

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C2 (6664) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code US026235 All the material in this publication is copyright © Edexcel Ltd 2011 www.mystudybro.com This resource was created and owned by Pearson Edexcel

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting $f(1)$ or $f(-1)$.	M1
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$ (as required) AG	A1 * cso (2)
(b)	Attempting $f(-2)$ or $f(2)$.	M1
	$f(-2) = \underline{16 - 8 + 8 - 2a + b} = -8 \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1 cso
		(5) [7]
	Notes	
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to give the result given on the paper as $a + b = 3$. Note that the answer is given in part (a).	
(b)	M1: attempting either $f(-2)$ or $f(2)$. A1: <u>correct underlined equation</u> in <i>a</i> and <i>b</i> ; eg $16-8+8-2a+b=-8$ or equivalet eg $-2a + b = -24$. dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in Note that this mark is dependent upon the award of the first method mark. A1: any one of $a = 9$ or $b = -6$. A1: both $a = 9$ and $b = -6$ and a correct solution only.	
	Alternative Method of Long Division: (a) M1 for long division by $(x - 1)$ to give a remainder in <i>a</i> and <i>b</i> which is independent A1 for {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer (b) M1 for long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independent A1 for {Remainder =} $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }. Then dM1A1A1 are applied in the same way as before.	er given.)

Question	Scheme	Marks
Number 2.		
(a)	$11^{2} = 8^{2} + 7^{2} - (2 \times 8 \times 7 \cos C)$	M1
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ (or equivalent)	A1
	$\left\{ \hat{C} = 1.64228 \right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1 cso
	1	(3)
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1
	$=\frac{1}{2}(7 \times 8)\sin C$ using the value of their C from part (a).	A1 ft
	$\{=27.92848 \text{ or } 27.93297\} = awrt 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ}\text{)}$	A1 cso
		(3) [6]
	Notes	[V]
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11 \cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11 \cos C)$	$\cos C$)
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$	
	1 st A1: Rearranged correctly to make $\cos C = \dots$ and numerically correct (possibly	
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$	$C = -\frac{1}{14}$ or
	$\cos C = \operatorname{awrt} - 0.071.$	
	SC: Also allow $1^{st} A1$ for $112 \cos C = -8$ or equivalent.	
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.	
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.	
	2^{nd} A1: for awrt 1.64 cao	
	Note that $A = 0.6876^{\circ}$ (or 39.401°), $B = 0.8116^{\circ}$ (or 46.503°)	
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1^{st} A1; their <i>C</i> can either be in degrees or radians	
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of	of awrt
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A	A1A0.
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then awar	:d
	M1A1A1. $\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{rr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{wr} 39.401^{\circ}) = a \operatorname{wrt} 27.9 = \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \circ \operatorname{wr} 39.401^{\circ}) = a \operatorname{wrt} 39.40^{\circ}$	wrt 27 Q
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9, \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9, \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 12(12 \times 11)(12 \times 11)($	
	Alternative: Hero's Formula: $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9$, where I attempt to apply $A = \sqrt{a(a-11)(a-8)(a-7)}$ and the first A 1 is for the correct applie	
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct applic the formula.	ation of
		-

