

Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C1 (6663)

Mathematics C1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA023696
All the material in this publication is copyright
© Edexcel Ltd 2010

This resource was created and owned by Pearson Edexcel

SOME GENERAL PRINCIPLES FOR C1 MARKING

(But the particular mark scheme always takes precedence)

Method marks

Usually we would overlook simple arithmetic errors or sign slips but the correct **processes** should be used. So dividing by a number instead of subtracting would be M0 but adding a number instead of subtracting would be treated as the correct process but a sign error.

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a,b):

If the a and b are the wrong way round the M mark can still be given if a correct formula is seen, (e.g. $y - y_1 = m(x - x_1)$) otherwise M0.

If (a, b) is substituted into y = mx + c to find c, the M mark is for attempting this and scored when c = ... is reached.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would have been lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

If in doubt, send the response to Review.

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C1 6663 Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

June 2010 Core Mathematics C1 6663 Mark Scheme

Question Number	Scheme	Marks	
1.	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$	M1	
	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$	A1	2
	Notes		
	M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere		
	A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or or $k = 2, x = 3$ allow $k = 1, x = 12$ Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48} \text{ leading to } 4\sqrt{3} \text{ is M0A0}$ $25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3} \text{ is M0A0}$		

Question Number	Scheme	Marks
2.	$\frac{8x^4}{4} + \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - 5x + c$	M1 A1
	$=2x^4+4x^{\frac{3}{2}},-5x+c$	A1 A1
	N. A.	4
	<u>Notes</u>	
	M1 for some attempt to integrate a term in x: $x^n \to x^{n+1}$	
	1st A1 for correct, possibly un-simplified x^4 or $x^{\frac{3}{2}}$ term. e.g. $\frac{8x^4}{4}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ 2nd A1 for both $2x^4$ and $4x^{\frac{3}{2}}$ terms correct and simplified on the same line N.B. some candidates write $4\sqrt{x^3}$ or $4x^{\frac{1}{2}}$ which are, of course, fine for A1 3rd A1 for $-5x + c$. Accept $-5x^1 + c$. The $+c$ must appear on the same line as the $-5x$ N.B. We do not need to see one line with a fully correct integral	
	Ignore ISW (ignore incorrect subsequent working) if a correct answer is followed by an incorrect subsequent working) if a correct answer is followed by an incorrect subsequent working) if a correct answer is followed by an incorrect subsequent working) if a correct answer is followed by an incorrect subsequent working) if a correct answer is followed by an incorrect subsequent working if a correct answer is followed by an incorrect subsequent working.	ncorrect version.

Question	Scheme	Marks	:
Number	Scheme	Warks	,
3. (a)	$3x-6 < 8-2x \rightarrow 5x < 14$ (Accept $5x-14 < 0$ (o.e.))	M1	
	$x < 2.8 \text{ or } \frac{14}{5} \text{ or } 2\frac{4}{5}$ (condone \leq)	A1	(2)
(b)	Critical values are $x = \frac{7}{2}$ and -1	B1	
	Choosing "inside" $-1 < x < \frac{7}{2}$	M1 A1	(3)
(c)	-1 < x < 2.8	B1ft	(1)
	Accept any exact equivalents to -1, 2.8, 3.5		6
	Notes	<u> </u>	
(a)	M1 for attempt to rearrange to $kx < m$ (o.e.) Either $k = 5$ or $m = 14$ should be correct Allow $5x = 14$ or even $5x > 14$		
(b)	 B1 for both correct critical values. (May be implied by a correct inequality) M1 ft their values and choose the "inside" region A1 for fully correct inequality (Must be in part (b): do not give marks if only seen in (c)) Condone seeing x < -1 in working provided -1 < x is in the final answer. e.g. x > -1, x < 7/2 or x > -1 "or" x < 7/2 or x > -1 "blank space" x < 7/2 score M1A0 		
	BUT allow $x > -1$ and $x < \frac{7}{2}$ to score M1A1 (the "and" must be seen) Also $\left(-1, \frac{7}{2}\right)$ will score M1A1		
		0	
	NB $x < -1, x < \frac{7}{2}$ is of course M0A0 and a number line even with "open" ends is M0A Allow 3.5 instead of $\frac{7}{2}$	0	
(c)	B1ft for $-1 < x < 2.8$ (ignoring their previous answers) or ft their answers to part (a) and part (b) provided both answers were regions and not single values. Allow use of "and" between inequalities as in part (b) If their set is empty allow a suitable description in words or the symbol \varnothing .		
	Common error: If (a) is correct and in (b) they simply leave their answer as $x < -1$, $x < 3.5$ then in (c) $x < -1$ would get B1ft as this is a correct follow through of these 3 in	nequalities.	
	Penalise use of ≤ only on the A1 in part (b). [i.e. condone in part (a)]		

