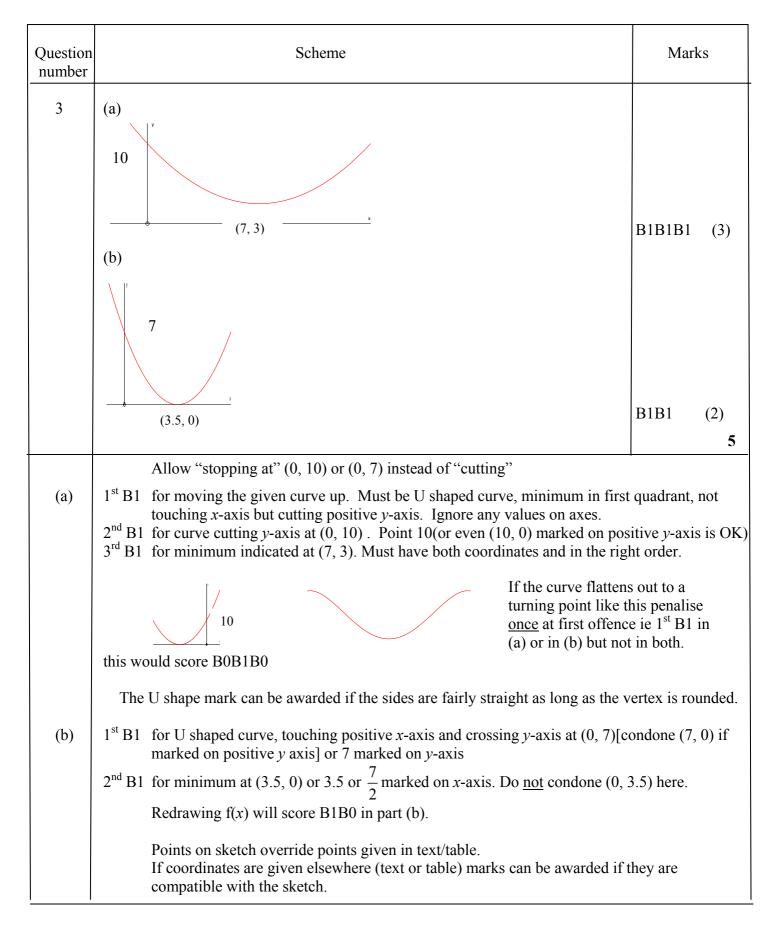
Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/01)

GCE


June 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	$2x + \frac{5}{3}x^3 + c$	M1A1A1	
			(3) 3
	M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct terms	rm.	
	1 st A1 for $\frac{5}{3}x^3$ or $2x + c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final	answer	
	2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or $1.\dot{6}$ for $\frac{5}{3}$ but not	5	
	Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.4		
	treated as ISW		
	NB M1A0A1 is not possible		

6663

Question number	Scheme	Mark	ΣS
2.	$x(x^2-9)$ or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$ x(x-3)(x+3)	B1 M1A1	(3)
			3
	B1 for first factor taken out correctly as indicated in line 1 above. So x	$(x^2 + 9)$ is B0	
	M1 for attempting to factorise a relevant quadratic.		
	"Ends" correct so e.g. $(x^2 - 9) = (x \pm p)(x \pm q)$ where $pq = 9$ is OK.		
	This mark can be scored for $(x^2-9)=(x+3)(x-3)$ seen anywhere	·.	
	A1 for a fully correct expression with all 3 factors.		
	Watch out for $-x(3-x)(x+3)$ which scores A1		
	Treat any working to solve the equation $x^3 - 9x$ as ISW.		