Question NumberScheme3.(a) $ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)). $r^3 = \frac{-6}{750}$ Correct answer from no working, except for special case below gains all three marks.(b) $a(-0.2) = 750$ $a \left\{ = \frac{750}{-0.2} \right\} = -3750$ (c) $Applies \frac{a}{1-r}$ correctly using both their a and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$ (a)B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either r (b)).M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$. Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = -\frac{6}{750}$ or $r^3 = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{750}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $r^6 = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $r^6 = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $\frac{1}{r^6} = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750}$ or $r^6 = -\frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = -\frac{6}{750} -6 \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^6 = -6$ leading to $r = -\frac{1}{3}$ scores BOM1A1.(b)M1 for inserting their r into either of their original correct equations of either $ar = 7$ $\{a = \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \frac{1}$	Marks
(a) $ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)). $r^3 = \frac{-6}{750}$ $r = -\frac{1}{5}$ (b) $a(-0.2) = 750$ $a\left\{=\frac{750}{1-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\alpha} = -3125$ (c) Applies $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either the bills). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-50}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r^5 = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either <i>ar</i> = 7 $\{a = \frac{1}{750}, r^{50}$ or $ar^4 = -6$ or $\{a = \frac{1}{r^4}, r^4 - r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either <i>ar</i> = 7 $\{a = \frac{1}{750}, r^50$ or $ar^4 = -6$ or $\{a = \frac{1}{r^4}, r^4 - r = -\frac{1}{5}, r^50$ score for M1	
$r^{3} = \frac{-6}{750}$ $r = -\frac{1}{5}$ Correct answer from no working, except for special case below gains all three marks. (b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^{4} = -6$ (may be implied from later working in either response) (b). M1: for eliminating <i>a</i> by either dividing $ar^{4} = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^{4} = -6$, to achieve an equation in r^{3} or $\frac{1}{r^{3}} = \frac{-6}{750}$ or $r^{3} = \frac{750}{-6} \{= -125\}$ or $r^{3} = \frac{-6}{750}$ or $r^{3} = \frac{750}{-6} \{= -125\}$ or $r^{3} = -6$ leading to $r = -\frac{1}{2}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$ or $r^{3} = \frac{750}{r}$ or $ar^{4} = -6$ or $r^{3} = \frac{-6}{r^{4}}$ - in <i>both a</i> and <i>r</i> . No slips allowed here for M1 for here or $r^{3} = -6$ or $r^{3} = \frac{-6}{r^{4}}$ or $r^{3} = r^{3}$ or $r^{3} = -6$ or $r^{3} = -6$ is $r^{3} = r^{3}$.	
$r = -\frac{1}{5}$ Correct answer from no working, except for special case below gains all three marks. (b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\infty} = -3125$ (a) B1: for both <i>ar</i> = 750 and <i>ar</i> ⁴ = -6 (may be implied from later working in either <i>a</i> (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing <i>ar</i> = 750 by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^3 = -6$ leading to $r = -\frac{1}{3}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either <i>ar</i> = 7 $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - in both a and r$. No slips allowed here for M1	B1
$r = -\frac{1}{5}$ Correct answer from no working, except for special case below gains all three marks. (b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\infty} = -3125$ (a) B1: for both <i>ar</i> = 750 and <i>ar</i> ⁴ = -6 (may be implied from later working in either <i>a</i> (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by <i>ar</i> = 750 or dividing <i>ar</i> = 750 by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^3 = -6$ leading to $r = -\frac{1}{3}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either <i>ar</i> = 7 $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - in both a and r$. No slips allowed here for M1	M1
(b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-50}{-6} \{=-125\}$ or $\frac{1}{r^5} = \frac{-6}{750}$ or $\frac{1}{r^5} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either <i>ar</i> = 7 $\{a = \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \frac{-6}{r^4} - in$ both <i>a</i> and <i>r</i> . No slips allowed here for M1	
(b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either $r_{(b)}$). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$ $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and <i>r</i> . No slips allowed here for M1	A 1
(b) $a(-0.2) = 750$ $a\left\{=\frac{750}{-0.2}\right\} = -3750$ (c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\alpha} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either of (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$ for $a = \frac{750}{r^6}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4}$ in <i>both a</i> and <i>r</i> . No slips allowed here for M1	A1
(c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^8} = \frac{-6}{750}$ or $\frac{1}{r^8} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^8} = \frac{-6}{750}$ or $\frac{1}{r^8} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^8} = \frac{-6}{750}$ or $\frac{1}{r^8} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award of SC: $ar^2 = 750$ and $ar^8 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$ for $a = \frac{750}{r^6}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and <i>r</i> . No slips allowed here for M1	(3)
