

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6664/01)

January 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks		
1	$(3-2x)^5 = 243$, $+5 \times (3)^4 (-2x) = -810x$	B1, B1		
	$+\frac{5\times4}{2}(3)^3(-2x)^2 = +1080x^2$	M1 A1	(4) [4]	
			ניין	
Notes	First term must be 243 for B1 , writing just 3^5 is B0 (Mark their final answe second line of special cases below). Term must be simplified to $-810x$ for B1 The x is required for this mark. The method mark (M1) is generous and is awarded for an attempt at Binor third term			
	third term. There must be an x^2 (or no x- i.e. not wrong power) and attempt at Binomial C and at dealing with powers of 3 and 2. The power of 3 should not be one, but the 2 may be one (regarded as bracketing slip).			
	So allow $\binom{5}{2}$ or $\binom{5}{3}$ or 5C_2 or 5C_3 or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of '10' (maybe from			
	Pascal's triangle) May see ${}^5C_2(3)^3(-2x)^2$ or ${}^5C_2(3)^3(-2x^2)$ or ${}^5C_2(3)^5(-\frac{2}{3}x^2)$ or $10(3)^3(2x)^2$ which would			
	each score the M1 A1 is c.a.o and needs $1080x^2$ (if $1080x^2$ is written with no working this is aw marks i.e. M1 A1.)			
Special	$243+810x+1080x^2$ is B1B0M1A1 (condone no negative signs)			
cases	Follows correct answer with $27-90x+120x^2$ can isw here (sp case)—full a correct answer	marks for		
	Misreads ascending and gives $-32x^5 + 240x^4 - 720x^3$ is marked as B1B0M1A0 special case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1\pm 2x)^5$ is 0/4			
	243, $-810x$, $1080x^2$ is full marks but 243, -810 , 1080 is B1,B0,M1,A0			
	NB Alternative method $3^5(1-\frac{2}{3}x)^5 = 3^5 - 5 \times 3^5 \times (\frac{2}{3}x) + {5 \choose 3} 3^5(-\frac{2}{3}x)^2 +$ is B0B0M1A0			
	– answers must be simplified to $243 - 810x + 1080x^2$ for full marks (awarded)			
	Special case $3(1-\frac{2}{3}x)^5 = 3-5\times 3\times \left(\frac{2}{3}x\right) + \binom{5}{3} 3\left(-\frac{2}{3}x\right)^2 +$ is B0, B0, M1, A	.0		
	Or $3(1-2x)^5$ is B0B0M0A0			

Question Number	Scheme	Marks
2	$y = (1+x)(4-x) = 4+3x-x^2$ M: Expand, giving 3 (or 4) terms	M1
	$\int (4+3x-x^2) dx = 4x + \frac{3x^2}{2} - \frac{x^3}{3}$ M: Attempt to integrate	M1 A1
	$= \left[\dots \right]_{-1}^{4} = \left(16 + 24 - \frac{64}{3} \right) - \left(-4 + \frac{3}{2} + \frac{1}{3} \right) = \frac{125}{6} \qquad \left(= 20 \frac{5}{6} \right)$	M1 A1 (5) [5]
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4 = 5$, but there needs to be a 'constant' an 'x term' and an ' x^2 term'. The x terms do not need to be collected. (Need not be seen if next line correct)	
	Attempt to integrate means that $x^n \to x^{n+1}$ for at least one of the terms, then awarded (even 4 becoming $4x$ is sufficient) – one correct power sufficient.	M1 is
	A1 is for correct answer only, not follow through. But allow $2x^2 - \frac{1}{2}x^2$ or an equivalent. Allow $+ c$, and even allow an evaluated extra constant term.	ny correct
	M1 : Substitute limit 4 and limit −1 into a changed function (must be −1) and subtraction (either way round).	d indicate
	A1 must be exact, not 20.83 or similar. If recurring indicated can have the renewative area, even if subsequently positive loses the A mark.	nark.
Special cases	 (i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answer correct, so 0, 1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule: not exact, no calculus – 0/5 unless expansion mark M1 gained. (iii) Using original method, but then change all signs after expansion is likely to lead to: M1 M1 A0, M1 A0 i.e. 3/5 	

