

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6664/01)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

June 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	SCHEME		Marks
Q1	$\int \left(2x+3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ $\int \left(2x+3x^{\frac{1}{2}}\right) dx = \left[x^2+2x^{\frac{3}{2}}\right]_1^4 = 16+2\times8 - 1+2$	M1 A1A1	
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx = \left[x^{2} + 2x^{\frac{3}{2}}\right]_{1}^{4} = 16 + 2 \times 8 - 1 + 2$	M1	
	= 29 (29 + C scores A0)	A1	(5) [5]
	1 st M1 for attempt to integrate x or $x^{\frac{1}{2}}$ or $x^{\frac{3}{2}}$.		
	$1^{\text{st}} A1$ for $\frac{2x^2}{2}$ or a simplified version.		
	$2^{\text{nd}} \text{ A1 for } \frac{2x^{\frac{3}{2}}}{8/2} \text{ or } \frac{3}{2} \sqrt{\frac{1}{2}}$ or a simplified version.		
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1.	A0.	
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).	y	
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.		
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).		

Question Number	Scheme	Marks	
Q2 (a)	The 7 or 21 can be in 'unsimplified' form.	M1	
	$2 + kx^{7} = 2^{7} + 2^{6} \times 7 \times kx + 2^{5} \times {7 \choose 2} k^{2} x^{2}$		
	= 128; $+448kx$, $+672k^2x^2$ [or $672(kx)^2$] (If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	B1; A1, A1 (4)	
(b)	$6 \times 448k = 672k^2$	M1	
	k = 4 (Ignore $k = 0$, if seen)	A1 (2) [6]	
(a)	The terms can be 'listed' rather than added. Ignore any extra terms.		
	M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any factor with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as Allow binomial coefficients such as However, 448 x or similar is M0. B1, A1, A1 for the simplified versions seen above. Alternative: Note that a factor 2^7 can be taken out first: 2^7 x but the mark scheme still applications if necessary after correct working: e.g. $128 - 48kx - 72k^2x^2$ M1 B1 A1 A1 Allow binomial coefficient in any factor in the coefficient (perhaps including powers)	g	
(b)	M1 for equating their coefficient of x^2 to 6 times that of x to get an equation in k , or equating their coefficient of x to 6 times that of x^2 , to get an equation in k . Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, e.g. 6 48k 572k, but beware $k = 4$ following from this, which is A0. An equation in k alone is required for this M mark, so e.g. 6 48k 572 k^2 7 or similar is M0 A0 (equation in coefficients only is never seen), but e.g. 6 48k 572 k^2 2 48k 572 k^2 4 will get M1 A1 (as coefficients rather than terms have now been considered).		

watnematic	SUZ
edexce	6664

_	stion nber	Scheme	Mar	·ks
Q3	(a)	f(k) = -8	B1	(1)
	(b)	$f(2) = 4 \Rightarrow 4 = (6-2)(2-k)-8$	M1	
		So $k = -1$	A1	(2)
	(c)	$f(x) = 3x^2 - 2 + 3k x + 2k - 8$	M1	
		=(3x-5)(x+2)	M1A1	(3)
				[6]
	 (b) M1 for substituting x = 2 (not x) and equating to 4 to form an equation in k. If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the here as a 'slip' and allow the M mark. Beware: Substituting x and equating to 0 (M0 A0) also gives k. Alternative; M1 for dividing by (x), to get 3x (function of k), with remainder as a function of and equating the remainder to 4. [Should be 3x 4 k), remainder k]. No working: k with no working scores M0 A0. (c) 1st M1 for multiplying out and substituting their (constant) value of k (in either order). The multiplying-out may occur earlier. Condone, for example, sign slips, but if the 4 (from part (b)) is included in the fexpression, this is M0. The 2nd M1 is still available. 2nd M1 for an attempt to factorise their three term quadratic (3TQ). 			
		A1 The correct answer, as a <u>product of factors</u> , is required. Allow 3 (x)		

_	stion nber	Scheme	Ма	rks		
Q4	(a)	$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1			
		x = 2.5 gives 2.580 (allow AWRT) Accept 2.58	B1	(2)		
	(b)	1.414 (1.554 (1.5	B1,[M1A1ft]			
		= 6.133 (AWRT 6.13, even following minor slips)	A1	(4)		
	(c)	Overestimate	B1			
		'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1	(2) [8]		
	(b)	B1 for $\frac{1}{2}$ or equivalent.				
		For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed.				
		Bracketing mistake: i.e. $\frac{1}{2}$ 1.414 1 2 (1.554 1.732 1.957 1.236 1.580) scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given).				
		Alternative: Separate trapezia may be used, and this can be marked equivalently.				
		$\frac{1}{4}(1.414554) - \frac{1}{4}(1.554732) \frac{1}{4}(2.580)$				
		1 st A1ft for correct expression, ft their 2.236 and their 2.580				
	(c)	1 st B1 for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. 2 nd B1 is dependent upon the 1 st B1 (overestimate).				