(c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\alpha} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^4} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and r}$. No slips allowed here for M1	M1
(c) Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$. Eg. $\frac{-3750}{1-0.2}$ So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^5} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^6} = \frac{-6}{750}$ or $\frac{1}{r^6} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and r}$. No slips allowed here for M1	11.0
So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their r into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and r . No slips allowed here for M1	A1 ft
So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their r into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and r . No slips allowed here for M1	(2)
So, $S_{\infty} = -3125$ (a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^\beta = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their r into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and r . No slips allowed here for M1	MI
(a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^\beta = -6$ leading to $r^\delta = \frac{-6}{750}$ or $r^\delta = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^\delta} = \frac{-6}{750}$ or $\frac{1}{r^\delta} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their r into either of their original correct equations of either $ar = 7$ $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and r . No slips allowed here for M1	M1
(a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and } r$. No slips allowed here for M1	A1
(a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and } r$. No slips allowed here for M1	(2)
(a) B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{= -125\}$ fine for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{= -125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and } r$. No slips allowed here for M1	[7]
(d) (b)). M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^\beta = -6$ leading to $r^\delta = \frac{-6}{750}$ or $r^\delta = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^\delta} = \frac{-6}{750}$ or $\frac{1}{r^\delta} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both a and r}$. No slips allowed here for M1	(a) or
M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing $ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ fine for the award of M1. SC: $ar^a = 750$ and $ar^\beta = -6$ leading to $r^\delta = \frac{-6}{750}$ or $r^\delta = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^\delta} = \frac{-6}{750}$ or $\frac{1}{r^\delta} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores BOM1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 72$ $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \ln both a$ and <i>r</i> . No slips allowed here for M1	(<i>a</i>) 01
$ar = 750 \text{ by } ar^4 = -6 \text{, to achieve an equation in } r^3 \text{ or } \frac{1}{r^3} \text{ Note that } r^4 - r = -\frac{6}{750} \text{ is } Note also that any of } r^3 = \frac{-6}{750} \text{ or } r^3 = \frac{750}{-6} \{=-125\} \text{ or } \frac{1}{r^3} = \frac{-6}{750} \text{ or } \frac{1}{r^3} = \frac{750}{-6} \{=-125\} \text{ or } \frac{1}{r^3} = \frac{-6}{750} \text{ or } \frac{1}{r^3} = \frac{750}{-6} \{=-125\} \text{ or } \frac{1}{r^3} = \frac{-6}{750} \text{ or } r^3 = \frac{-6}{750} \text{ or } r^5 = \frac{-6}{750} \{=-125\} \text{ or } \frac{1}{r^5} = \frac{-6}{750} \text{ or } \frac{1}{r^5} = \frac{-6}{-6} \text{ or } \frac{1}{r^5} = \frac{-750}{-6} \{=-125\} \text{ where } \delta = \beta - \alpha \text{ and } \delta \ge 2 \text{ are fine for the award of } SC: ar^2 = 750 \text{ and } ar^5 = -6 \text{ leading to } r = -\frac{1}{5} \text{ scores BOM1A1.}$ (b) M1 for inserting their r into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r} \text{ or } ar^4 = -6 \text{ or } \{a = \} \frac{-6}{r^4} - \text{ in } both a \text{ and } r. \text{ No slips allowed here for M1}$	
Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{=-125\}$ fine for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - in$ both <i>a</i> and <i>r</i>. No slips allowed here for M1	1.00
fine for the award of M1. SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 72$ $\{a = \} \frac{750}{r}$ or $ar^4 = -6$ or $\{a = \} \frac{-6}{r^4} - \text{ in both } a$ and <i>r</i> . No slips allowed here for M1	3 M 0.
SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{=-125\}$ or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{=-125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4} - \text{ in both } a$ and <i>r</i> . No slips allowed here for M1	125} are
or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4} - \text{ in both } a$ and <i>r</i> . No slips allowed here for M1	
or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{= -125\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4} - \text{ in both } a \text{ and } r$. No slips allowed here for M1	
SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1. (b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4} - \text{ in both } a \text{ and } r$. No slips allowed here for M1	d of M1.
(b) M1 for inserting their <i>r</i> into either of their original correct equations of either $ar = 7$. $\{a =\} \frac{750}{r}$ or $ar^4 = -6$ or $\{a =\} \frac{-6}{r^4} - \text{ in both } a \text{ and } r$. No slips allowed here for M1	
$\{a=\}\frac{750}{r}$ or $ar^4 = -6$ or $\{a=\}\frac{-6}{r^4}$ - in <i>both a</i> and <i>r</i> . No slips allowed here for M1	/50 or
A1 for either $a = -3750$ or a equal to the correct follow through result expressed either	
an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to
awrt 1 dp.	
(c) M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	heir a
and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125	
In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

GCE Core Mathematics C2 (6664) January 2011

Question Number	Scheme	Marks	
4. (a)	Seeing –1 and 5. (See note below.)	B1 (1)	
(b)	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{x^2 - 5x + x - 5}$ or $\frac{x^2 - 5x + x - 5}{x^2 - 5x + x - 5}$	<u>B1</u>	
	$\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\}$ M: $x^n \to x^{n+1}$ for any one term. 1 st A1 at least two out of three terms correctly ft.	M1A1ft A1	
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = (\dots) - (\dots)$ Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1	
	$\begin{cases} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{cases}$		
	Hence, Area = 36 Final answer must be 36, not -36	A1 (6) [7]	
(a)	Notes		
	B1: for -1 and 5. Note that $(-1, 0)$ and $(5, 0)$ are acceptable for B1. Also allow $(0, -1)$ and $(0, 5)$ generously for B1. Note that if a candidate writes down that $A: (5,0)$, $B: (-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the correct position on the <i>x</i> -axis of the graph.		
(b)	B1 for $x^2 - 4x - 5$ or $x^2 - 5x + x - 5$. If you believe that the candidate is applying the Way 2 method then $-x^2 + 4x + 5$ or $-x^2 + 5x - x + 5$ would then be fine for B1. 1^{st} M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that $-5 \to 5x$ is sufficient for M1. 1^{st} A1 at least two out of three terms correctly ft from their multiplied out brackets. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'. Allow 2^{nd} A1 also for $\frac{x^3}{3} - \frac{5x^2}{2} + \frac{x^2}{2} - 5x$. Note that $-\frac{5x^2}{2} + \frac{x^2}{2}$ only counts as one integrated term for the 1^{st} A1 mark. Do not allow any extra terms for the 2^{nd} A1 mark. 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x = -1$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. 3^{rd} A1: For a final answer of 36, not -36. Note: An alternative method exists where the candidate states from the outset that Area $(R) = -\int_{-1}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.		

Question	Scheme	Marks
Number 5.		
	$\binom{40}{4} = \frac{40!}{4!b!}; (1+x)^n \text{ coefficients of } x^4 \text{ and } x^5 \text{ are } p \text{ and } q \text{ respectively.}$	
	<i>b</i> = 36	B1
	Candidates should usually "identify" two terms as their p and q respectively.	(1)
(b)	Term 1: $\begin{pmatrix} 40 \\ 4 \end{pmatrix}$ or ${}^{40}C_4$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term $\frac{40!}{4!36!}$ and/or q .) Both of them	M1
	2: $\begin{pmatrix} 5 \end{pmatrix}$ or ${}^{40}C_5$ or $\frac{101}{5!35!}$ or $\frac{100}{5!}$ or $\frac{100}{5!}$ or 658008 correct. (Ignore the label of p and/or q .)	
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe	A1 oe cso (3)
		[4]
	Notes	
(a)	B1: for only $b = 36$.	
(b)	The candidate may expand out their binomial series. At this stage no marks should be until they start to identify either one or both of the terms that they want to focus on. identify their terms then if one out of two of them (ignoring which one is <i>p</i> and which is correct then award M1. If both of the terms are identified correctly (ignoring which and which one is <i>q</i>) then award the first A1. Term $1 = \begin{pmatrix} 40 \\ 4 \end{pmatrix} x^4$ or ${}^{40}C_4(x^4)$ or $\frac{40!}{4!36!}x^4$ or $\frac{40(39)(38)(37)}{4!}x^4$ or $91390x^4$, Term $2 = \begin{pmatrix} 40 \\ 5 \end{pmatrix} x^5$ or ${}^{40}C_5(x^5)$ or $\frac{40!}{5!35!}x^5$ or $\frac{40(39)(38)(37)(36)}{5!}x^5$ or $658008x^5$ are fine for any (or both) of the first two marks in part (b). 2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent or	Once they th one is <i>q</i>) ch one is <i>p</i>
	Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2 nd A1 mark.	
	SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.	

Question Number	Scheme	Marks
6. (a)	x 22.252.52.753 y 0.50.380.2985070.2416910.2At { $x = 2.5$,} $y = 0.30$ (only)At least one y-ordinate correct.At { $x = 2.75$,} $y = 0.24$ (only)Both y-ordinates correct.	
(b)	$\frac{1}{2} \times 0.25 ; \times \underbrace{\left\{ 0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}}_{\left\{ = \frac{1}{8}(2.54) \right\}} = \text{awrt } 0.32$ Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ For structure of $\{\dots,\dots,\}$; For structure of $\{\dots,\dots,\}$; Correct expression inside brackets which all must be multiplied by their "outside constant". awrt 0.32	<u>A1</u> √ A1
(c)	Area of triangle $=\frac{1}{2} \times 1 \times 0.2 = 0.1$ Area(S) = "0.3175" - 0.1 = 0.2175	(4) B1 M1 A1 ft (3) [9]

Question Number	Scheme	Marks
	Notes	
(b)	b) B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	
	M1 requires the correct {} bracket structure. This is for the first bracket to contain first	- y-
	ordinate plus last y-ordinate and the second bracket to be the summation of the remaining ordinates in the table.	у-
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) a allowed in the second bracket and the second bracket must be multiplied by 2. Only one c error is allowed here in the $2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ bracket.	
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part	(a).
	A1 for answer of awrt 0.32.	
	Bracketing mistake: Unless the final answer implies that the calculation has been don correctly	e
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$	
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$	
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$	
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.	
	Need to see trapezium rule – answer only (with no working) gains no marks. <u>Alternative:</u> Separate trapezia may be used, and this can be marked equivalently. (See appendix.)	
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the
	 diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Str attempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow a they round their answer correct to 2 dp. 	ie

Question Number	Scheme	Marks
7. (a)	$3\sin^{2} x + 7\sin x = \cos^{2} x - 4; 0 \le x < 360^{\circ}$ $3\sin^{2} x + 7\sin x = (1 - \sin^{2} x) - 4$ $4\sin^{2} x + 7\sin x + 3 = 0 AG$	M1 A1 * cso
(b)	$(4\sin x + 3)(\sin x + 1) = 0$ Valid attempt at factorisation and $\sin x =$	IVI I
	$\sin x = -\frac{3}{4}$, $\sin x = -1$ Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1
	$(\alpha = 48.59)$ x = 180 + 48.59 or x = 360 - 48.59 Either (180 + $ \alpha $) or (360 - $ \alpha $)	dM1
	$x = 228.59, x = 311.41$ Both awrt 228.6 and awrt 311.4 $\{\sin x = -1\} \Rightarrow x = 270$ 270	B1
	Notes	(5) [7]
(a)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$).	
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0. A1 for obtaining the printed answer without error (except for implied use of zero.), the equation at the end of the proof must be = 0 . Solution just written only as above score M1A1.	ve would
(b)	(b) 1^{st} M1 for a valid attempt at factorisation, can use any variable here, <i>s</i> , <i>y</i> , <i>x</i> or sin <i>x</i> , and attempt to find at least one of the solutions. <i>Alternatively</i> , using a correct formula for solving the quadratic. Either the formula must stated correctly or the correct form must be implied by the substitution. 1^{st} A1 for the two correct values of sin <i>x</i> . If they have used a substitution, a correct value their <i>s</i> or their <i>y</i> or their <i>x</i> . 2^{nd} M1 for solving sin $x = -k$, $0 < k < 1$ and realising a solution is either of the form $(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. Note that you cannot access this mark f sin $x = -1 \Rightarrow x = 270$. Note that this mark is dependent upon the 1^{st} M1 mark awarded. 2^{nd} A1 for both awrt 228.6 and awrt 311.4 B1 for 270. If there are any EXTRA solutions inside the range $0 \le x < 360^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark in the state) and the state of the solution is either of the state of the state of the solution is either of the state of the state of the solution is either of the state of the solution is either of the state of the solution is either of the solution is eit	
	of the question). Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$. Working in Padians: Note the answers in radians are $x = 3.0806 = 5.4351 = 4.71^{\circ}$	22
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.712$ If a candidate works in radians then mark part (b) as above awarding the 2 nd A1 for 4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score F	both awrt
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the quest No working: Award B1 for 270 seen without any working. Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working. Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any work	