Question Number	Scheme	Marks	
4. (a)	$(x+3)^2 + 2 \qquad \text{or } p = 3 \text{ or } \frac{6}{2}$ $q = 2$	B1 B1	(2)
(b)	U shape with min in 2^{nd} quad (Must be above x-axis and not on y=axis) U shape crossing y-axis at $(0, 11)$ only (Condone $(11,0)$ marked on y-axis)	B1	(2)
(c)	$b^2 - 4ac = 6^2 - 4 \times 11$ $= -8$ (Condone (11,0) marked on y-axis)	M1 A1	(2) 6
	<u>Notes</u>		
(a)	Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks		
(b)	The U shape can be interpreted fairly generously. Penalise an obvious V on 1 st B1 on The U needn't have equal "arms" as long as there is a clear min that "holds water" 1 st B1 for U shape with minimum in 2 nd quad. Curve need not cross the <i>y</i> -axis but minimum should NOT touch <i>x</i> -axis and should be left of (not on) <i>y</i> -axis 2 nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on <i>y</i> -axis is fine. The point must be marked on the sketch (do not allow from a table of values) Condone stopping at (0, 11)	ly.	
(c)	M1 for some correct substitution into b^2-4ac . This may be as part of the quadratic formula but must be in part (c) and must be only numbers (no x terms present). Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0 for -8 only. If they write $-8 < 0$ treat the < 0 as ISW and award A1 If they write $-8 \ge 0$ then score A0 A substitution in the quadratic formula leading to -8 inside the square root is A So substituting into $b^2 - 4ac < 0$ leading to $-8 < 0$ can score M1A1. Only award marks for use of the discriminant in part (c)		

Question Number	Scheme	Marks	
5. (a)	$a_2 = (\sqrt{4+3}) = \sqrt{7}$ $a_3 = \sqrt{\text{"their 7"} + 3} = \sqrt{10}$	B1 B1ft	(2)
(b)	$a_4 = \sqrt{10+3} \left(= \sqrt{13} \right)$ $a_5 = \sqrt{13+3} = 4 *$	M1 A1 cso	(2)
		A1 C30	4
	<u>Notes</u>		
(a)	1^{st} B1 for $\sqrt{7}$ only 2^{nd} B1ft follow through their "7" in correct formula provided they have \sqrt{n} , where n is a integer.	an	
(b)	M1 for an attempt to find a_4 . Should see $\sqrt{\text{"their"}(a_3)^2 + 3}$. Must see evidence for $a_4 = \sqrt{13}$ provided this follows from their a_3 working or answer is sufficient	M1.	
	A1cso for a correct solution (M1 explicit) must include the = 4.		
	Ending at $\sqrt{16}$ only is A0 and ending with ± 4 is A0.		
	Ignore any incorrect statements that are not used e.g. common difference = $\sqrt{3}$		
	Listing: A full list: $2 = \sqrt{4}$, $\sqrt{7}$, $\sqrt{10}$, $\sqrt{13}$, $\sqrt{16} = 4$ is fine for M1A1		
ALT	Formula: Some may state (or use) $a_n = \sqrt{3n+1}$ leading to $a_5 = \sqrt{3 \times 5 + 1} = 4$. This will get marks in (a) [if correct values are seen] and can score the M1 in (1) if $a_n = \sqrt{3n+1}$ or $a_4 = \sqrt{13}$ are seen.	b)	
±√	If $\pm \sqrt{}$ appear any where ignore in part (a) and withhold the final A mark only	ý	