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C2 COEXCE

Past Paper (Mark Scheme)

_	stion nber	Scheme	Marks				
Q5	(a)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1				
	41.)	$r = \frac{2}{3} \tag{*}$	A1cso (2)				
	(b)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$ $r = \frac{2}{3}$ $a = \frac{2}{3}$	M1, A1 (2)				
	(c)	$S_{15} = \frac{729 \ 1 - \left[\frac{2}{3}\right]^{15}}{1 - \frac{2}{3}}, = 2182.00$ (AWRT 2180)	M1A1ft, (3)				
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, \qquad = 2187$	M1, A1 (2) [9]				
	(a)	M1 for forming an equation for r^3 based on 96 and 324 (e.g. $96r^3$ 324 scores M1).					
		The equation must involve multiplication/division rather than addition/subtraction. Al Do not penalise solutions with working in decimals, providing these are correctly					
		rounded or truncated to at least 2dp <u>and</u> the final answer 2/3 is seen. <u>Alternative</u> : (verification)					
		Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three times).					
		A1 Obtaining 96 (cso). (A conclusion is not required).					
		324 6 (no real evidence of calculation) is not quite enough and scores M1 A0.					
	(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice					
		from 324 (or 5 times from 96).					
		Exceptionally, allow M1 also for using ar^3 24 or ar^6 6 instead of ar^2 324 or ar^5 6, or for dividing by r three times from 324 (or 6 times from 96) but no other exceptions are allowed.					
	(c)	M1 for use of sum to 15 terms formula with values of <i>a</i> and <i>r</i> . If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated.					
		1 st A1ft for a correct expression or correct ft their a with $r = \frac{1}{3}$.					
		2 nd A1 for awrt 2180, even following 'minor inaccuracies'.					
		Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).					
		Alternative:	- 2				
		M1 for adding 15 terms and 1^{st} A1ft for adding the 15 terms that ft from their a and	$r = \frac{1}{3}$.				

(d)

M1

for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing |r|

www.mvstudvbro.com

Mathematics C2

Julillier 2003	www.iiiystuuybio.coiii	Maniciliance CZ
Past Paper (Mark Scheme)	This resource was created and owned by Pearson Edexcel	edexcel ⁶⁶⁶⁴

Question Number	YOUNG	Ma	ırks	
Q6 (a	$x-3^2-9+y+2^2-4=12$ Centre is $(3,-2)$	M1 A1	, A1	
	$x-3^2 + y+2^2 = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1 A1	(5)	
(b	$PQ = \sqrt{(7-1)^2 + (-5-1)^2}$ or $\sqrt{8^2 + 6^2}$	M1		
	= $10 = 2 \times \text{radius}$, : diam. (N.B. For A1, need a comment or conclusion)	A1	(2)	
	[ALT: midpt. of PQ $\frac{7}{2}$, $\frac{1}{2}$: M1, $= (3, -2) = \text{centre: A1}$]			
	[ALT: eqn. of PQ $3x$ y			
	[ALT: find two grads, e.g. PQ and P to centre: M1, equal \therefore diameter: A1] [ALT: show that point $S(\square, \square)$ or $(7, 1)$ lies on circle: M1			
(с	because $\angle PSQ = 90^\circ$, semicircle : diameter: A1] R must lie on the circle (angle in a semicircle theorem) often implied by a diagram with R on the circle or by subsequent working)	B1		
	$x = 0 \Longrightarrow y^2 + 4y - 12 = 0$	M1		
	$(y-2)(y+6) = 0$ $y \blacksquare \dots$ (M is dependent on previous M)	dM1 A1	(4)	
	y = -6 or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	Ai	(4) [11]	
(a	(a) 1^{st} M1 for attempt to complete square. Allow $(x \otimes y)^2 \otimes x$, or $(y \otimes y)^2 \otimes x$, $k \otimes x$. 1^{st} A1 x-coordinate 3, 2^{nd} A1 y-coordinate -2 2^{nd} M1 for a full method leading to $r = \dots$, with their 9 and their 4, 3^{rd} A1 5 or $\sqrt{25}$			
	The 1^{st} M can be <u>implied</u> by (\blacksquare , \blacksquare) but a full method must be seen for the 2^{nd} M.			
	Where the 'diameter' in part (b) has <u>clearly</u> been used to answer part (a), no marks in (a), but in this case the M1 (<u>not</u> the A1) for part (b) can be given for work seen in (a). Alternative			
	1 st M1 for comparing with $x^2 - y^2 - 2gx - 2fy$ to write down centre ($x^2 - y^2 - 2fy - 2fy$) to write down centre ($x^2 - y^2 - 2fy - 2fy$	ı		
	2^{nd} M1 for using $r = \sqrt{g^2 + f^2} = c$. Condone sign errors for this M mark.			
(c) 1^{st} M1 for setting $x = 0$ and getting a 3TQ in y by using eqn. of circle. 2^{nd} M1 (dep.) for attempt to solve a 3TQ leading to at least one solution for y . Alternative 1: (Requires the B mark as in the main scheme) 1^{st} M for using (3, 4, 5) triangle with vertices (3, \blacksquare 2), (0, \blacksquare 2), (0, y) to get a linear or				
	quadratic equation in y (e.g. $3^2 - y - 2^2$). $2^{\text{nd}} \text{ M (dep.)}$ as in main scheme, but may be scored by simply solving a linear equation Alternative 2: (Not requiring realisation that R is on the circle)	n.		
	B1 for attempt at m_{PR} m_{QR} m_{PQ} , $(NOT \ m_{PQ})$ or for attempt at Pythag. in triangle	PQR.		
	1^{st} M1 for setting $x = 0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main scheme. Alternative 2 by 'verification':			
	B1 for attempt at m_{PR} m_{QR} , (NOT m_{PQ}) or for attempt at Pythag. in triangle	PQR.		
	1 st M1 for trying (0, 2). 2 nd M1 (dep.) for performing all required calculations.			
	A1 for fully correct working and conclusion.			
<u> </u>				