GCE Core Mathematics C2 (6664) January 2011

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Mar	⁻ ks
8.			
(a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$		
	At least two of the three criteria correct. (See notes below.)	B1	
	All three criteria correct. (See notes below.)	B1	
	(0, 1)		
	O x		(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 \{= 0\}$ $"y" = 7^x \}.$	M1	
	$y^2 - 4y + 3 \{= 0\}$	A1	
	{ $(y-3)(y-1) = 0$ or $(7^x - 3)(7^x - 1) = 0$ }		
	$y = 3$, $y = 1$ or $7^{x} = 3$, $7^{x} = 1$ Both $y = 3$ and $y = 1$.	A1	
	$\{7^{x} = 3 \implies\} x \log 7 = \log 3$ or $x = \frac{\log 3}{\log 7}$ or $x = \log_{7} 3$ A valid method for solving $7^{x} = k$ where $k > 0, k \neq 1$	dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 stated as a solution.	B1	
			(6) [8]
	Notes	1	[0]
(a)			
	B1B1: All three criteria correct.		
	Criteria number 1: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x < 0$.		
	Criteria number 3: $(0, 1)$ stated or 1 marked on the y-axis. Allow $(1, 0)$ rather than $(0, 1)$		
	marked in the "correct" place on the <i>y</i> -axis.		

Question Number	Scheme	Marks
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7 ^x .}	
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 \{= 0\}$.	
	Can use any variable here, eg: y, x or 7^x . Allow M1A1 for $x^2 - 4x + 3 \{=0\}$.	
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.	
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 \{= 0\}$	or
	$(7^x)^2 - 4(7^x) + 3 = 0.$	
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accurately a statement of the statement of th	iracy
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate	e
	applying logarithms on these.	
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.	
	3^{rd} dM1 for solving $7^x = k, k > 0, k \neq 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log \frac{1}{2} \ln 7$	$_{7} k$.
	dM1 is dependent upon the award of M1.	
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from <i>any</i> working.	

Question	Scheme	Marks
Number 9.		
	$C\left(\frac{-2+8}{2},\frac{11+1}{2}\right) = C(3,6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving (3,6)	B1*
(b)	$(8-3)^{2} + (1-6)^{2} \text{ or } \sqrt{(8-3)^{2} + (1-6)^{2}} \text{ or } $ Applies distance formula in order to find the radius. $(-2-3)^{2} + (11-6)^{2} \text{ or } \sqrt{(-2-3)^{2} + (11-6)^{2}} $ Correct application of formula	(1) M1
	$(x+3)^2 + (y+6)^2 = k$	A1 M1
	$(x-3)^{2} + (y-6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right) \qquad (x-3)^{2} + (y-6)^{2} = 50 (\text{Not } 7.07^{2})$	A1 (4)
(c)	{For (10, 7), } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u>
		(1)
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1
	Gradient of tangent = $\frac{-7}{1}$ Using a perpendicular gradient method.	M1
	y - 7 = -7(x - 10) y = -7x + 77 y - 7 = (their gradient)(x - 10) y = -7x + 77 or y = 77 - 7x	M1
	y = -7x + 77 or $y = 77 - 7x$	A1 cao
		(4) [10]
	Notes	
(a)	Alternative method: $C\left(-2 + \frac{8 - 2}{2}, 11 + \frac{1 - 11}{2}\right)$ or $C\left(8 + \frac{-2 - 8}{2}, 1 + \frac{11 - 1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and n diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for $\frac{(-2-8)^2 + (11-1)^2}{2}$	not the
	Award 1 st M1A1 for $\frac{(-2-8)^2 + (11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2 + (11-1)^2}}{2}$.	
(a)	Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.	
	Also to gain this mark candidates need to have the correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on <i>C</i> without a correct Also a candidate could either substitute $x = 10$ in <i>C</i> to find $y = 7$ or substitute $y = 7$ in	ect C.
	find $x = 10$.	

