

Mark Scheme (Results)

January 2013

GCE Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code US034362 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are `correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.

6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of `0' or `1' for each mark, or "trait", as shown:

	0	1
аM		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

January 2013 6664 Core Mathematics C2 Mark Scheme

Question Number	Sch	neme	Marks
1.	$(2-5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times (2)^{6-p} (-5x)^p \text{ with } p = 1 \text{ or } p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. ${}^{6}C_1 \text{ or } \binom{6}{1} \text{ or even } \left(\frac{6}{1}\right)$	M1
	-960x	Do not allow $+-960x$	A1 (first)
	$(+)6000x^2$	Allow this to come from $(5x)^2$	A1 (Second)
	Special Case - decreasing powers can sco second and $(2-5x)^6 = 64 + \binom{6}{1}(2^5-5x) + \binom{6}{2}$	te lines. re M1 with the conditions as above for the third terms. $\int (2^4 + (-5x)^2)$ scores B1 only as the being added not multiplied.	
	Fully correct answer with no working can score full marks. If either the second or third term is correct, the M1 can be implied and the A1 scored for that term.		
	term is correct, the M1 can be impl	ied and the A1 scored for that term.	(4)
			(-)
Way 2	64(1±)	64 and $(1 \pm \dots - Award$ when first seen.	B1
	$\left(1-\frac{5x}{2}\right)^6 = 1 - 6 \times \frac{5x}{2} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^2$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times (kx)^p \text{ with } p = 1 \text{ or } p = 2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $(1-kx)^6$ where $k \neq \pm 5$	M1
	-960x	Do not allow $+-960x$	A1
	$(+)6000x^2$	Allow this to come from $\left(\frac{5x}{2}\right)^2$	A1

Question Number	Scheme		Marks
2.			
(a)	f(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	Attempt f(±1)	M1
	<i>a</i> + <i>b</i> = 7 *	Must be $f(1)$ and $= 0$ needs to be seen	A1
			(2)
(b)	$f(-2) = a(-2)^{3} + b(-2)^{2} - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1
	(-8a + 4b = 4)		
	Solves the given equation from part (a)		
	and their equation in a and b from part		M1
	(b) as far as $a =$ or $b =$ a = 2 and $b = 5$	Both correct	A1
	Attempts at trial and improvement in (b): Allow the first M1 if they try values for a and b where $a + b = 7$ and substitute their values into the cubic		
	along with $x = \pm 2$ and sets = 9. For completion to $a = 2$ and $b = 5$ fully shown		
	to be correct allow 4/4. For incomplete or incorrect solutions allow the first		
	M1 only. If in doubt consult your team leader.		
			(4)
			[6]
	Long Divis		
	$(ax^3+bx^2-4x-3)\div(x-$	$-1) = ax^2 + px + q$	
	where p and q are in terms	of a or b or both	
(a)			M1
	and sets their remainder $= 0$		
	NB Quotient = $ax^2 + (a+b)x + (a+b-4)$		
	a + b = 7	*	A1
			(2)
	$\left(ax^3 + bx^2 - 4x - 3\right) \div \left(x + 2x\right)$	$2) = ax^2 + px + q$	
	where p and q are in terms of	f <i>a</i> or <i>b</i> or both	
(b)	and sets their remainder = 9		M1
	NB Quotient = $ax^2 + (b-2)$		
	4b - 8a + 5		A1
	Follow scheme for f	final 2 marks	

Question Number		Scheme	Marks
3.			
(a)	$120000 \times (1.05)^3 = 138915 *$	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or $120000, 126000, 132000, 138915$ Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1
			(1
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$\log 1.05^{n-1} > \log\left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ e.g $(n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc. Allow 1.6 or awrt 1.67 for 5/3.	A1
		M1: Identifies a calendar year using their value	
	2024	of <i>n</i> or <i>n</i> - 1	M1A1
		A1: 2024 only cso	1
	2024 wit	h no working = no marks	
		king logs base 1.05 and mis-read as total profit	
	bee uppendix for alternative ta	Ring logs buse 1.05 and his fead as total profit	(5
	$\frac{a(1-r^n)}{1-r} = \frac{120000(1-1.05^{11})}{1-1.05}$	M1: Correct sum formula with $n = 10, 11$ or 12	
(c)	$\frac{1}{1-r} = \frac{1}{1-1.05}$	A1: Correct numerical expression with $n = 11$	M1 A1
	1704814	Cao (Allow 1704814.00)	A1
			(3
			[9
	Listing o	or trial/improvement in (b)	
		$U_{11} = 195\ 467.36, U_{12} = \ 205\ 240.72$	
		1 th or 12 th terms correctly using a common ratio of 1.05 terms need not be listed)	M1
	Forms the geometric progression correctly to reach a term > 200 000 (May be implied e.g. reaches 195 467.36 – Hence the next year)		M1
		wrt 195 500 and a "12 th " term of awrt 205 200	A1
	Uses their numbe	r of terms to identify a calendar year	M1
		2024	A1
	If you are not sure how to awa	ard the marks please consult your Team Leader	(5