Scheme	Marks	
$[f'(x) =] 3 + 3x^2$	M1A1	(2)
$3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore <u>+</u>) x = 2 (ignore $x = -2$)	M1 M1 A1	(3) 5
1 st M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. collect terms. e.g. $3x^2 = 15-3$ or $1+x^2 = 5$ or even $3+3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow 6x = 15$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equation)		
2 nd M1 this is dependent upon their f'(x) being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$ scores M1M0A0		
	[f'(x) =] $3+3x^2$ $3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) x = 2 (ignore $x = -2$) M1 for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is $a + c$ they sco 1^{st} M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. e.g. $3x^2 = 15-3$ or $1+x^2 = 5$ or even $3+3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1}+3x^2 = 15 \rightarrow$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ eq 2^{nd} M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3+3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3+3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0	$[f'(x) =] 3+3x^2$ M1A1 $3+3x^2=15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) $x = 2$ (ignore $x = -2$)M1M1for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0A1for a fully correct expression. Must be 3 not $3x^0$. If there is a + c they score A0. 1^{st} M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. collect terms. e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow 6x = 15$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equation) 2^{nd} M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct soe.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0

Question number	Scheme	Marks	
5. (a)	$[x_2 =]a - 3$	B1	(1)
(b)	$[x_3 =] ax_2 - 3 \text{ or } a(a-3) - 3$	M1	
	= a(a-3)-3 = a^2-3a-3 (*) both lines needed for A1		
	$=a^2-3a-3$ (*)	Alcso	(2)
(c)	$a^{2}-3a-3=7$ $a^{2}-3a-10=0 or a^{2}-3a=10$ $(a-5)(a+2)=0$		
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1	
	(a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂ -3 		
	A1 for correct processing leading to printed answer. Both lines needed and no incorr	ect working see	en.
(c)	1 st M1 for attempt to form a correct equation and start to collect terms. It must be need not lead to a 3TQ=0	a quadratic bu	ut
	2^{nd} dM1 This mark is dependent upon the first M1.		
	for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0" can	be implied.	
	$(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{9}{4} - 10 = 0$ or correct use of quadratic	c formula with	h <u>+</u>
	They must have a form that leads directly to 2 values for <i>a</i> .		
	Trial and Improvement that leads to only one answer gets M0 here.		
	A1 for both correct answers. Allow $x =$		
	Give 3/3 for correct answers with no working or trial and improvement that gives	<u>both</u> values fo	or a

.

Question Number	Scheme	Marks
6. (a)	11	B1M1A1 (3)
(b)	$\frac{-2.5}{2x+5} = \frac{3}{x}$ $2x^{2} + 5x - 3[=0] \text{or} 2x^{2} + 5x = 3$ $(2x + 1)(x + 2)[=0]$	M1 A1
	(2x-1)(x+3) [=0] x = -3 or $\frac{1}{2}$	M1 A1
	$x = -3$ or $\frac{1}{2}$ $y = \frac{3}{-3}$ or $2 \times (-3) + 5$ or $y = \frac{3}{\frac{1}{2}}$ or $2 \times (\frac{1}{2}) + 5$	M1
	Points are $(-3, -1)$ and $(\frac{1}{2}, 6)$ (correct pairings)	A1ft
(a)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughl	9
(u)	and no touching or intersections with axes.	y the contect shape
	Condone up to 2 inward bends but there must be some ends that are roughly asyr	nptotic.
	M1 for a straight line <u>cutting</u> the positive <i>y</i> -axis and the negative <i>x</i> -axis. Ignor	e any values.
	A1 for (0,5) and (-2.5,0) or points correctly marked on axes. Do not give for	values in tables.
	Condone mixing up (x, y) as (y, x) if one value is zero and other value corrections	rect.
(b)	1^{st} M1 for attempt to form a suitable equation and multiply by x (at least one of 2x or +5 multiplied.	i) should be
	$1^{st} A1$ for correct 3TQ - condone missing = 0	
	2^{nd} M1 for an attempt to solve a relevant 3TQ leading to 2 values for $x =$	
	2^{nd} A1 for both $x = -3$ and 0.5.	
	T&I for x values <u>may</u> score 1^{st} M1A1 otherwise no marks unless both values corr	ect.
	Answer only of $x = -3$ and $x = \frac{1}{2}$ scores 4/4, then apply the scheme for the	final M1A1ft
	3^{rd} M1 for an attempt to find at least one y value by substituting their x in either	$\frac{3}{x}$ or $2x + 5$
	3^{rd} A1ft follow through both their x values, in either equation but the same for ea	ch, correct
	pairings required but can be $x = -3$, $y = -1$ etc	