Question Number	Scheme	Marks
(d)	2^{nd} M1 mark also for the complete method of applying 7= (their gradient)(10) + c, find Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .	ding c.
	<u>Alternative</u> : For first two marks (differentiation): $2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.	
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must contain x and y . (This M mark can be awarded generously, even if the attempted "differentiation of "implicit".) <u>Alternative</u> : $(10 - 3)(x - 3) + (7 - 6)(y - 6) = 50$ scores B1M1M1 which leads to $y = -7x + 77$.	

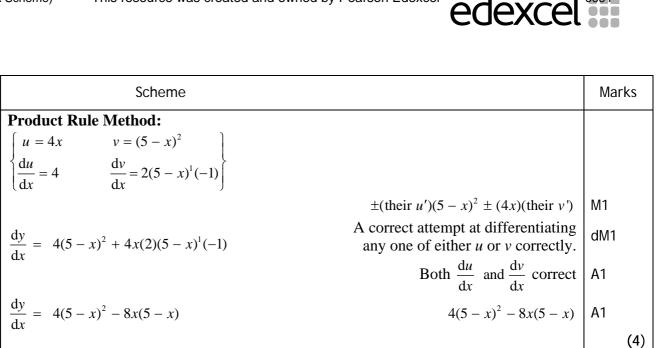
Question Number	Scheme	Marks		
10.				
(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$			
	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3, \text{ where } \alpha, \beta, \gamma \neq 0$ $V = 100x - 40x^2 + 4x^3$	M1 A1		
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly.	M1		
	$dx 100 - 80x + 12x^2$	A1 cao (4)		
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	M1		
	$\left\{ \Rightarrow 4\left(3x^2 - 20x + 25\right) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \right\}$			
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = a wrt 1.67$	A1		
	$x = \frac{5}{3}, V = 4\left(\frac{5}{3}\right)\left(5 - \frac{5}{3}\right)^2$ where $0 < x < 5$ into a formula for V.	dM1		
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1	A1		
		(4)		
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1		
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$			
	$\frac{d^2V}{dx^2} = -40 < 0 \Longrightarrow V \text{ is a maximum} \qquad \frac{d^2V}{dx^2} = -40 \text{ and } < 0 \text{ or negative and } \underline{\text{maximum}}.$	A1 cso		
		(2) [10]		
	Notes			
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.			
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1 st N	/ 11.		
	1 st A1 for either $100x - 40x^2 + 4x^3$ or $100x - 20x^2 - 20x^2 + 4x^3$.			
	2 nd M1 for any two of their expanded terms differentiated correctly. NB: If expanded expression is divided by a constant, then the 2 nd M1 can be awarded for at least two terms are correct.			
	Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated correctly.			
	2^{nd} A1 for $100 - 80x + 12x^2$, cao .			
	Note: See appendix for those candidates who apply the product rule of differentiation.			

Question Number	Scheme			
(b)	Note you can mark parts (b) and (c) together.			
	gnore the extra solution of $x = 5$ (and $V = 0$). Any extra solutions for <i>V</i> inside found for			
	values inside the range of x, then award the final A0.			
(c)) M1 is for their $\frac{dV}{dx}$ differentiated correctly (follow through) to give $\frac{d^2V}{dx^2}$.			
	A1 for all three of $\frac{d^2V}{dx^2} = -40$ and ≤ 0 or negative and <u>maximum</u> .			
	Ignore any second derivative testing on $x = 5$ for the final accuracy mark. <u>Alternative Method: Gradient Test:</u> M1 for finding the gradient either side of their <i>x</i> -value for a second derivative for the second derivative sec			
from part (b) where $0 < x < 5$. A1 for both gradients calculated correctly to the near in				
	using > 0 and < 0 respectively or a correct sketch and maximum. (See appendix for g values.)	grautent		