Question Number	Ncheme		Marks	
4.				
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1	
	10	Uses their α to find x.		
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Allow $x = \frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1	
	Note: If $x = \frac{\alpha \pm 10}{3}$ is not clearly applied from the second seco	om their first angle it may be recovered if		
	applied to their second or third angle.			
	<i>x</i> = 41.2	Awrt	A1	
	$(3x-10=)360-\alpha$ (246.4)	$360 - \alpha$ (can be implied by 246.4)	M1	
	x = 85.5	Awrt	A1	
	$(3x-10=)360+\alpha$ (=473.57)	$360 + \alpha$ (Can be implied by 473.57)	M1	
			A1	
	x = 161.2AwrtNote 1: Do not penalise incorrect accuracy more than once and penalise it the first time it occurs. E.g if answers are only given to the nearest integer (41, 85, 161) only the first A mark that would otherwise be scored is lost.			
	Note 2: Ignore any answers outside the range. For extra answers in range in an otherwise			
	fully correct solution lose final A1Note 3: Lack of working means that it is sometimes not clear where their intermediate angles are coming from. In these cases, if the final answers are incorrect score M0.			
	are coming from. In these cases, if the final a	nswers are incorrect score M0.		
	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians		
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians		
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanism.	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians	B1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α)	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied ispect that the candidate is working in radians sm and/or consult your team leader.	B1 M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians sm and/or consult your team leader. Awrt 114		
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians sm and/or consult your team leader. Awrt 114 Uses their 113.58 to find x	M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha$ (246.4) to give $x = 85.5$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians sm and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt	M1 A1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha$ (246.4)	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their n such cases the main scheme should be applied Ispect that the candidate is working in radians sm and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt	M1 A1 M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha$ (246.4) to give $x = 85.5$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied In spect that the candidate is working in radians Isom and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α	M1 A1 M1 A1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha$ (246.4) to give $x = 85.5$ $3x - 10 = 540 - \alpha$ (473.57) to give $x = 161.2$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Inspect that the candidate is working in radians Isom and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α	M1 A1 M1 A1 M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanist $\cos^{-1}(0.4) = 66.42$ (α) 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha$ (246.4) to give $x = 85.5$ $3x - 10 = 540 - \alpha$ (473.57) to give $x = 161.2$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanis $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha \ (246.4)$ to give $x = 85.5$ $3x - 10 = 540 - \alpha \ (473.57)$ to give $x = 161.2$ Special case -	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1 A1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanis $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha \ (246.4)$ to give $x = 85.5$ $3x - 10 = 540 - \alpha \ (473.57)$ to give $x = 161.2$ Special case - $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ $3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$ x = 41.2	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1 A1 B0	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanis $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha \ (246.4)$ to give $x = 85.5$ $3x - 10 = 540 - \alpha \ (473.57)$ to give $x = 161.2$ Special case - $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ $3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1 A1 B0 M1	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanis $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha \ (246.4)$ to give $x = 85.5$ $3x - 10 = 540 - \alpha \ (473.57)$ to give $x = 161.2$ Special case - $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ $3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$ x = 41.2	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1 A1 B0 M1 A0	
Way 2	are coming from. In these cases, if the final a Note 4: Candidates are unlikely to be workin calculator in radian mode (gives $\alpha = 1.98$). If and the method marks are available. If you su correctly then please use the review mechanis $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ 180 - 66.42 = 113.58 $3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$ x = 41.2 $3x - 10 = 180 + \alpha \ (246.4)$ to give $x = 85.5$ $3x - 10 = 540 - \alpha \ (473.57)$ to give $x = 161.2$ Special case - $\cos^{-1}(0.4) = 66.42 \ (\alpha)$ $3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$ x = 41.2 $3x - 10 = 360 - \alpha \ (293.6)$	nswers are incorrect score M0. Ig in radians <u>deliberately</u> but may have their In such cases the main scheme should be applied Ispect that the candidate is working in radians Ism and/or consult your team leader. Awrt 114 Uses their 113.58 to find x Awrt 180 + α 540 - α	M1 A1 M1 A1 M1 A1 B0 M1 A0 M1	

Question Number	Sche	me	Marks
5.			
(a)	Parts (i) and (ii) are likely to be sol	ved together so mark as one part	
(i)	The centre is at (10, 12)	B1: x = 10 B1: y = 12	B1 B1
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	$-195 + 100 + 144 \Longrightarrow r = \dots$	M1
	Completes the square for both x and y in an attempt to find r.		
	$(x \pm "10")^2 \pm a$ and $(y \pm "12")^2$	$a^2 \pm b$ and $+195 = 0, (a, b \neq 0)$	
	Allow slips in obtaining their	. , , , , , , , , , , , , , , , , , , ,	
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r including the square root and can implied by a correct value for r	A1
	r = 7	Not $r = \pm 7$ unless – 7 is rejected	A1
			(5)
	Compares the given equation with	B1: $x = 10$	
	$x^{2} + y^{2} + 2gx + 2fy + c = 0$ to write	B1. x = 10	B1B1
(a) War 2	down centre $(-g, -f)$ i.e. (10, 12)	B1: $y = 12$	
Way 2	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r	A1
	r = 7		Al
			(5)
	Note that although the marks for the	centre are B marks, they do need to	
	come from correct work. E.g. $(x+10)^2$, $(y+12)^2$ giving a centre of		
	(10, 12) scores B0 B0 but could score the M1A1ftA1ft for the radius as a special case. Similarly $(x+10)^2$, $(y-12)^2$ giving a centre of (-10, 12)		
	scores B0 B1, $(x-10)^2$, $(y+12)^2$ giving a centre of (10, -12) scores B1 B0		
	but both could score M1A1ftA1ft for		
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1
	$MN\left(=\sqrt{625}\right)=25$		A1
			(2)
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	(2) M1
	$NP = \sqrt{(25^2 + 7^2)}$ is 1	M0 (Quite common)	
	$NP(=\sqrt{576}) = 24$		A 1
	$NT(-\sqrt{570}) = 24$		A1
			(2)
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(NP)$	<i>MP</i>) Correct strategy for finding <i>NP</i>	M1
	<i>NP</i> = 24		A1
			(2)
			[9]

Sch	ieme	Marks
$2\log(x+15) = \log(x+15)^2$		B 1
$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1
$2\log(x+15) - \log x = 6$	$b \Rightarrow \log\left(\frac{\left(x+15\right)^2}{x}\right) = 6$	
with no incorrect work s	cores B1M1together	
$2\log_2(x+15) - \log_2 x$	$= 2\log_2\frac{(x+15)}{x}$ is M0	
$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
$\log_2 \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1
	2	
· · · · · · · · · · · · · · · · · · ·		
way. Some examples are below,		
$\frac{\log(x+15)^2}{\log x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 6 \mathbf{M0}$	$\log \frac{(x+15)^2}{x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 6 \operatorname{M0}$	
$\log \frac{(x+15)^2}{x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 6^2 \operatorname{\mathbf{M0}} 1$	$\operatorname{og}\left(\frac{(x+15)}{x}\right)^{2} = 6 \Longrightarrow \left(\frac{(x+15)}{x}\right)^{2} = 64 \operatorname{M1}$	
$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to	
$or x + 30 + 225 x^{-1} = 64$	score the final mark.	
$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer with no errors but allow recovery from 'invisible' brackets e.g. 15^2	A1
	$x+15^{-} \rightarrow x^{-} + 30x + 225$	(5
$(x-25)(x-9) = 0 \Longrightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as $x =$ It must be an attempt at solving the given quadratic but allow mis-copy e.g. 255 for 225	M1 A1
	A1: Both 25 and 9]
		[7
	$2\log(x+15) = \log(x+15)^{2}$ $\log(x+15)^{2} - \log x = \log \frac{(x+15)^{2}}{x}$ $2\log(x+15) - \log x = 6$ with no incorrect work s $2\log_{2}(x+15) - \log_{2} x$ $2^{6} = 64 \text{ or } \log_{2} 64 = 6$ $\log_{2} \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = 64$ $2\log(x+15) - \log x = 6 \Rightarrow \log(x-15)$ This method mark should only be awarded way. Some examples are below, $\frac{\log(x+15)^{2}}{\log x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = 6 \text{ M0}$ $\log \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = \log_{2} 6 \text{ M0}$ $\log \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = \log_{2} 6 \text{ M0}$ $\log \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = 6^{2} \text{ M0}$ $\log \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = 6^{2} \text{ M0}$	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$ Correct use of $\log a - \log b = \log \frac{a}{b}$ $2\log(x+15) - \log x = 6 \Rightarrow \log \left(\frac{(x+15)^2}{x}\right) = 6$ with no incorrect work scores B1M1 together $2\log_2(x+15) - \log_2 x = 2\log_2\frac{(x+15)}{x}$ is M0 $2^6 = 64$ or $\log_2 64 = 6$ $\log_2\frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$ $\log_2\frac{(x+15)}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$ Removes logs correctly $2\log(x+15) - \log x = 6 \Rightarrow \log(x+15)^2 - \log x = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$ Is acceptable for the first 4 marksThis method mark should only be awarded for the removal of logs in an appropriateway. Some examples are below. $\log(x+15)^2 = 6 \Rightarrow \frac{(x+15)^2}{x} = 6$ $\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = \log_2 6$ $\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = \log_2 6$ $\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2$ $\log \frac{(x+15)}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2$ $\log \frac{(x+15)}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2$ $\log \frac{(x+15)}{x} = 4$ $\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2$ $\log \frac{(x+15)^2}{x} = 4$ $\log \frac{(x+15)^2}{x} = $

Question Number	Schen	ne	Marks
7.			
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Longrightarrow \cos \alpha = \dots$	Correct use of cosine rule leading to a value for cos α	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604\right)$		
	$\alpha = 2.22$ *	Cso (2.22 must be seen here)	A1
	(NB $\alpha = 2.219516005$)		(2)
(a) Way 2	$XY^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6\cos 2.22 \Longrightarrow XY$	2 = Correct use of cosine rule leading to a value for XY^{2}	M1
	$XY^2 = 81.01$		
	<i>XY</i> = 9.00		A1
			(2)
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06 or $2\pi - 2.2$ or awrt 4.08 (May be implied)	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1
	32.5	Awrt 32.5	A1
	Finding the minor sector		(3)
(b) Way2	Circle – Mine		
	$\pi \times 4^2$	Correct expression for circle area	B1
	$\frac{\pi \times 4^2}{\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5}$	Correct method for circle - minor sector area	M1
	= 32.5	Awrt 32.5	A1
			(3)
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle XYZ (allow 2.2 or awrt 2.22)	B1
	So area required = " 9.56" + "32.5"	Their Triangle XYZ (Not triangle ZXW) + (part (b) answer or correct attempt at major sector)	M1
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	Awrt 42.1 or 42.0 (Or just 42)	A1
			(3)
	Note: The minor sector area (17.76) + the triangle answer to (d) – beware!	le $(9.56) = 27.32$ which looks like the	
(d)	Arc length = $4 \times 4.06 (= 16.24)$ Or $8\pi - 4 \times 2.22$	M1: $4 \times their(2\pi - 2.22)$ Or circumference – minor arc A1: Correct ft expression	M1A1ft
	Perimeter = $ZY + WY$ + Arc Length	9 + 2 + Any Arc	M1
	Perimeter = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1
	Note the order of marks on Epen is M correspond so that the second mark on H	1M1A1A1 – the M's and A's must	
	correspond so that the second mark off I		(4)
	(Generally do not apply isw in this question and mar subsequently round		[12]
	In this question we will need to be careful with labe be marked as labelled by the candidate.	lling as each part has clear demands and must	

Question Number	Scheme		Marks
8.	$y = 6 - 3x - \frac{4}{x^3}$ M1: $x^n \to x^{n-1}$		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 + \frac{12}{x^4}or - 3 + 12x^{-4}$	M1: $x^n \to x^{n-1}$ $(x^{-1} \to x^0 \text{ or } x^{-3} \to x^{-4} \text{ or } 6 \to 0)$ A1: Correct derivative	M1 A1
	$\frac{dy}{dx} = 0 \Rightarrow -3 + \frac{12}{x^4} = 0 \Rightarrow x = \dots \text{ or}$ $\frac{dy}{dx} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for x May be implied by $\frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x =$ or Substitutes $x = \sqrt{2}$ into their y'	M1
	So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{(\sqrt{2})^4}$ or $-3 + 12(\sqrt{2})^{-4} = 0$	Correct completion to printed answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1
	For solving, allow e.g The minimum for verification is as in the scl	$x^{-4} = \frac{1}{4} \Longrightarrow x = \left(\frac{1}{4}\right)^{-\frac{1}{4}} = \sqrt{2}$ here which could be implied by $-3 + 3 = 0$	
		$= 1.41 = \sqrt{2}$ for the final A1	(4
(b)	$x = -\sqrt{2}$	Awrt -1.41	B1
			(1
(c)	$\frac{d^2 y}{dx^2} = \frac{-48}{x^5} \text{ or } -48x^{-5}$	Follow through their first derivative from part (a)	B1ft
(d)	An appreciation that either $y'' > 0 \Rightarrow$ a minimum or $y'' < 0 \Rightarrow$ a maximum	A generous mark that is independent of any previous work	(1 B1
	Maximum at P as $y'' < 0$	Cso	B1
	correct and there must be reference to P	rk. y'' need not be evaluated but must be or to $\sqrt{2}$ and negative or < 0 and maximum. ory statements (NB allow y'' = awrt-8 or -9)	
	Minimum at Q as $y'' > 0$	Cso	B1
	Need a fully correct solution for this mark. y'' need not be evaluated but must be correct and part (b) must be correct and there must be reference to P or to $-\sqrt{2}$ and positive or > 0 and minimum. There must be no incorrect or contradictory statements (NB allow $y'' = awrt 8 \text{ or } 9$)		
			(3
	Other methods for identified the set	he turning points are acceptable. The Cast D.1.	[9
		the turning points are acceptable. The first B1 is $\sqrt{2}$ or their <i>x</i> at Q and the second and third e maximum/minimum.	

(b) $\frac{1}{2} \times \frac{1}{2}$ $(0 + 0)$	Special case 6.27 a Special case 6.27 a	Awrt in each case Awrt in each case Need {} or implied later for A1ft follow through their f(2) and f(3) in an w one missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676) 5.272"+ 5.210 + "3.634"+1.856)}	B1, B1 (2 B1 M1A1ft
(b) $\frac{1}{2} \times \frac{1}{2}$ {(0) (0 + 0) (0 +	Special case 6.27 <u>a</u> $\frac{1}{4}$ (2 + 0) + 2(5.866 + "6.272" + 5.210) (0) may be implied if omitted and wise correct expression and allow 2() bracket for $\frac{1}{2} \times 0.5(0 + 0) + 2(5.866 + "6)$ less followed by an answer that im <u>B1M1A0A0 (Usually impl</u>) $\frac{1}{2} \times 0.5\{(0 + 0) + 2(5.866 + "6)$	nd 3.63 scores B1B0 0+"3.634"+1.856)} Need {} or implied later for A1ft follow through their f(2) and f(3) in an wone missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	(2 B1
$\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	$\frac{1}{2} \text{ or } \frac{1}{4}$ $\frac{1}{2} \text{ or } \frac{1}{4}$ $\frac{1}{2} \text{ or } \frac{1}{4}$ $\frac{1}{2} \text{ or } \frac{1}{2} \times 0.5(0+0) + 2(5.866 + \text{"6})$ $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + \text{"6})$ $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + \text{"6})$ $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + \text{"6})$	0+"3.634"+1.856)} Need {} or implied later for A1ft follow through their f(2) and f(3) in an wone missing or mis-copied term in the the method mark .272"+5.210+"3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	B1
$\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	$\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6.272" + 5.210] \\ \frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6] \\ \frac{1}{2} \times 0.5 \} \\ \frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6] \\ \frac{1}{2} \times 0.5 \} \\ \frac{1}{2$	follow through their f(2) and f(3) in an w one missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	B1
$\frac{1}{2} = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	$\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6.272" + 5.210] \\ \frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6] \\ \frac{1}{2} \times 0.5 \} \\ \frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6] \\ \frac{1}{2} \times 0.5 \} \\ \frac{1}{2$	follow through their f(2) and f(3) in an w one missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	
(0 + 0) $(0 + 0)$ $(0 +$	0) may be implied if omitted and wise correct expression and allow 2() bracket for $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6)$ less followed by an answer that im B1M1A0A0 (Usually impl) $\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6)\}$	follow through their f(2) and f(3) in an w one missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	M1A1ft
(c) $\frac{1}{2}$ other $\frac{1}{2}$ $\frac{1}{2}$ 1	wise correct expression and allow $2() \text{ bracket for}$ $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6)$ less followed by an answer that im B1M1A0A0 (Usually impl) $\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6)\}$	v one missing or mis-copied term in the the method mark .272"+ 5.210 + "3.634"+ 1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	
(c) Acception in this	$\frac{2() \text{ bracket for}}{\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6)}$ less followed by an answer that im B1M1A0A0 (Usually impl $\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6)\}$	the method mark .272"+ 5.210 + "3.634"+ 1.856) plies correct (missing) brackets, scores ied by an answer of 45.676)	
$= 11.4$ Separtimes NB $\frac{1}{2}$ $\int y dx$ (c) Acception the second se	less followed by an answer that im <u>B1M1A0A0 (Usually impl</u>) $\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6)$	plies correct (missing) brackets, scores ied by an answer of 45.676)	
$= 11.4$ Separtimes NB $\frac{1}{2}$ $\int y dx$ (c) Acception the second se	B1M1A0A0 (Usually impl $\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6)$	ied by an answer of 45.676)	
(c) $\frac{\text{Separt}}{1}$	2	5.272"+ 5.210 + "3.634"+ 1.856)}	
(c) $\frac{\text{Separt}}{1}$	1		
(c) $\frac{\text{Separt}}{1}$	$=\frac{-}{4}\times$	45.676	
(c) $times$ NB $\frac{1}{2}$		cao	A1
(c) $NB = \frac{1}{2}$	rate trapezia may be used : B1 for s (and A1ft all correct)	t 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6	
(c) Acception in this	$\frac{1}{2} \times 0.5 \left\{ (0+0) + 2 \left(0 + 5.866 + "6 \right) \right\}$.272"+5.210+"3.634"+1.856+0)	
(c) Acception in this	Correct answe	r with no working scores 0/4	
(c) Acception in this			(4
(c) Acception in this		M1: $x^n \rightarrow x^{n+1}$ on any term	
(c) Acception in this	27 2 $5^{\frac{3}{2}}$ 1 5^{-1} $($	A1: $27x - x^2$	
(c) in thi	$x = 27x - x^{2} - 6x^{\frac{3}{2}} + 16x^{-1}(+c)$	A1: $-6x^{\frac{3}{2}}$	M1A1A1A1
(c) in thi		A1: $+16x^{-1}$	
	Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen		
	$4) - (4)^{2} - 6(4)^{\frac{3}{2}} + 16(4)^{-1})$	Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may	dM1
-(27	$U(1) - (1)^{2} - 6(1)^{\frac{3}{2}} + 16(1)^{-1}$	need to check both their values if the integration has errors.	
	```	3 – 36)	
		Cao (Penalise -12)	A1
	12		(6)

## Appendix

3(b) Way 2	$120000 \times (1.05)^{n-1} > 200000$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1
	$\log_{1.05} 1.05^{n-1} > \log_{1.05} \left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or <i>n</i> – 1 and ">", "<", or "=" etc. This may be implied by $n-1 > \log_{1.05}\left(\frac{5}{3}\right)$ and effectively gets the next A1	M1
	e.g. $\log_{1.05} (120000 \times (1.05)^{n-1}) = (n$	$(-1)\log_{1.05}(120000 \times (1.05))$ would be M0	
	$(n-1>)\log_{1.05}, \frac{5}{3}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	A1
	2024	M1: Identifies a calendar year using their value of $n$ or $n - 1$ A1: 2024 only cso	M1A1
			(5)

3(b) MR?	$\frac{120000 \times (1 - 1.05^n)}{1 - 1.05} > 200000$		M0
	$1.05^n > \frac{13}{12}$		
	$\log 1.05^n > \log\left(\frac{13}{12}\right)$	Takes logs correctly	M1
	$n > \frac{\log\left(\frac{13}{12}\right)}{\log 1.05}$		A0
	2014	<ul><li>M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1</li><li>A1: 2024 only</li></ul>	M1A0
	Trial & Imp	rovement for this MR is 0/5	
			(2/5)

4. Way 3	General Solution		
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	3x - 10 = 360n + 113.58	$360n + \alpha$	M1
	3x - 10 = 360n - 113.58	$360n - \alpha$	M1
	$3x - 10 = \alpha \Longrightarrow 3x = \alpha + 10$		
	$x = \frac{360n + 123.58}{3} \text{ or } \frac{360n - 103.58}{3}$	$x = \frac{360n \pm 113.58 \pm 10}{3}$	M1
	x = 41.2	Awrt	A1
	<i>x</i> = 85.5	Awrt	A1
	x = 161.2	Awrt	A1
			(7)

4.	Spe	cial Case 1	
	$\cos(3x-10) = \cos(3x) - \cos(10)$		
	$\cos(3x) = -0.4 + \cos(10)$		
	$\cos(3x) = 0.5848$		
-	$3x = 54.2 = \alpha$		
	x = 18.1		
	BON	AOA0 so far	
	$3x = 360 - \alpha$	$360 - \alpha$	M1
	<i>x</i> = 101.9	Awrt	A0
	$3x = 360 + \alpha$	$360 + \alpha$	M1
	x = 138.1	Awrt	A0
			(2/7)

4.	Special Case 2 – Quite common		
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Uses their $\alpha$ to find x. Allow $x = \frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1
	x = 41.2	Awrt	A1
	$3x - 10 = \alpha \Longrightarrow 3x = \alpha + 10$		
	$3x = 360 - (\alpha + 10)$		<b>M</b> 0
	x = 78.8		A0
	$3x = 360 + (\alpha + 10)$		M1
	<i>x</i> = 161.2	Awrt	A1
			(5/7)

4.	Possible scenarios		
	Answers	Marks	
	41.2, 97.9	B1M1A1M0A0M0A0	
	41.2, 97.9, 142.7	B1M1A1M0A0M0A0	
	41.2, 85.5, 97.9	B1M1A1M1A1M0A0	
	41.2, 97.9, 161.2	B1M1A1M0A0M1A1	
	41.2, 85.5, 97.9, 142.7	B1M1A1M1A1M0A0	
	41.2, 85.5, 97.9, 161.2	B1M1A1M1A1M1A0	
	41.2, 85.5, 97.9, 142.7, 161.2	B1M1A1M1A1M1A0	

6 Way 2	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^2 = 6 + \log x$		
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 64 + \log_2 x = \log_2 \left( 64x \right)$	Correct use of $\log a + \log b = \log ab$	M1
	$\left(x+15\right)^2 = 64x$	Removes logs correctly	M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 3	$2\log(x+15) = \log(x+15)^2$		B1
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 (x+15)^2 - \log_2 x = \log_2 64$		
	$\left(x+15\right)^2 = 64x$	Correct use of $\log a + \log b = \log ab$ (implied) and removes logs correctly.	M1, M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 4	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^{2} - \log x = \frac{\log(x+15)^{2}}{\log x}$		MO
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\frac{\log_2(x+15)^2}{\log x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 64$		MO
	$\Rightarrow x^2 + 30x + 225 = 64x$		
	$\therefore x^2 - 34x + 225 = 0 *$		A0
			(2/5)

6 Way 5			
	$2\log(x+15) - \log x = 2\log\left(\frac{x+15}{x}\right)$		M0
	$\log_2 \frac{\left(x+15\right)^2}{x} = 6$		B0 (first)
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\frac{\left(x+15\right)^2}{x} = 64$		M1
	$\Rightarrow x^2 + 30x + 225 = 64x$		
	$\therefore x^2 - 34x + 225 = 0 *$	Incorrect solution	A0
			(2/5)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US034362 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





Llywodraeth Cynulliad Cymru Welsh Assembly Government