Question Number	Scheme	Marks
3 (a)	3.84, 4.14, 4.58 (Any one correct B1 B0. All correct B1 B1)	B1 B1 (2)
(b)	$\frac{1}{2} \times 0.4, \left\{ (3+4.58) + 2(3.47+3.84+4.14+4.39) \right\}$ = 7.852 (awrt 7.9)	B1, M1 A1ft
	= 7.852 (awrt 7.9)	A1 (4) [6]
Notes (a)	B1 for one answer correct Second B1 for all three correct	
	Accept awrt ones given or exact answers so $\sqrt{21}$, $\sqrt{\left(\frac{369}{25}\right)}$ or $\frac{3\sqrt{41}}{5}$, and	$\sqrt{\left(\frac{429}{25}\right)}$ or
(b)	$\frac{\sqrt{429}}{5}$, score the marks. B1 is for using 0.2 or $\frac{0.4}{2}$ as $\frac{1}{2}h$.	
	M1 requires first bracket to contain first plus last values and second bracket to include no additional values from those in the table. If the only mistake is to omit one value from 2^{nd} bracket this may be regard can be allowed (An extra repeated term forfeits the M mark however) x values: M0 if values used in brackets are x values instead of y values. Separate trapezia may be used: B1 for 0.2, M1 for $\frac{1}{2}h(a+b)$ used 4 or 5 time.g $0.2(3+3.47)+0.2(3.47+3.84)+0.2(3.84+4.14)+0.2(4.14+4.58)$ is N equivalent to missing one term in {} } in main scheme A1ft follows their answers to part (a) and is for {correct expression}	nes (and A1 ft all
Special	Final A1 must be correct. (No follow through) Bracketing mistake: i.e. $\frac{1}{2} \times 0.4(3 + 4.58) + 2(3.47 + 3.84 + 4.14 + 4.39)$	
Special cases		
	scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).	
	Need to see trapezium rule – answer only (with no working) is 0/4.	

Question Number	Scheme	Marks
4	$\log_5 x = \log_5(x^2), \qquad \log_5(4-x) - \log_5(x^2) = \log_5 \frac{4-x}{x^2}$ $\log\left(\frac{4-x}{x^2}\right) = \log 5 \qquad 5x^2 + x - 4 = 0 \text{ or } 5x^2 + x = 4 \text{ o.e.}$	B1, M1
	$\log\left(\frac{4-x}{x^2}\right) = \log 5 \qquad 5x^2 + x - 4 = 0 \text{ or } 5x^2 + x = 4 \text{ o.e.}$	M1 A1
	$(5x-4)(x+1) = 0 x = \frac{4}{5} (x = -1)$	dM1 A1 (6) [6]
Notes	B1 is awarded for $2 \log x = \log x^2$ anywhere. M1 for correct use of $\log A - \log B = \log \frac{A}{B}$ M1 for replacing 1 by $\log_k k$. A1 for correct quadratic $(\log(4-x) - \log x^2 = \log 5 \Rightarrow 4-x-x^2 = 5 \text{ is } \mathbf{B1M0M1A0\ M0A0})$ dM1 for attempt to solve quadratic with usual conventions. (Only award M marks have been awarded) A1 for 4/5 or 0.8 or equivalent (Ignore extra answer).	if previous two
Alternative 1	$\log_5(4-x)-1 = 2\log_5 x \text{so } \log_5(4-x)-\log_5 5 = 2\log_5 x$ $\log_5 \frac{4-x}{5} = 2\log_5 x$ then could complete solution with $2\log_5 x = \log_5(x^2)$ $\left(\frac{4-x}{5}\right) = x^2 \qquad 5x^2 + x - 4 = 0$ Then as in first method $(5x-4)(x+1) = 0 \qquad x = \frac{4}{5} \qquad (x = -1)$	M1 M1 B1 A1 dM1 A1 (6) [6]
Special cases	Complete trial and error yielding 0.8 is M3 and B1 for 0.8 A1, A1 awarded for each of two tries evaluated. i.e. 6/6 Incomplete trial and error with wrong or no solution is 0/6 Just answer 0.8 with no working is B1 If log base 10 or base e used throughout - can score B1M1M1A0M1A0	, [O]

Question Number	Scheme	Marks	
5 (a)	<i>PQ</i> : $m_1 = \frac{10-2}{9-(-3)} = (=\frac{2}{3})$ and <i>QR</i> : $m_2 = \frac{10-4}{9-a}$	M1	
(b) Alt for (a)	$m_1 m_2 = -1$: $\frac{8}{12} \times \frac{6}{9-a} = -1$ $a = 13$ (*) (a) Alternative method (Pythagoras) Finds all three of the following $(9-(-3))^2 + (10-2)^2$, (i.e.208), $(9-a)^2 + (10-4)^2$, $(a-(-3))^2 + (4-2)^2$	M1 A1 (3)	
	Using Pythagoras (correct way around) e.g. $a^2 + 6a + 9 = 240 + a^2 - 18a + 81$ to form equation Solve (or verify) for a , $a = 13$ (*) (b) Centre is at $(5, 3)$	M1 A1 (3) B1	
	$(r^2 =) (10-3)^2 + (9-5)^2$ or equiv., or $(d^2 =) (13-(-3))^2 + (4-2)^2$ $(x-5)^2 + (y-3)^2 = 65$ or $x^2 + y^2 - 10x - 6y - 31 = 0$	M1 A1 M1 A1 (5)	
Alt for (b)	Uses $(x-a)^2 + (y-b)^2 = r^2$ or $x^2 + y^2 + 2gx + 2fy + c = 0$ and substitutes (-3, 2), (9, 10) and (13, 4) then eliminates one unknown Eliminates second unknown	M1 M1	
	$\zeta = 3, \gamma = 3, c = 31.01$ $\alpha = 3, \delta = 3, \gamma = 0.3$	A1, A1, B1cao (5) [8]	
Notes (a)	 M1-considers gradients of PQ and QR -must be y difference / x difference (or considers three lengths as in alternative method) M1 Substitutes gradients into product = -1 (or lengths into Pythagoras' Theorem the correct way round) A1 Obtains a = 13 with no errors by solution or verification. Verification can score 3/3. 		
(b)	Geometrical method: B1 for coordinates of centre – can be implied by use in part (b)		
	M1 for attempt to find r^2 , d^2 , r or d (allow one slip in a bracket).		
	A1 cao. These two marks may be gained implicitly from circle equation		
	M1 for $(x \pm 5)^2 + (y \pm 3)^2 = k^2$ or $(x \pm 3)^2 + (y \pm 5)^2 = k^2$ ft their (5,3) Allow k^2 non numerical.		
	A1 cao for whole equation and rhs must be 65 or $(\sqrt{65})^2$, (similarly B1 must be 65 or		
	$\left(\sqrt{65}\right)^2$, in alternative method for (b))		

Question Number	Scheme	Marks
Further alternatives	(i) A number of methods find gradient of PQ = $2/3$ then give perpendicular gradient is $-3/2$ This is M1 They then proceed using equations of lines through point Q or by using gradient QR to obtain equation such as $\frac{4-10}{a-9} = -\frac{3}{2}$ M1 (may still have x in this equation rather than a and there may be a small slip)	M1 M1
	They then complete to give $(a) = 13$ A1	A1
	(ii) A long involved method has been seen finding the coordinates of the centre of the circle first. This can be done by a variety of methods Giving centre as (c, 3) and using an equation such as $(c-9)^2 + 7^2 = (c+3)^2 + 1^2 \text{ (equal radii)}$ or $\frac{3-6}{c-3} = -\frac{3}{2}$ M1 (perpendicular from centre to chord bisects chord)	M1
	Then using c (= 5) to find a is M1	M1
	Finally $a = 13$ A1	A1
	(iii) Vector Method: States PQ. QR = 0, with vectors stated $12i + 8j$ and $(9 - a)i + 6j$ is M1	M1
	Evaluates scalar product so $108 - 12 a + 48 = 0$ (M1)	M1
	solves to give $a = 13$ (A1)	A1