	· · ·	1	
Question number	Scheme	Marks	
7. (a)	5, 7, 9, 11 or 5+2+2+2=11 or 5+6=11 use $a = 5$, $d = 2$, $n = 4$ and $t_4 = 5 + 3 \times 2 = 11$	B1	(1)
(b)	$t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct (can have a letter for the other)	M1	
	= 5 + 2(n - 1) or $2n + 3$ or $1 + 2(n + 1)$	A1	(2)
(c)	$S_n = \frac{n}{2} [2 \times 5 + 2(n-1)] \text{ or use of } \frac{n}{2} (5 + \text{"their } 2n+3") \text{ (may also be scored in (b))}$	M1A1	
	$= \{n(5+n-1)\} = n(n+4) (*)$	Alcso	(3)
(d)	43 = 2n + 3	M1	
	[n] = 20	A1	(2)
(e)	$S_{20} = 20 \times 24$, $= \underline{480}$ (km)	M1A1	(2)
		10	
(a)	B1 Any other sum must have a convincing argument	I	
(b)	 M1 for an attempt to use a + (n - 1)d with one of a or d correct (the other can be Allow any answer of the form 2n + p (p ≠ 5) to score M1. A1 for a correct expression (needn't be simplified) [Beware 5+(2n-1) score Expression must be in n not x. Correct answers with no working scores 2/2. 		
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1 st A1 for a fully correct expression 2 nd A1 for correctly simplifying to given answer. No incorrect working seen. Must see S_n used.		d.
(d)	Do not give credit for part (b) if the equivalent work is given in part (d) M1 for forming a suitable equation in <i>n</i> (ft their (b)) and attempting to solve leading to $n =$ A1 for 20 Correct answer only scores 2/2. Allow 20 following a restart but check working. eg 43 = 2 <i>n</i> + 5 that leads to 40 = 2 <i>n</i> and <i>n</i> =20 should score M1A0.		
(e)	M1 for using their answer for <i>n</i> in $n(n + 4)$ or S_n formula, their <i>n</i> must be a val	ue.	
	A1 for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 c	omes from]	
	NB "attempting to solve" eg part (d) means we will allow sign slips and slips in ar	ithmetic	
	but not in processes. So dividing when they should subtract etc would lead to		
	Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each pa		
	Poor labelling may occur (especially in (b) and (c)). If you see work to get $n(n + n)$	4) mark as (c	:)

Question number	Scheme	Marks
8. (a) (b)	$q(q+8) = 0 or (q \pm 4)^2 \pm 16 = 0 (2 cvs)$	M1 A1cso (2) M1 A1 A1ft (3) 5
(a)	M1 for attempting $b^2 - 4ac$ with one of <i>b</i> or <i>a</i> correct. < 0 not needed for M1 This may be inside a square root. A1cso for simplifying to printed result with no incorrect working or statements se Need an intermediate step e.g. $q^28q < 0$ or $q^2 - 4 \times 2q \times -1 < 0$ or $q^2 - 4(2q)(-1) < 0$ or $q^2 - 8q(-1) < 0$ or i.e. must have \times or brackets on the 4 <i>ac</i> term < 0 must be seen at least one line before the final answer.	
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. would lead to 2 values for q . The "= 0" may be implied by values appearing 1 st A1 for $q = 0$ and $q = -8$ 2 nd A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" reg q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1 Do not accept a number line for final mark	ng later.

Question number	Scheme	Marks	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 3kx^2 - 2x + 1$	M1A1	(2)
(b)	Gradient of line is $\frac{7}{2}$	B1	
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1	
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$	A1	(4)
(c)	$x = -\frac{1}{2} \Longrightarrow y = k \times (-\frac{1}{8}) - (\frac{1}{4}) - \frac{1}{2} - 5, = -6$	M1, A1	(2)
		8	
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)		
	A1 all correct. A "+ c " scores A0		
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark u they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$	intil you are s	sure
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen		
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k =$		
	Equation must use their $\frac{dy}{dx}$ and <u>their gradient of line</u> . Assuming the gradient	ent is 0 or 7 s	cores
	M0 unless they have clearly stated that this is the gradient of the line.		
	A1 for $k = 2$		
(c)	M1 for attempting to substitute their <i>k</i> (however it was found or can still be a le $x = -\frac{1}{2}$ into <i>y</i> (some correct substitution)	etter) and	
	A1 for - 6		