Maniemand	5 62
edexce	6664

Question Number	Scheme	Marks
Q7 (i)	$\tan \theta = -1 \Rightarrow \qquad \theta = -45, 135$ $\sin \theta = -2 \Rightarrow \qquad \theta = -23.6, 156.4 \qquad (AWDT: 24.156)$	B1, B1ft B1, B1ft (4)
(ii)	$\sin \theta = \frac{2}{5} \Rightarrow \qquad \theta = 23.6, 156.4$ $4\sin x = \frac{3\sin x}{\cos x}$ (AWRT: 24, 156)	M1
	$4\sin x \cos x = 3\sin x \implies \sin x (4\cos x - 3) = 0$ Other possibilities (after squaring): $\sin^2 x (16\sin^2 x)$), $(16\cos^2 x)(\cos^2 x)$	M1
	$x = 0, 180 \underline{\text{seen}}$	B1, B1
	x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)
		[10]
(i)	1 st B1 for -45 seen $(\alpha, \text{ where})$ 0) 2 nd B1 for 135 seen, or ft $(180 + \alpha)$ if α is negative, or $(\alpha - 180)$ if α is positive. If tanger is obtained from wrong working, 2 nd B1ft is still available. 3 rd B1 for awrt 24 $(\beta, \text{ where})$ 0) 4 th B1 for awrt 156, or ft $(180 - \beta)$ if β is positive, or $-(180 + \beta)$ if β is negative. If singer is obtained from wrong working, 4 th B1ft is still available.	
(ii)	1 st M1 for use of $\tan x = \frac{\sin x}{\cos x}$. Condone $\frac{3\sin x}{3\cos x}$. 2 nd M1 for correct work leading to 2 factors (may be implied). 1 st B1 for 0, 2 nd B1 for 180. 3 rd B1 for awrt 41 (γ , where 80) 4 th B1 for awrt 319, or ft (360 – γ). If \cos is obtained from wrong working, 4 th B1ft is still available. N.B. Losing $\sin x$ usually gives a maximum of 3 marks M1M0B0B0B1B1 Alternative: (squaring both sides) 1 st M1 for squaring both sides and using a 'quadratic' identity. e.g. $16\sin^2$ (sec ²) 2 nd M1 for reaching a factorised form. e.g. $(16\cos^2$ (cos ²) (cos ²) Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are per the main scheme.	nalised as in
	Extra solutions outside required range: Ignore Extra solutions inside required range: For each <u>pair</u> of B marks, the 2 nd B mark is lost if there are two correct values and one	or
	more extra solution(s), e.g. tan 45, 45, 135 is B1 B0 Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).	

www.mystudybro.com

cel

Mathematics C2 edexcel 66664

Past Paper (Mark Scheme)	This resource was	created and owned	by Pearson	Edexc
--------------------------	-------------------	-------------------	------------	-------

Nun	ition iber	Scheme	Mar	rks
Q8	(a)	$\log_2 y = -3 \Rightarrow y = 2^{-3}$	M1	
		$y = \frac{1}{8}$ or 0.125	A1	(2)
	(b)	$32 \square^{5} \text{or} 16 \square^{2} \text{or} 512 \square^{9}$	M1	
		[or $\log_2 32 = 5\log_2 2$ or $\log_2 16 = 4\log_2 2$ or $\log_2 512$ $\log_2 2$]		
		[or $\log_2 32$ $\log_{10} 32$ or $\log_2 16$ $\log_{10} 16$ or $\log_2 512$ $\log_{10} 512$]		
		$\log_2 32 + \log_2 16 = 9$	A1	
		$(\log x)^2$. or $(\log x)(\log x)$. (May not be seen explicitly, so M1 may be implied by later work, and the base may be 10 rather than 2)	M1	
		$\log_2 x = 3 \Rightarrow x = 2^3 = 8$	A1	
		$\log_2 x = -3 \Rightarrow x = 2^{-3} = \frac{1}{8}$	A1ft	(5) [7]
		A1 for the <u>exact</u> answer, e.g. $\log_{10} y$	A0.	
	(b)			
		5, 4 or 9 respectively).		
		1^{st} A1 for 9 (exact). 2^{nd} M1 for getting $\log_2 x$ = constant. The constant can be a log or a sum of logs.		
		If written as $\log_2 x^2$ instead of $\log_2 x$, allow the M mark <u>only</u> if subsequent	<u>.</u>	
		work implies correct interpretation. 2 nd A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0		
		3^{rd} A1ft for an answer of $\frac{1}{\text{their }8}$. An ft answer may be non-exact.		
		Possible mistakes:		
		108 ₂	0	
		$\log_2 512 \log_2 x \log_2 x$ $\log_2 x$ scores M0A0(9 never seen)M1A0A	.U	
		$\log_2 512 \log_2 x \log_$		

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C2 edexcel

Past Paper (Mark Scheme)

Question Number	Scheme	Marks		
Q9 (a)	$3rh \text{ or } (2rh + rh) \text{ in the } S \text{ formula.}$ (Requires use of $\theta = 1$).	B1		
	(Sector area =) $\frac{1}{2}r^2$ r^2 r^2 . Can be awarded by implication from later	B1		
	work, e.g. the correct volume formula. (Requires use of $\theta = 1$). Surface area = 2 sectors + 2 rectangles + curved face			
	$(= r^2 + 3rh)$ (See notes below for what is allowed here)	M1		
	Volume = $300 = \frac{1}{2}r^2h$ Sub for h : $S = r^2 + 3x = 600$ = $r^2 + 1800$ (*)	B1 A1cso (5)		
(b)	Sub for h : $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*) $\frac{dS}{dr} = 2r - \frac{1800}{r^2} \text{ or } 2r \blacksquare 800r \blacksquare \text{ or } 2r \blacksquare 800r \blacksquare$	M1A1		
	$\frac{dS}{dr}$, $r = \sqrt[3]{900}$, or AWRT 9.7 (NOT). 7 or	M1, A1 (4)		
	$\frac{d^2S}{dr^2}$ and consider sign, $\frac{d^2S}{dr^2} = 2 + \frac{3600}{r^3} > 0$ so point is a minimum	M1, A1ft (2)		
(d)	$S_{\min} = 9.65^2 + \frac{1800}{9.65}$			
	(Using their value of r , however found, in the given S formula) = 279.65 (AWRT: 280) (Dependent on full marks in part (b))	M1 (2) [13]		
(a)	M1 for attempting a formula (with terms added) for surface area. May be incompleted may have extra term(s), but must have an r^2 (or r^2) term and an rh (or rh) term.	or wrong and		
(b)	in parts (b), (c) and (d), ignore labering of parts			
	$1^{\text{st}} M1$ for attempt at differentiation (one term is sufficient) $r^n = 2^{\text{nd}} M1$ for setting their derivative (a 'changed function') = 0 and solving as far as $r^3 = 2^{\text{nd}} M1$. .		
	(depending upon their 'changed function', this could be $r = 1$. or $r^2 = 1$., etc., the algebra <u>must deal with a negative power</u> of r and should be sound apart from			
(c)	possible <u>sign</u> errors, so that r^n is consistent with their derivative). M1 for attempting second derivative (one term is sufficient) r^n , and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0).	<u>idering</u>).		
	A1ft for a correct second derivative (or correct ft from their first derivative) <u>and</u> a valid (e.g. > 0), <u>and</u> conclusion. The actual <u>value</u> of the second derivative, if found, can be ignored this mark as ft, their second derivative must indicate a minimum. Alternative:			
	M1: Find <u>value</u> of $\frac{dS}{dr}$ on each side of their value of r and consider sign.			
	A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.			
	Alternative: M1: Find value of S on each side of their value of r and compare with their 279.65. A1ft: Indicate that both values are more than 279.65, and conclude minimum.			