Winter 2006

Mathematics C2

6664

Past Paper (Mark Scheme) January 2006

Question number	Scheme	Marks	
1.	(a) $2+1-5+c=0$ or $-2+c=0$	M1	
	<u><i>c</i> = 2</u>	A1	(2)
	(b) $f(x) = (x-1)(2x^2+3x-2)$ (x-1)	B1	
	division	M1	
	$= \dots (2x-1)(x+2)$	M1 A1	(4)
	(c) $f\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4} - \frac{15}{2} + c$	M1	
	Remainder = $c + 1.5$ = 3.5 ft their c	A1ft	(2)
		Total 8 ma	rks
2.	(a) $(1+px)^9 = 1+9px$; $+\binom{9}{2}(px)^2$	B1 B1	(2)
	(b) $9p = 36$, so $p = 4$	M1 A1	
	$q = \frac{9 \times 8}{2} p^2$ or $36 p^2$ or $36p$ if that follows from their (a)	M1	
	So $q = 576$	Alcao	(4)
		Total 6 ma	rks
3.	(a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26]	M1	
	$AB = \sqrt{26}$	A1	(2)
	(b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$	M1	
	$= \frac{\left(\frac{7}{2}, \frac{5}{2}\right)}{\left(\frac{1}{2}, \frac{5}{2}\right)}$	A1	(2)
	(c) $(x - x_p)^2 + (y - y_p)^2 = \left(\frac{AB}{2}\right)^2$ LHS	M1	
	RHS	M1	
	$(x-3.5)^{2} + (y-2.5)^{2} = 6.5$ oe	A1 c.a.o	(3)
		Total 7 ma	rks

January 2006

Winter 2006www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Mathematics C2

6664

6664 Core Mathematics C2 Mark Scheme

Question number		Scheme		Marks	
4.	(a)	$\frac{a}{1-r} = 480$		M1	
		$\frac{120}{1-r} = 480 \Longrightarrow 120 = 480(1-r)$		M1	
		$1 - r = \frac{1}{4} \Longrightarrow \qquad r = \frac{3}{4} \qquad *$		A1cso	(3)
	(b)	$u_{5} = 120 \times \left(\frac{3}{4}\right)^{4} [= 37.96875]$ $u_{5} = 120 \times \left(\frac{3}{4}\right)^{5} [= 28.4765625]$	either	M1	
		Difference = 9.49	(allow ±)	A1	(2)
	(c)	$S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$		M1	
		= 415.9277	(AWRT) <u>416</u>	A1	(2)
	(d)	$\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$		M1	
		$1 - (0.75)^n > \frac{300}{480}$	(or better)	A1	
		$n > \frac{\log(0.375)}{\log(0.75)}$	(=3.409)	M1	
		<u>n = 4</u>		A1cso	(4)
				Total 11 ma	irks
5.	(a)	$\cos A\hat{O}B = \frac{5^2 + 5^2 - 6^2}{2 \times 5 \times 5}$ or		M1	
		$\sin\theta = \frac{3}{5}$ with use of $\cos 2\theta = 1 - 2\sin^2\theta$ attempted			
		$=\frac{7}{25}$ *		A1cso	(2)
	(b)	$A\hat{O}B = 1.2870022$ radians	1.287 or better	B1	(1)
	(c)	Sector $=\frac{1}{2} \times 5^2 \times (b)$, $= 16.087$	(AWRT) <u>16.1</u>	M1 A1	(2)
	(d)	Triangle = $\frac{1}{2} \times 5^2 \times \sin(b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^2 - 3^2}$		M1	
		Segment = (their sector) – their triangle		dM1	
		= (sector from c) $- 12 = (AWRT)\underline{4.1}$	(ft their part(c))	A1ft	(3)