Question Number	Scheme		Marks
Aliter 4 (b) Way 2	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{3} \text{ or } \frac{x^2 - 5x + x - 5}{2}$ $-\int (x^2 - 4x - 5) dx = -\frac{x^3}{3} + \frac{4x^2}{2} + 5x \left\{ + c \right\}$ $\left[-\frac{x^3}{3} + \frac{4x^2}{2} + 5x \right]_{-1}^5 = (\dots) - (\dots)$ $\left\{ \left(-\frac{125}{3} + \frac{100}{2} + 25 \right) - \left(\frac{1}{3} + 2 - 5 \right) \right\}$ $= \left(\frac{100}{3} \right) - \left(-\frac{8}{3} \right)$ Hence, Area = 36	Can be implied by later working. M: $x^n \rightarrow x^{n+1}$ for any one term. 1 st A1 any two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	B1 M1A1ft A1 dM1 A1 (6)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
<i>Aliter</i> 6 (b) Way 2	$0.25 \times \left\{ \frac{0.5 + 0.38}{2} + \frac{0.38 + 0.30}{2} + \frac{0.30 + 0.24}{2} + \frac{0.24 + 0.2}{2} \right\}$ which is equivalent to:	0.25 and a divisor of 2 on all terms inside brackets. One of first and last ordinates, two of the middle ordinates inside brackets ignoring the denominator of 2.	B1 M1
	$\frac{1}{2} \times 0.25 ; \times \left\{ (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}$ $\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out. awrt 0.32	<u>A1</u> √ A1 (4)



Question

Number Aliter

> (a) Way2

10

Mathematics C2

11:+ -

Aliter 10 (a) Way3	$\begin{cases} u = 4x \qquad v = 25 - 10x + x^2 \\ \frac{du}{dx} = 4 \qquad \qquad \frac{dv}{dx} = -10 + 2x \end{cases}$		
	\pm (their u')(their(5 - x) ²) \pm (4 x)(their v')	M1	
	$\frac{dy}{dx} = 4(25-10x + x^2) + 4x(-10 + 2x)$ A correct attempt at differentiating any one of either <i>u</i> or their <i>v</i> correctly.	dM1	
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct		
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 100 - 80x + 12x^2 \qquad 100 - 80x + 12x^2$	A1	
			(4)
	Note: The candidate needs to use a complete product rule method in order for you to award the first M1 mark here. The second method mark is dependent on the first method mark awarded.		

Question Number	Scheme	Marks
Aliter	Gradient Test Method:	
10 (c)	$\frac{dV}{dx} = 100 - 80x + 12x^2$	
Way 2	Helpful table!	
	x $\frac{dV}{dx}$ 0.843.680.937.721321.126.521.221.281.316.281.411.521.42910.2041.571.62.721.7-1.321.8-5.121.9-8.682-122.1-15.082.2-17.922.3-20.522.4-22.882.5-25	

Questior Number			Scheme	Mai	rks
8 (b)) Method o	f trial and improv	vement		
	Helpful to				
	<i>x</i>	$y = 7^{2x} - 4(7^x) + 3$			
	0	0			
	0.1	-0.38348			
	0.2	-0.72519			
	0.3	-0.95706			
	0.4	-0.96835			
	0.5	-0.58301			
	0.51	-0.51316			
	0.52	-0.43638			
	0.53	-0.3523			
	0.54	-0.26055			
	0.55	-0.16074			
	0.56	-0.05247			
	0.561	-0.04116			
	0.562	-0.02976			
	0.563	-0.01828			
	0.564	-0.0067			
	0.565	0.00497			
	0.57	0.064688			
	0.58	0.19118			
	0.59	0.327466			
	0.6	0.474029			
	0.7	2.62723			
	0.8	6.525565			
	0.9	13.15414			
		24	. 1 in		
			nd improvement by trialing (45) = value and f(value between 0.5645 and 1) = value	M1	
			rrect to 1sf or truncated 1sf.	A1	
	•		t to 1sf or truncated 1sf.	A1	
			o 2 dp by finding by trialing		
		tween 0.56 and 0.5		M1	
	f (value be	etween 0.5645 and	(0.565) = value		
	Both valu $x = 0.56$ (e		r truncated 1sf and the confirmation that the root is	A1	
	x = 0.50 (0) x = 0	·		B1	
					(6
	Note: If a	a candidate goes f	from $7^x = 3$ with no working to $x = 0.5645$ then give		
	M1A1 im	plied.			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code US026235 January 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH