \times \frac{200}{2} \times (201) + 3k$ (with $k > 1$ ), A1 for $k = 200$ and A1 for 40800.						

Summer	2007	WW	vw.mystudybro.com	Mat	thematics	C1
Question number	Mark Scheme)	Sche	eme		6 Marks	663
5.	(a)		Translation parallel to $x$ -axis Top branch intersects +ve $y$ -axis Lower branch has no intersections	_	M1 A1	
		4	$\left(0,\frac{3}{2}\right)$ or $\frac{3}{2}$ marked on y- axis		B1	(3)
	(b) $x = -2$ , $y = -2$	= 0			B1, B1	(2)
S.C.	[Allow ft on fir	st B1 for $x = 2$ whe h their sketch.]	en translated "the wrong way" but must be			5
(a)	M1 for a hor If one of	rizontal translation f the branches cuts	- two branches with one branch cutting y both axes (translation up and across) this is	– axis is M0.	only.	
	A1 for a hor	rizontal translation	to left. Ignore any figures on axes for this	; mark.		
	B1 for corre	ect intersection on j	positive y-axis. More than 1 intersection i	s B0.		
	x=0 and $y = 1.5A point$	in a table alone is marked on the graj	insufficient unless intersection of their ske ph overrides a point given elsewhere.	tch is v	with +ve y-a	.xis.
(b)	$1^{st} B1$ for $x = -$ Can acc Usually	-2. NB $x \neq -2$ is rept $x = +2$ if this is they will have M1	B0. compatible with their sketch. A0 in part (a) (and usually B0 too)			
S.C.	$2^{\text{nu}} \text{ B1} \text{ for } y = 0$ If $x = -2$	2  and  y = 0  and som(x)	e other asymptotes are also given award B	1B0		
	The asy on the sketch is	mptote equations s	hould be clearly stated in part (b). Simply they are clearly marked "asymptote $x = -2$	marki 2" etc.	ng $x = -2$ or y	v =0

Summer	2007	www.my	/studybro.com	Ma	thematics	s C1
Past Paper ( Question number	Mark Scheme)	This resource was created Scheme	d and owned by Pearson Edexcel		Marks	<del>6663</del> S
6.	(a) $2x^2 - x(x-4)$	4) = 8			M1	
	$x^{2} + 4x - 8 =$	= 0	(	(*)	Alcso	(2)
	(b) $x = \frac{-4 \pm \sqrt{4}}{4}$	$\frac{1}{2} \frac{1}{2} - (4 \times 1 \times -8)$ or	$\left(x+2\right)^2\pm 4-8=0$		M1	
	x = -2 + (ar)	iy correct expression)			A1	
	$\sqrt{48} = \sqrt{16}\sqrt{16}$	$\sqrt{3} = 4\sqrt{3}$ or $\sqrt{1}$	$\overline{2} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$		B1	
	$y = \left(-2 \pm 2\gamma\right)$	$\sqrt{3}$ )-4	M: Attempt at least one y value	e	M1	
	$x = -2 + 2\sqrt{2}$	$\overline{3},  y = -6 + 2\sqrt{3}$	$x = -2 - 2\sqrt{3},  y = -6 - 2\sqrt{3}$		A1	(5)
						7
(a)	M1 for corre	ct attempt to form an equ	uation in <i>x</i> only. Condone sign error	ors/slips	s but attemp	ot at
	this line	must be seen. E.g. $2x^2$ -	$-x^2 \pm 4x = 8$ is OK for M1.			
	A1cso for corre	ctly simplifying to printe	ed form. No incorrect working seen	The =	0 <u>is</u> require	ed.
	These tv	vo marks can be scored	l in part (b). For multiple attemp	ts pick	best.	
(b)	1 st M1 for use o	f correct formula. If form	mula is not quoted then a fully corre	ect subs	stitution is	
	required.	. Condone missing $x = 0$	or just + or – instead of $\pm$ for M1.			
	For comp	pleting the square must h	have as printed or better.			
	If they have	ave $x^2 - 4x - 8 = 0$ then	M1 can be given for $(x-2)^2 \pm 4-8$	8 = 0.		
	$1^{\text{st}} \text{A1} \text{ for -2} \pm a$	any correct expression. (	The $\pm$ is required but $x =$ is not)			
	B1 for simpl	lifying the surd e.g. $\sqrt{48}$	$5 = 4\sqrt{3}$ . Must reduce to $b\sqrt{3}$ so $\sqrt{3}$	$\overline{16}\sqrt{3}$ or	$r \sqrt{4}\sqrt{3}$ are	e OK.
	2 nd M1 for attem	pting to find at least one	e y value. Substitution into one of the	he givei	n equations	\$
	and an at	ttempt to solve for y.				
	2 nd A1 for corre	ct y answers. Pairings no	eed <u>not</u> be explicit but they must sa	y which	f is $x$ and $w$	vhich y
	Mis-labe	elling x and y loses final A	A1 only.			
1 1						

Question number	Scheme		Marks		
7.	(a) Attempt to use discriminant $b^2 - 4ac$		M1		
	$k^{2} - 4(k+3) > 0 \implies k^{2} - 4k - 12 > 0$	(*)	A1cso	(2)	
	(b) $k^2 - 4k - 12 = 0 \implies$				
	$(k \pm a)(k \pm b)$ , with $ab = 12$ or $(k =)\frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or	M1			
	k = -2 and 6	(both)	A1		
	$\underline{k < -2,  k > 6}  \text{or } (-\infty, -2); (6, \infty) $	A: choosing "outside"	M1 A1ft	(4)	
				6	
(a)	M1 for use of $b^2 - 4ac$ , one of b or c must be correct. Or full attempt using completing the square that leads to a 3TQ in k e.g. $\left(\left[x + \frac{k}{2}\right]^2 = \right) \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that $b^2 - 4ac > 0$ and no incorrect working seen. Must have >0. If > 0 just appears with $k^2 - 4(k+3) > 0$ that is OK If >0 appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k+3)$ is M0A0 (wrong formula) Using $\sqrt{b^2 - 4ac} > 0$ is M0.				
(b)	$1^{st}$ M1for attempting to find critical regions. Factors $1^{st}$ A1for $k = 6$ and $-2$ only $2^{nd}$ M1for choosing the outside regions $2^{nd}$ A1f.t.as printed or f.t. their (non identical) critical value $6 < k < -2$ is M1A0 but ignore if it follows a correct $-2 < k < 6$ is M0A0 whatever their diagram looks likeCondone use of x instead of k for critical values and fitTreat this question as 3 two mark parts. If part (a) is seen in (a)	alues version e inal answers in (b).	ng the square	e.	

Summer	2007		www.mystudybro.com	M	lathematics	s C1
Past Paper Question	(Mark Scheme)	This reso	Scheme	cel	Mark	6663 S
number						
8.	(a) $(a_2 = )3$	$\frac{k+5}{k+5}$ [mu	ust be seen in part (a) or labelled $a_2 = ]$		B1	(1)
	(b) $(a_3 =)3$	6(3k+5)+5			M1	
	= <u>9</u>	<u>k + 20</u>		(*)	Alcso	(2)
	(c)(i) $a_4 =$	3(9k+20)+5	(=27k+65)		M1	
	$\sum_{r=1}^{4} a_r =$	= k + (3k + 5) +	(9k+20) + (27k+65)		M1	
	(ii) =	=40k+90			A1	
	=	= 10(4k+9)	(or explain why divisible by 10)		A1ft	(4) 7
	A1cso for	simplifying to	printed result with no incorrect working see	en.		
(c)	1 st M1	for attempt	ting to find $a_4$ . Can allow a slip here e.g. 30	(9k + 20) [i.	e. forgot +5]	
	2 nd M1	for attempt	ting sum of 4 relevant terms, follow through	n their (a) an	ud (b).	
		Must have	4 terms starting with k.			
		Use of arit	hmetic series formulae at this point is MOA	0A0		
	$1^{st} A1$	for simplif	Fying to $40k + 90$ or better			
	$2^{nd}$ A1ft	for taking o	out a factor of 10 or dividing by 10 or an ex	planation in	words true	$\forall k$ .
		Follow three	rough their sum of 4 terms provided that bot	h Ms are		
		scored and	l their sum <u>is</u> divisible by 10.			
		A commen	nt is <u>not</u> required.			
		e.g. $\frac{40k+}{10}$	$\frac{90}{4} = 4k + 9$ is OK for this final A1.			
S.C.	$\sum_{r=2}^{5} a_{r}$	$_{r} = 120k + 290$	0 = 10(12k + 29) can have M1M0A0A1ft.			

Summer	2007	www.mystudybro.com	Ma	athematics C1
Question number	(Mark Scheme)	This resource was created and owned by Pearson Scheme	Edexcel	6663 Marks
9.	(a) $f(x) = -\frac{6}{3}$	$\frac{5x^3}{3} - \frac{10x^2}{2} - 12x \ (+C)$		M1 A1
	<i>x</i> = 5:	$250 - 125 - 60 + C = 65 \qquad C = 0$		M1 A1 (4)
	(b) $x(2x^2 -$	$(5x-12)$ or $(2x^2+3x)(x-4)$ or $(2x+3)(x^2-4)$	4 <i>x</i> )	M1
	= x(2x)	(x-4)	(*)	A1cso (2)
	(c)	Three	Shape ough origin	B1 B1
			$\left(\frac{3}{2}, 0\right)$ and (4,0)	B1 (3)
		× ×	,	9
(a)	1 st M1 for a	attempting to integrate, $x^n \rightarrow x^{n+1}$		l
	1 st A1 for a	all x terms correct, need not be simplified. Ignore +	C here.	
	2 nd M1 for s	some use of $x = 5$ and $f(5)=65$ to form an equation in	C based on their i	ntegration.
	The	re must be some visible attempt to use $x = 5$ and $f(5)$ :	=65. No $+C$ is M(	).
	2 nd A1 for	C = 0. This mark cannot be scored unless a suitable of	equation is seen.	
(b)	M1 for a The veri A1cso for j	attempting to take out a correct factor or to verify. A y must get to the equivalent of one of the given partia fying, $x(2x^2 + 3x - 8x - 12)$ i.e. with no errors in sign proceeding to printed answer with no incorrect worki	llow usual errors of ally factorised exp is. ing seen. Commen	on signs. pressions or, if t <u>not</u> required.
	This mark i Will be con	s <u>dependent upon a fully correct solution to part (a)</u> s nmon or M1A1M1A0M1A0. To score 2 in (b) they a	o M1A1M0A0M must score 4 in (a)	1A0 for (a) & (b). ).
(c)	1 st B1 for	positive $x^3$ shaped curve (with a max and a min) posi	tioned anywhere.	
	2 nd B1 for a	any curve that passes through the origin (B0 if it only	v touches at the ori	gin)
	3 rd B1 for t	the two points <u>clearly</u> given as coords or values mark	ed in appropriate	places on <i>x</i> axis.
	Igno	ore any extra crossing points (they should have lost fi	irst B1).	
	Con	done $(1.5, 0)$ if clearly marked on –ve x-axis. Condot	ne (0, 4) etc if mar	rked on +ve $x$ axis.
	Cur	ve can stop (i.e. not pass through) at $(-1.5, 0)$ and $(4, $	0).	
	A po	oint on the graph overrides coordinates given elsewhe	ere.	

Question number	Scheme	Marks
10.	(a) $x = 1$ : $y = -5 + 4 = -1$ , $x = 2$ : $y = -16 + 2 = -14$ (can be given	1 st B1 for – 1
	in (b) or (c))	2 nd B1 for - 14
	$PQ = \sqrt{\left(2-1\right)^2 + \left(-14 - (-1)\right)^2} = \sqrt{170} $ (*)	M1 A1cso (4)
	(b) $y = x^3 - 6x^2 + 4x^{-1}$	M1
	$\frac{dy}{dx} = 3x^2 - 12x - 4x^{-2}$	M1 A1
	$x = 1$ : $\frac{dy}{dx} = 3 - 12 - 4 = -13$ M: Evaluate at one of the points	M1
	$x = 2: \frac{dy}{dx} = 12 - 24 - 1 = -13$ .: Parallel A: Both correct + conclusion	A1 (5)
	(c) Finding gradient of normal $\left(m = \frac{1}{13}\right)$	M1
	$y1 = \frac{1}{13}(x - 1)$	M1 A1ft
	x - 13y - 14 = 0 o.e.	A1cso (4)
		13
(a)	M1 for attempting PQ or PQ ² using their P and their Q. Usual rules about que	oting formulae.
	We must see attempt at $1^2 + (y_p - y_q)^2$ for M1. $PQ^2 = $ etc could be N Alcso for proceeding to the correct answer with no incorrect working seen	11A0.
(b)	$1^{\text{st}}$ M1 for multiplying by $x^2$ , the $x^3$ or $-6x^2$ must be correct.	
	$2^{nd}$ M1 for some correct differentiation, at least one term must be correct as printed $1^{st}$ A1 for a fully correct derivative	l.
	These 3 marks can be awarded anywhere when first seen.	
	$3^{nd}$ M1 for attempting to substitute $x = 1$ or $x = 2$ in their derivative. Substituting in $2^{nd}$ A1 for -13 from both substitutions and a brief comment.	n y is M0.
	The $-13$ must come from their derivative.	
(c)	$1^{\text{st}}$ M1 for use of the perpendicular gradient rule. Follow through their – 1 $2^{\text{nd}}$ M1 for full method to find the equation of the normal or tangent at <i>P</i> . I quoted allow slips in substitution, otherwise a correct substitution is	3. f formula is
	$1^{\text{st}}$ A1ft for a correct expression. Follow through their – 1 and their changed	l gradient.
	$2^{nu}$ A1cso for a correct equation with = 0 and integer coefficients. This mark is dependent upon the – 13 coming from their derivative	in (b) hence cso
	Tangent can get M0M1A0A0, changed gradient can get M0M1A1A	0orM1M1A1A0.
	Condone contusion over terminology of tangent and normal, mark gradient and equation $4^{-1}$ or (w) (c) but not orgitting $4^{-1}$ or tracting it of 4	lation.
MK	Allow for $$ or $(x+6)$ but not omitting $4x^{-1}$ or treating it as $4x$ .	

Summer	2007 www.mystudybro.com Ma	athematics C1
Past Paper ( Question number	Mark Scheme) This resource was created and owned by Pearson Edexcel Scheme	Marks
11.	(a) $y = -\frac{3}{2}x(+4)$ Gradient $= -\frac{3}{2}$	M1 A1 (2)
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x = \dots, \frac{4}{9}$	M1, A1
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3}\left(=3\frac{1}{3}\right)$	A1 (3)
	(c) Where $y = 1$ , $l_1 : x_A = -\frac{1}{3}$ $l_2 : x_B = 2$ M: Attempt one of these	M1 A1
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1
	$=\frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e.	A1 (4)
		9
(a)	M1 for an attempt to write $3x + 2y - 8 = 0$ in the form $y = mx + c$ or a full method that leads to $m =$ , e.g find 2 points, and attempt gradient u e.g. finding $y = -1.5x + 4$ alone can score M1 (even if they go on to say $m =$ A1 for $m = -\frac{3}{2}$ (can ignore the +c) or $\frac{dy}{dx} = -\frac{3}{2}$	using $\frac{y_2 - y_1}{x_2 - x_1} = 4$ )
(b)	M1 for forming a suitable equation in one variable and attempting to solve lead $1^{st}$ A1 for any exact correct value for x $2^{nd}$ A1 for any exact correct value for y (These 3 marks can be scored anywhere, they may treat (a) and (b) as a sin	ling to $x =$ or $y =$
(c)	1 st M1 for attempting the <i>x</i> coordinate of <i>A</i> or <i>B</i> . One correct value seen scores M 1 st A1 for $x_A = -\frac{1}{2}$ and $x_B = 2$	[1.
	$2^{nd}$ M1 for a full method for the area of the triangle – follow through their $x_A, x_B, z_B$	$y_P$ .
	e.g. determinant approach $\frac{1}{2} \begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2 \\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 - \dots - (-\frac{1}{3} \dots) \end{vmatrix}$	
	$2^{nd}$ A1 for $\frac{49}{18}$ or an exact equivalent.	
	All accuracy marks require answers as single fractions or mixed numbers not nece terms.	essarily in lowest