Total 8 marks

Winter 2006

Past Paper (Mark Scheme) January 2006

Mathematics C2 6664

Question number	Scheme	Marks
6.	(a) $t = 15 25 30$ v = 3.80 9.72 15.37 (b) $S \approx \frac{1}{2} \times 5; [0+15.37+2(1.22+2.28+3.80+6.11+9.72)]$	B1 B1 B1 (3) B1 [M1]
	$=\frac{5}{2}[61.63] = 154.075 = AWRT 154$	A1 (3) Total 6 marks

7.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 4$	M1 A1	(2)
	(b)	$6x^2 - 10x - 4 = 0$	M1	
		2(3x+1)(x-2) [=0]	M1	
		$x = 2$ or $-\frac{1}{3}$ (both x values)	A1	
		Points are $(2, -10)$ and $(-\frac{1}{3}, 2\frac{19}{27} \text{ or } \frac{73}{27} \text{ or } 2.70 \text{ or better})$ (both y values)	A1	(4)
	(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 10$	M1 A1	(2)
	(d)	$x = 2 \Longrightarrow \frac{d^2 y}{dx^2} (= 14) \ge 0$: $[(2, -10)]$ is a <u>Min</u>	M1	
		$x = -\frac{1}{3} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (= -14) \le 0 \therefore \left[\left(-\frac{1}{3}, \frac{73}{27} \right) \right] \text{ is a } \underline{\mathrm{Max}}$	A1	(2)
			Total 10 m	arks

Winter 2006 Past Paper (Mark Scheme) January 2006

Question number		Scheme		Marks	
8.	(a) $\sin(\theta + 30) = \frac{3}{5}$		$(\frac{3}{5} \text{ on RHS})$	B1	
	θ + 30 = 36.9		$(\alpha = AWRT 37)$	B1	
	or =	143.1	$(180 - \alpha)$	M1	
	$\theta = 6.9, 1$	13.1		Alcao	(4)
	(b) $\tan \theta = \pm 2$	or $\sin\theta = \pm \frac{2}{\sqrt{5}}$ or	$\pm \cos\theta = \pm \frac{1}{\sqrt{5}}$	B1	
	$(\tan\theta = 2 \Longrightarrow) \qquad \theta = \underline{6}$	3.4	$(\beta = AWRT 63.4)$	B1	
	or	<u>243.4</u>	$(180 + \beta)$	M1	
	$(\tan\theta = -2 \Longrightarrow) \qquad \theta =$	116.6	$(180 - \beta)$	M1	
	or	<u>296.6</u>	(180 + their 116.6)	M1	(5)
				Total 9 mai	rks

Winter 2006

Past Paper (Mark Scheme) January 2006

Mathematics C2 6664

Question number	Scheme	Marks	
9.	(a) $\frac{3}{2} = -2x^2 + 4x$	M1	
	$4x^2 - 8x + 3(=0)$	A1	
	(2x-1)(2x-3)=0	M1	
	$x = \frac{1}{2}, \frac{3}{2}$	A1 (4)	
	(b) Area of $R = \int_{\frac{1}{2}}^{\frac{3}{2}} (-2x^2 + 4x) dx - \frac{3}{2}$ (for $-\frac{3}{2}$)	B1	
	$\int \left(-2x^2 + 4x\right) dx = \left[-\frac{2}{3}x^3 + 2x^2\right] \qquad (Allow \pm [], accept \frac{4}{2}x^2)$	M1 [A1]	
	$\int_{\frac{1}{2}}^{\frac{3}{2}} \left(-2x^2 + 4x\right) \mathrm{d}x = \left(-\frac{2}{3} \times \frac{3^3}{2^3} + 2 \times \frac{3^2}{2^2}\right) - , \ \left(-\frac{2}{3} \times \frac{1}{2^3} + 2 \times \frac{1}{2^2}\right)$	M1 M1	
	$\left(=\frac{11}{6}\right)$		
	Area of $R = \frac{11}{6} - \frac{3}{2} = \frac{1}{\underline{3}}$ (Accept exact equivalent but not 0.33)	A1cao (6)	
		Total 10 marks	