Question number	Scheme	Marks	
10. (a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$	M1	
	$=\sqrt{36+9}$ or $\sqrt{45}$ (condone \pm)	A1	
	$=3\sqrt{5}$ or $a=3$ ($\pm 3\sqrt{5}$ etc is A0)	A1 (3)	
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$	M1, A1	
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2	M1	
	Equation for l_2 is: $y-3 = 2(x-1)$ or $\frac{y-3}{x-1} = 2$ [or $y = 2x + 1$]	M1 A1ft (5)	
(c)	<i>P</i> is $(0, 1)$ (allow " $x = 0, y = 1$ " but it must be clearly identifiable as <i>P</i>	B1 (1)	
(d)	$PQ = \sqrt{(1 - x_P)^2 + (3 - y_P)^2}$ Determinant Method e.g(0+0+7) - (1+21+0)	M1	
	$\mathbf{p}_{\mathbf{q}} = \sqrt{\frac{1}{2} \frac{\mathbf{q}_{\mathbf{q}}^2}{\mathbf{q}_{\mathbf{q}}^2}} \sqrt{\frac{1}{2}}$	A1	
	$PQ = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$ Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5 $= -15$ (o.e.) Area $= \frac{1}{2} -15 , = 7.5$	dM1, A1 (4)	
		13	
(a)	Rules for quoting formula: For an M mark, if a correct formula is quoted and <u>some</u> correct then M1 can be awarded, if no values are correct then M0. If no correct formula is seen the scored for a fully correct expression. M1 for attempting QR or QR^2 . May be implied by $6^2 + 3^2$ 1^{st} A1 for as printed or better. Must have square root. Condone \pm		
(b)	1^{st} M1 for attempting gradient of QR		
	1 st A1 for - 0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_2 = 2$	y = 2x + 1 with no	
	2^{nd} M1 for an attempt to use the perpendicular rule on their gradient of QR . 3^{rd} M1 for attempting equation of a line using Q with their changed gradient. 2^{nd} A1ft requires all 3 Ms but can ft their gradient of QR .	with no working. Send to review.	
(d)	1 st M1 for attempting PQ or PQ^2 follow through their coordinates of P 1 st A1 for PQ as one of the given forms. 2 nd dM1 for correct attempt at area of the triangle. Follow through their value of a and their PQ . This M mark is dependent upon the first M mark 2 nd A1 for 7.5 or some exact equivalent. Depends on both Ms. Some working must be seen.		
ALT	Use QS where S is (1, 0) 1^{st} M1 for attempting area of OPQS and QSR and OPR. Need all 3. 1^{st} A1 for OPQS = $\frac{1}{2}(1+3) \times 1 = 2$, $QSR = 9$, $OPR = \frac{7}{2}$ M1 for attempting area of A1 if corrections of A1 if correctio	Determinant Method M1 for attempt -at least one value in each bracket correct . A1 if correct (±15) M1 for correct area formula A1 for 7.5	
MR	Misreading x-axis for y-axis for P. Do NOT use MR rule as this oversimplifies the They can only get M marks in (d) if they use PQ and QR .	e question.	

Question number	Scheme	Marks
11. (a)	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$	M1
	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$ $\frac{\left(x^{2}+3\right)^{2}}{x^{2}} = \frac{x^{4}+6x^{2}+9}{x^{2}} = x^{2}+6+9x^{-2} (*)$	A1cso (2)
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1
	$20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$ c = -4 $[y =]\frac{x^3}{3} + 6x - 9x^{-1} - 4$	M1
	c = -4	A1
	$[y=]\frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft (6)
		8
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct	ct terms.
	A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.	
(b)	1 st M1 for some correct integration, one correct <i>x</i> term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. 1 st A1 for two correct <i>x</i> terms, un-simplified, as printed or better 2 nd A1 for a fully correct expression. Terms need not be simplified and + <i>c</i> is not r No + <i>c</i> loses the next 3 marks	equired.
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a line	ear equation for <i>c</i>
	3^{rd} A1 for $c = -4$	
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.	
	Condone missing " $y =$ " Follow through their numerical value of <i>c</i> only.	