(b) $f(-3) = (-3)^4 + 5(-3)^3 - 3a + b = 0$	Question Number	Scheme	Marks	5	
(b)	6 (a)	f(2) = 16 + 40 + 2a + b or $f(-1) = 1 - 5 - a + b$	M1 A1		
(b) $f(-3) = (-3)^4 + 5(-3)^3 - 3a + b = 0$		Finds 2nd remainder and equates to 1st \Rightarrow 16+40+2a+b=1-5-a+b	M1 A1		
Alternative for (a) (a) Uses long division, to get remainders as $b + 2a + 56$ or $b - a - 4$ or correct equivalent Uses second long division as far as remainder term, to get $b + 2a + 56 = b - a - 4 \text{ or correct equivalent}$ $a = -20$ Alternative for (b) (b) Uses long division of $x^4 + 5x^3 - 20x + b$ by $(x + 3)$ to obtain $x^3 + 2x^2 - 6x + a + 18 \text{ (with their value for } a\text{)}$ Giving remainder $b + 6 = 0$ and so $b = -6$ Notes (a) M1: Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for $a = -20$ cso M1: Puts $f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.	(b)			(5)	
Alternative for (a) (a) Uses long division, to get remainders as $b + 2a + 56$ or $b - a - 4$ or correct equivalent Uses second long division as far as remainder term, to get $b + 2a + 56 = b - a - 4 \text{ or correct equivalent}$ $a = -20$ Alternative for (b) (b) Uses long division of $x^4 + 5x^3 - 20x + b$ by $(x + 3)$ to obtain $x^3 + 2x^2 - 6x + a + 18 \text{ (with their value for } a \text{)}$ Giving remainder $b + 6 = 0$ and so $b = -6$ (3) Notes (a) M1: Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder $M1: \text{Attempts other remainder and puts one equal to the other}$ A1: for correct equation in a (and b) then A1 for $a = -20$ cso (b) M1: Puts $f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.		81 - 135 + 60 + b = 0 gives $b = -6$	A1 cso	(3) [8]	
Alternative for (b) Alternative for (b) (b) Uses long division of $x^4 + 5x^3 - 20x + b$ by $(x + 3)$ to obtain $x^3 + 2x^2 - 6x + a + 18$ (with their value for a) Giving remainder $b + 6 = 0$ and so $b = -6$ Notes (a) M1: Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for $a = -20$ cso (b) M1: Puts $f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.			M1 A1	<u></u>	
Alternative for (b) (b) Uses long division of $x^4 + 5x^3 - 20x + b$ by $(x + 3)$ to obtain $x^3 + 2x^2 - 6x + a + 18$ (with their value for a) Giving remainder $b + 6 = 0$ and so $b = -6$ Notes (a) M1: Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for $a = -20$ cso (b) M1: Puts $f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.			M1 A1		
for (b) $x^3 + 2x^2 - 6x + a + 18 \text{ (with their value for } a \text{)}$ Giving remainder $b + 6 = 0$ and so $b = -6$ Notes (a) $M1 : \text{Attempts } f(\pm 2) \text{ or } f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for $a = -20$ cso (b) $M1 : \text{Puts } f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.		a = -20	A1cso	(5)	
Notes (a) M1 : Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for $a = -20$ cso (b) M1 : Puts $f(\pm 3) = 0$ A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on ' a ' and could still be in terms of a) A1: $b = -6$ is cso.			M1 A1ft		
Notes (a) M1: Attempts f(±2) or f(±1) A1 is for the answer shown (or simplified with terms collected) for one remainder M1: Attempts other remainder and puts one equal to the other A1: for correct equation in a (and b) then A1 for a = -20 cso (b) M1: Puts f(±3) = 0 A1 is for f(-3) = 0, (where f is original function), with no sign or substitution errors (follow through on 'a' and could still be in terms of a) A1: b = -6 is cso.		Giving remainder $b + 6 = 0$ and so $b = -6$	A1 cso	(3) [8]	
A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution errors (follow through on 'a' and could still be in terms of a) A1: $b = -6$ is cso.	,	A1 is for the answer shown (or simplified with terms collected) for or M1: Attempts other remainder and puts one equal to the other	ne remaind		
	(b)	A1 is for $f(-3) = 0$, (where f is original function), with no sign or subs (follow through on 'a' and could still be in terms of a)	titution err	cors	
 term quotient A1: Obtains at least one correct remainder M1: Obtains second remainder and puts two remainders (no x terms) equal A1: correct equation A1: correct answer a = -20 following correct work. (b) M1: complete long division as far as constant (ignore remainder) 	Alternatives	term quotient A1: Obtains at least one correct remainder M1: Obtains second remainder and puts two remainders (no x terms) equal A1: correct equation A1: correct answer a = -20 following correct work. (b) M1: complete long division as far as constant (ignore remainder)			
A1ft: needs correct answer for their a A1: correct answer Beware: It is possible to get correct answers with wrong working. If remainders are equated to 0 in					

Que: Num	stion ber	Scheme	Marks	5
7	(a)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 2.2 = 39.6 \text{(cm}^2\text{)}$	M1 A1	(2)
	(b)	$\left(\frac{2\pi - 2.2}{2} = \right) \pi - 1.1 = 2.04 \text{ (rad)}$	M1 A1	(2)
		(c) $\Delta DAC = \frac{1}{2} \times 6 \times 4 \sin 2.04$ (≈ 10.7)	M1 A1ft	
		Total area = sector + 2 triangles = 61 (cm^2)	M1 A1	(4) [8]
	(a)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula.		
		A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a).		
	(b)	M1: Needs full method to give angle in radians A1: Allow answers which round to 2.04 (Just writes 2.04 – no working it	s 2/2)	
	(c)	M1: Use $\frac{1}{2} \times 6 \times 4 \sin A$ (if any other triangle formula e.g. $\frac{1}{2}b \times h$ is used the method		
		must be complete for this mark) (No value needed for A, but should not the A1: ft the value obtained in part (b) – need not be evaluated could be in M1: Uses Total area = sector + 2 triangles or other complete method A1: Allow answers which round to 61. (Do not need units)	_	2)
		Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use \triangle <i>BDC</i> – \triangle <i>BAC</i> Both areas needed for first M1 Total area = sector + area found is second M1 NB Just finding lengths BD, DC, and angle BDC then assuming area BDC:	is a sector t	0
		find area BDC is 0/4		

Question Number	Scheme	Marks	
8 (a)	$4(1-\cos^2 x) + 9\cos x - 6 = 0 4\cos^2 x - 9\cos x + 2 = 0 (*)$ $(4\cos x - 1)(\cos x - 2) = 0 \cos x =, \frac{1}{4}$	M1 A1	(2)
(b)	$(4\cos x - 1)(\cos x - 2) = 0 \qquad \cos x =, \qquad \frac{1}{4}$ $x = 75.5 \qquad (\alpha)$	M1 A1	
	$360 - \alpha$, $360 + \alpha$ or $720 - \alpha$ 284.5, 435.5, 644.5	M1, M1 A1	(6) [8]
(a)	M1: Uses $\sin^2 x = 1 - \cos^2 x$ (may omit bracket) not $\sin^2 x = \cos^2 x - 1$ A1: Obtains the printed answer without error – must have = 0		
(b)	M1: Solves the quadratic with usual conventions A1: Obtains $\frac{1}{4}$ accurately- ignore extra answer 2 but penalise e.g2. B1: allow answers which round to 75.5 M1: $360 - \alpha$ ft their value, M1: $360 + \alpha$ ft their value or 720 - α ft A1: Three and only three correct exact answers in the range achieves the	ie mark	
Special cases	In part (b) Error in solving quadratic (4cosx-1)(cosx+2) Could yield, M1A0B1M1M1A1 losing one mark for the error		
	Works in radians: Complete work in radians :Obtains 1.3 B0 . Then allow M1 M1 for $2\pi - \alpha$, $2\pi + \alpha$ or $4\pi - \alpha$ Then gets 5.0, 7.6, 11.3 A0 so 2/4 Mixed answer 1.3, $360 - 1.3$, $360 + 1.3$, $720 - 1.3$ still gets B0M1M1A0		

Question Number	Scheme	Marl	ks
9 (a)	Initial step: Two of: $a = k + 4$, $ar = k$, $ar^2 = 2k - 15$ Or one of: $r = \frac{k}{k+4}$, $r = \frac{2k-15}{k}$, $r^2 = \frac{2k-15}{k+4}$, Or $k = \sqrt{(k+4)(2k-15)}$ or even $k^3 = (k+4)k(2k-15)$ $k^2 = (k+4)(2k-15)$, so $k^2 = 2k^2 + 8k - 15k - 60$ Proceed to $k^2 - 7k - 60 = 0$ (*)	M1 M1, A1 A1	(4)
(b)	(k-12)(k+5) = 0 $k = 12$ (*)	M1 A1	(2)
(c)	Common ratio: $\frac{k}{k+4}$ or $\frac{2k-15}{k} = \frac{12}{16} \left(= \frac{3}{4} \text{ or } 0.75 \right)$	M1 A1	(2)
(d)	$\frac{a}{1-r} = \frac{16}{\binom{1}{4}} = 64$	M1 A1	(2) [10]
(a) (b) (c) (d)	M1: Eliminates a and r to give valid equation in k only. Can be awarded for involving fractions. A1: need some correct expansion and working and answer equivalent to requadratic but with uncollected terms. Equations involving fractions do not g (No fractions, no brackets – could be a cubic equation) A1: as answer is printed this mark is for cso (Needs = 0) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k = 12$. Ignore the extra –5 or even $k = 5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b)	r equation quired get this ma	ark.

6664

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	
10 (a)	$2\pi rh + 2\pi r^2 = 800$ $h = \frac{400 - \pi r^2}{\pi r}, \qquad V = \pi r^2 \left(\frac{400 - \pi r^2}{\pi r}\right) = 400r - \pi r^3 \qquad (*)$ $\frac{dV}{dr} = 400 - 3\pi r^2$	B1 M1, M1 A1 (4)	
(b)	$\frac{dV}{dr} = 400 - 3\pi r^{2}$ $400 - 3\pi r^{2} = 0 \qquad r^{2} =, \qquad r = \sqrt{\frac{400}{3\pi}} \qquad (= 6.5 \text{ (2 s.f.))}$	M1 A1	
(c)	$V = 400r - \pi r^3 = 1737 = \frac{800}{3} \sqrt{\frac{400}{3\pi}} \text{ (cm}^3\text{)}$ (accept awrt 1737 or exact answer)	M1 A1 (6)	
(C)	$\frac{d^2V}{dr^2} = -6\pi r$, Negative, :: maximum (Parts (b) and (c) should be considered together when marking)	M1 A1 (2) [12]	
Other methods for part (c):	Either: M: Find value of $\frac{dV}{dr}$ on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and consider sign.		
	A: Indicate sign change of positive to negative for $\frac{dV}{dr}$, and conclude max. Or: M: Find <u>value</u> of V on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and compare with "1737"		
	A: Indicate that both values are less than 1737 or 1737.25, and conclude max	ζ.	
Notes (a)	M1: Making h the subject of their three or four term formula M1: Substituting expression for h into $\pi r^2 h$ (independent mark) Must now be expression in r only. A1: cso		
	M1: Setting $\frac{dV}{dr}$ =0 and finding a value for correct power of r for candidate		
	 A1: This mark may be credited if the value of V is correct. Otherwise answers should round to 6.5 (allow ±6.5) or be exact answer M1: Substitute a positive value of r to give V A1: 1737 or 1737.25 or exact answer 		

www.mystudybro.com

Mathematics C2

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

6664

(c)

M1: needs complete method **e.g.** attempts differentiation (power reduced) of their first derivative and

considers its sign

A1(first method) should be $-6\pi r$ (do not need to substitute r and can condone wrong r if found in (b))

Need to conclude maximum or indicate by a tick that it is maximum.

Throughout allow confused notation such as dy/dx for dV/dr

Alternative for (a)

$$A = 2\pi r^2 + 2\pi rh$$
, $\frac{4}{2} \times r = \pi r^3 + \pi r^2 h$ is **M1** Equate to 400r **B1**

Then $V = 400r - \pi r^3$ is **M1 A1**