Question Number	Scheme	Marks	
6.			
	(-5, 3) Horizontal translation of ± 3	M1	
(a)	(-5,3) marked on sketch or in text	B1	
	(0, -5) and min intentionally on y-axis Condone (-5 , 0) if correctly placed on negative y-axis	A1	(3)
	Correct shape and intentionally through (0,0) between the max and min	B1	
(b)	(-2, 6) marked on graph or in text	B1	
	(3, -10) marked on graph or in text	B1	(3)
(c)	(a=) 5	B1	(1)
	<u>Notes</u>	•	
	Turning points (not on axes) should have both co-ordinates given in form(x,y). Do not accept points marked on axes e.g. -5 on x -axis and 3 on y -axis is not sufficient. For repeated offenders apply this penalty once only at first offence and condone elsewhere	nere.	
	In (a) and (b) no graphs means no marks.		
	In (a) and (b) the ends of the graphs do not need to cross the axes provided max and min	are clear	
(a)	M1 for a horizontal translation of ± 3 so accept i.e max in 1 st quad coordinates of $(1, 3)$ or $(6, -5)$ seen. [Horizontal translation to the left should have a min on the y-axis]	<u>and</u>	
	If curve passes through (0,0) then M0 (and A0) but they could score the B1 mark. A1 for minimum clearly on negative y-axis and at least -5 marked on y-axis. Allow this mark if the minimum is very close and the point (0, -5) clearly indicated		
(b)	1 st B1 Ignore coordinates for this mark Coordinates or points on sketch override coordinates given in the text. Condone (<i>y</i> , <i>x</i>) confusion for points on axes only. So (−5,0) for (0, −5) is OK if the point is marked correctly but (3,10) is B0 even if in 4 th quadrant.		
(c)	This may be at the bottom of a page or in the questionmake sure you scroll up and	d down!	

www.mvstudvbro.com **Mathematics C1**

Jan 2010	WWW.myotaayb.oloom	matriornatios o i
ast Paper (Mark Scheme)	This resource was created and owned by Pearson Edexcel	6663

Question Number	Scheme	Marks
7.	$\frac{3x^2 + 2}{x} = 3x + 2x^{-1}$	M1 A1
	$\begin{cases} x \\ (y'=)24x^2, -2x^{-\frac{1}{2}}, +3-2x^{-2} \\ 24x^2 - 2x^{-\frac{1}{2}} + 3 - 2x^{-2} \end{bmatrix}$	M1 A1 A1A1
	$\left[24x^2 - 2x^{-\frac{1}{2}} + 3 - 2x^{-2}\right]$	6
	Notes	0
	1 st M1 for attempting to divide(one term correct)	
	1 st A1 for both terms correct on the same line, accept $3x^1$ for $3x$ or $\frac{2}{x}$ for $2x^{-1}$	
	These first two marks may be implied by a correct differentiation at the end.	
	2^{nd} M1 for an attempt to differentiate $x^n \to x^{n-1}$ for at least one term of their expression	on
	"Differentiating" $\frac{3x^2 + 2}{x}$ and getting $\frac{6x}{1}$ is M0	
	2^{nd} A1 for $24x^2$ only	
	3^{rd} A1 for $-2x^{-\frac{1}{2}}$ allow $\frac{-2}{\sqrt{x}}$. Must be simplified to this, not e.g. $\frac{-4}{2}x^{-\frac{1}{2}}$	
	4 th A1 for $3-2x^{-2}$ allow $\frac{-2}{x^2}$. Both terms needed. Condone $3+(-2)x^{-2}$	
	If " $+c$ " is included then they lose this final mark	
	They do not need one line with all terms correct for full marks. Award marks when first seen in this question and apply ISW.	
	Condone a mixed line of some differentiation and some division e.g. $24x^2 - 4x^{\frac{1}{2}} + 3x + 2x^{-1}$ can score 1 st M1A1 and 2 nd M1A1	
Quotient	$x(6x)-(3x^2+2)\times 1$ 1st M1 for an attempt: $\frac{P-Q}{x^2}$ o	R + (-S) with
/Product Rule	$\frac{x(6x)-(3x^2+2)\times 1}{x^2} \text{ or } 6x(x^{-1})+(3x^2+2)(-x^{-2})$ $\begin{cases} 1^{\text{tr}} M1 \text{ for an attempt: } \frac{2}{x^2} \text{ or } R+(-S) \text{ with one of } P,Q \text{ or } R,S \text{ correct.} \\ 1^{\text{st}} A1 \text{ for a correct expression} \end{cases}$	
	$\frac{3x^2-2}{x^2}$ or $3-\frac{2}{x^2}$ (o.e.)	

Question Number	Scheme	Marks	
8. (a)	$m_{AB} = \frac{4-0}{7-2} \left(= \frac{4}{5} \right)$	M1	
	Equation of AB is: $y-0 = \frac{4}{5}(x-2)$ or $y-4 = \frac{4}{5}(x-7)$ (o.e.)	M1	
	4x - 5y - 8 = 0 (o.e.)	A1	(3)
(b)	$(AB =)\sqrt{(7-2)^2+(4-0)^2}$	M1	
	$=\sqrt{41}$	A1	(2)
(c)	Using isos triangle with $AB = AC$ then $t = 2 \times y_A = 2 \times 4 = 8$	B1	(1)
(d)	Area of triangle = $\frac{1}{2}t \times (7-2)$	M1	
	= <u>20</u>	A1	(2)
	Notes		8
(a) (b) (c) (d) DET	Apply the usual rules for quoting formulae here. For a correctly quoted formula with some correct substitution award M1 If no formula is quoted then a fully correct expression is needed for the M mark 1^{st} M1 for attempt at gradient of AB . Some correct substitution in correct formula. 2^{nd} M1 for an attempt at equation of AB . Follow through their gradient, not e.g. $-\frac{1}{m}$ Using $y = mx + c$ scores this mark when c is found. Use of $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ scores 1^{st} M1 for denominator, 2^{nd} M1 for use of a correct point A1 requires integer form but allow $5y + 8 = 4x$ etc. Must have an "=" or A0 for an expression for AB or AB^2 . Ignore what is "left" of the equals sign for $t = 8$. May be implied by correct coordinates $(2, 8)$ or the value appearing in for an expression for the area of the triangle, follow through their $t \neq 0$ but must have the $(7-2)$ or 5 and the $\frac{1}{2}$. e.g. $\frac{2}{0}$ $\frac{7}{4}$ $\frac{2}{t}$ $\frac{2}{t}$ Area $\frac{1}{2}$ $\frac{1}{t}$ $\frac{1}{t}$ Area $\frac{1}{2}$ $\frac{1}{t}$ Must have the $\frac{1}{2}$ for M1	(d)	

Question Number	Scheme	Marks	S
9. (a)	a + 29d = 40.75 or $a = 40.75 - 29d$ or $29d = 40.75 - a$	M1 A1	(2)
(b)	$(S_{30}) = \frac{30}{2}(a+l) \text{ or } \frac{30}{2}(a+40.75) \text{ or } \frac{30}{2}(2a+(30-1)d) \text{ or } 15(2a+29d)$ So $1005 = 15[a+40.75]$ *	M1 A1 cso	(2)
(c)	67 = a +40.75 so $\underline{a} = (\pounds) \ 26.25 \text{ or } 2625 \text{p or } 26\frac{1}{4} \text{ NOT } \frac{105}{4}$	M1 A1	
	$29d = 40.75 - 26.25$ $= 14.5$ so $d = (£)0.50 \text{ or } 0.5 \text{ or } 50p \text{ or } \frac{1}{2}$	M1 A1	(4) 8
	Notes		
(a)	 M1 for attempt to use a + (n - 1)d with n = 30 to form an equation. So a + (30 - 1)d = any number is OK A1 as written. Must see 29d not just (30 - 1)d. Ignore any floating £ signs e.g. a + 29d = £40.75 is OK for M1A1 These two marks must be scored in (a). Some may omit (a) but get correct equation in (c) [or (b)] but we do not give the marks retrospectively. 	on	
	Parts (b) and (c) may run together		
(b)	M1 for an attempt to use an S_n formula with $n = 30$.		
	Must see one of the printed forms. (S_{30} = is not required)		
	A1cso for forming an equation with 1005 and S_n and simplifying to printed answer. Condone £ signs e.g. $15[a+ £40.75]=1005$ is OK for A1		
(c)	1 st M1 for an attempt to simplify the given linear equation for a . Correct processes. Must get to $ka =$ or $k = a + m$ i.e. one step (division or subtraction) from $a =$ Commonly: $15a = 1005 - 611.25$ (= 393.75) 1 st A1 For $a = 26.25$ or 2625 p or $26\frac{1}{4}$ NOT $\frac{105}{4}$ or any other fraction		
	2 nd M1 for correct attempt at a linear equation for <i>d</i> , follow through their <i>a</i> or equation in Equation just has to be linear in <i>d</i> , they don't have to simplify to <i>d</i> = 2 nd A1 depends upon 2 nd M1 and use of correct <i>a</i> . Do not penalise a second time if there were minor arithmetic errors in finding <i>a</i> provided <i>a</i> = 26.25 (o.e.) is used.		
	Do not accept other fractions other than $\frac{1}{2}$		
	If answer is in pence a "p" must be seen.		
Sim Equ	Use this scheme: 1st M1A1 for a and 2^{nd} M1A1 for d . Typically solving: $1005=30a+435d$ and $40.75=a+29d$. If they find d first then follow through use of their d when finding a .		

Question	Scheme	Marks
Number 10. (a)		B1
10. (a)	(i) ∩ shape (anywhere on diagram) Passing through or stopping at (0, 0) and (4,0) only(Needn't be ∩ shape)	B1
	(ii) correct shape (-ve cubic) with a max and min drawn anywhere	B1
	4 7 Minimum or maximum at (0,0)	B1
	Passes through or stops at (7,0) but NOT touching.	B1 (5)
	(7, 0) should be to right of (4,0) or B0 Condone (0,4) or (0, 7) marked correctly on x-axis. Don't penalise poor overlap near ori Points must be marked on the sketchnot in the text	gin.
(b)	$x(4-x) = x^{2}(7-x) (0=)x[7x-x^{2}-(4-x)]$	M1
	$(0 =)x[7x - x^2 - (4 - x)] mtext{(o.e.)}$	B1ft
	$0 = x\left(x^2 - 8x + 4\right) *$	A1 cso (3)
(c)	$\left(0 = x^2 - 8x + 4 \Rightarrow\right) x = \frac{8 \pm \sqrt{64 - 16}}{2} \text{or} \left(x \pm 4\right)^2 - 4^2 + 4 = 0$	M1
(0)	$\begin{pmatrix} x-4 \end{pmatrix} = 12$	A1
	$=\frac{8\pm4\sqrt{3}}{2}$ or $(x-4)=\pm2\sqrt{3}$	B1
	$x = 4 \pm 2\sqrt{3}$	A1
	From sketch A is $x = 4 - 2\sqrt{3}$	M1
	So $y = (4 - 2\sqrt{3})(4 - [4 - 2\sqrt{3}])$ (dependent on 1 st M1)	M1
	$=-12+8\sqrt{3}$	A1 (7)
	Notes	
(b)	M1 for forming a suitable equation B1 for a common factor of x taken out legitimately. Can treat this as an M mark. Can cubic = 0 found from an attempt at solving their equations e.g. $x^3 - 8x^2 - 4x = x$ 0 A1cso no incorrect working seen. The "= 0" is required but condone missing from some working. Cancelling the x scores B0A0.	(
(c)	1^{st} M1 for some use of the correct formula or attempt to complete the square	
	1 st A1 for a fully correct expression: condone + instead of \pm or for $(x-4)^2 = 12$	
	B1 for simplifying $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{12} = 2\sqrt{3}$. Can be scored independently of this	expression
	2^{nd} A1 for correct solution of the form $p + q\sqrt{3}$: can be \pm or $+$ or $ 2^{\text{nd}}$ M1 for selecting their answer in the interval (0,4). If they have no value in (0,4) scor	e M0
	3^{rd} M1 for attempting $y =$ using their x in correct equation. An expression needed for M 3^{rd} A1 for correct answer. If 2 answers are given A0.	

6663

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
11	$(y =) \frac{3x^2}{2} - \frac{5x^{\frac{1}{2}}}{\frac{1}{2}} - 2x (+c)$ $f(4) = 5 \implies 5 = \frac{3}{2} \times 16 - 10 \times 2 - 8 + c$ $c = 9$ $[f(x) = \frac{3}{2}x^2 - 10x^{\frac{1}{2}} - 2x + 9]$ $m = 3 \times 4 - \frac{5}{2} - 2 (= 7.5 \text{ or } \frac{15}{2})$ Equation is: $y - 5 = \frac{15}{2}(x - 4)$	M1A1A1 M1 A1 (5) M1 M1 M1A1
(a)	$\frac{2y - 15x + 50 = 0}{1^{\text{st}} \text{ M1}} \text{o.e.}$	A1 (4) (9marks)
	1st A1 for at least 2 correct terms in x (unsimplified) 2nd A1 for all 3 terms in x correct (condone missing $+c$ at this point). Needn't be simple 2nd M1 for using the point (4, 5) to form a linear equation for c . Must use $x = 4$ and $y = 1$ have no x term and the function must have "changed". 3rd A1 for $c = 9$. The final expression is not required.	
(b)	They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $f'(x)$ with $x = 4$. Award this mark wherever it is seen.	
	2^{nd} M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using x $f'(x)$) to form an equation of the line through $(4,5)$). Allow this mark for an attempt at a normal or tangent. Their m must be numerious of $y = mx + c$ scores this mark when c is found. 1st A1 for any correct expression for the equation of the line	
Normal	2^{nd} A1 for any correct equation with integer coefficients. An "=" is required. e.g. $2y = 15x - 50$ etc as long as the equation is correct and has integer coefficients. Attempt at normal can score both M marks in (b) but A0A0	ents.

Mathematics C1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C1

6663

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023696 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH