

Mark Scheme (Results) January 2011

GCE

GCE Further Pure Mathematics FP1 (6667) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011

Publications Code UA026332

All the material in this publication is copyright $\ensuremath{^\odot}$ Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Further Pure Mathematics FP1 6667 Mark Scheme

Question Number	Scheme	Ма	arks
1.	z = 5 - 3i, w = 2 + 2i $z^{2} = (5 - 3i)(5 - 3i)$		
	$= 25 - 15i - 15i + 9i^{2}$ $= 25 - 15i - 15i - 9$ An attempt to multiply out the brackets to give four terms (or four terms implied). <i>zw</i> is MO	M1	
	= 16 - 30i 16 - 30i Answer only 2/2	A1	(2)
(b)	$\frac{z}{w} = \frac{(5-3i)}{(2+2i)}$		
	$= \frac{(5-3i)}{(2+2i)} \times \frac{(2-2i)}{(2-2i)}$ Multiplies $\frac{z}{w}$ by $\frac{(2-2i)}{(2-2i)}$	M1	
	$= \frac{10-10i-6i-6}{4+4}$ Simplifies realising that a real number is needed on the denominator and applies $i^2 = -1$ on their numerator expression denominator expression	M1	
	$=\frac{4-16i}{8}$		
	$= \frac{1}{2} - 2i \text{ or } a = \frac{1}{2} \text{ and } b = -2 \text{ or } a = \frac$	A1	(3) [5]

Question Number	Scheme	Ма	rks
2.	$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$ $\mathbf{AB} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$		
	$\mathbf{AB} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} -5 & -1 \\ 5 & 2 \end{pmatrix}$		
	$= \begin{pmatrix} 2(-3) + 0(5) & 2(-1) + 0(2) \\ 5(-3) + 3(5) & 5(-1) + 3(2) \end{pmatrix}$ A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} -6 & -2 \\ 0 & 1 \end{pmatrix}$ Any three elements correct Correct answer	A1	
		A1	$\langle \alpha \rangle$
	Correct answer only 3/3		(3)
(b)	Reflection; about the y-axis.Reflection $\underline{y-axis}$ (or $x = 0.$)	M1 A1	(2)
(c)	$\mathbf{C}^{100} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad$	B1	
			(1) [6]

Question Number	Scheme		Marks
3. (a)	$f(x) = 5x^{2} - 4x^{\frac{3}{2}} - 6, x \ge 0$ f(1.6) = -1.29543081 f(1.8) = 0.5401863372	awrt -1.30 awrt 0.54 Correct linear interpolation method	B1 B1
	$\frac{\alpha - 1.6}{"1.29543081"} = \frac{1.8 - \alpha}{"0.5401863372"}$ $\alpha = 1.6 + \left(\frac{"1.29543081"}{"0.5401863372" + "1.29543081"}\right) 0.2$	with signs correct. Can be implied by working below.	M1
	= 1.741143899	awrt 1.741 Correct answer seen 4/4	A1 (4)
(b)	$f'(x) = 10x - 6x^{\frac{1}{2}}$	At least one of $\pm a x$ or $\pm b x^{\frac{1}{2}}$ correct. Correct differentiation.	M1 A1 (2)
(c)	f(1.7) = -0.4161152711	f(1.7) = awrt - 0.42	B1
	f'(1.7) = 9.176957114	f'(1.7) = awrt 9.18	B1
	$\alpha_{2} = 1.7 - \left(\frac{"-0.4161152711"}{"9.176957114"}\right)$	Correct application of Newton- Raphson formula using their values.	M1
	= 1.745343491		
	= 1.745 (3 dp)	1.745	A1 cao
	` `	Correct answer seen 4/4	(4) [10]

Question Number	Scheme	Ма	rks
4. (a)	$z^{2} + p z + q = 0, z_{1} = 2 - 4i$ $z_{2} = 2 + 4i$ 2 + 4i	B1	(1)
(b)	$(z - 2 + 4i)(z - 2 - 4i) = 0$ $\Rightarrow z^{2} - 2z - 4iz - 2z + 4 - 8i + 4iz - 8i + 16 = 0$ $\Rightarrow z^{2} - 4z + 20 = 0$ An attempt to multiply out brackets of two complex factors and no i ² . Any one of $p = -4$, $q = 20$. Both $p = -4$, $q = 20$. $\Rightarrow z^{2} - 4z + 20 = 0$ only 3/3	A1	(3) [4]

Question Number	Scheme		Mai	rks
-	$\sum_{r=1}^{n} r(r+1)(r+5)$			
(a)	<i>r</i> = 1	Multiplying out brackets and an attempt to use at least one of the standard formulae correctly.	M1	
	$=\frac{1}{4}n^{2}(n+1)^{2}+6.\frac{1}{6}n(n+1)(2n+1)+5.\frac{1}{2}n(n+1)$	Correct expression.	A1	
	$= \frac{1}{4}n^2(n+1)^2 + n(n+1)(2n+1) + \frac{5}{2}n(n+1)$			
	$= \frac{1}{4}n(n+1)\big(n(n+1) + 4(2n+1) + 10\big)$	Factorising out at least $n(n + 1)$	dM1	
	$= \frac{1}{4}n(n+1)\left(n^2 + n + 8n + 4 + 10\right)$			
	$= \frac{1}{4}n(n+1)\left(n^2 + 9n + 14\right)$	Correct 3 term quadratic factor	A1	
	$= \frac{1}{4}n(n+1)(n+2)(n+7) *$	Correct proof. No errors seen.	A1	(5)
(b)	$S_n = \sum_{r=20}^{50} r(r+1)(r+5)$			
	$=S_{50} - S_{19}$			
	$= \frac{1}{4}(50)(51)(52)(57) - \frac{1}{4}(19)(20)(21)(26)$	Use of $S_{50} - S_{19}$	M1	
	= 1889550 - 51870			
	= 1837680	1837680 Correct answer only 2/2	A1	(2) [7]
				L'J

Question Number	Scheme	Marks
6.	$C: y^2 = 36x \implies a = \frac{36}{4} = 9$	
(a)	<i>S</i> (9, 0) (9, 0)	B1 (1)
(b)	x + 9 = 0 or $x = -9or ft using their a from part (a).$	B1√ (1)
(c)	$PS = 25 \implies \underline{QP} = 25$ Either 25 by itself or $PQ = 25$. Do not award if just $PS = 25$ is seen.	B1
		(1)
(d)	<i>x</i> -coordinate of $P \Rightarrow x = 25 - 9 = 16$ $x = 16$	B1√
	$y^2 = 36(16)$ Substitutes their <i>x</i> -coordinate into equation of <i>C</i> .	M1
	$\underline{y} = \sqrt{576} = \underline{24}$ equation of C. $\underline{y} = 24$	A1 (3)
	Therefore $P(16, 24)$	(0)
(e)	Area $OSPQ = \frac{1}{2}(9+25)24$ or rectangle and 2 distinct triangles, correct for their values.	M1
	= <u>408</u> (units) ² 408	A1 (2) [8]

Question Number	Scheme		Ма	arks
7. (a)	-24 -24 -7 Re	Correct quadrant with (-24, -7) indicated.	B1	(1
(b)	$\arg z = -\pi + \tan^{-1}\left(\frac{7}{24}\right)$	$\tan^{-1}\left(\frac{7}{24}\right)$ or $\tan^{-1}\left(\frac{24}{7}\right)$	M1	
	= -2.857798544 = -2.86 (2 dp)	awrt -2.86 or awrt 3.43	A1	(2
(c)	$ w = 4$, $\arg w = \frac{5\pi}{6} \implies r = 4$, $\theta = \frac{5\pi}{6}$ $w = r\cos\theta + ir\sin\theta$			
	$w = 4\cos\left(\frac{5\pi}{6}\right) + 4i\sin\left(\frac{5\pi}{6}\right)$ $= 4\left(\frac{-\sqrt{3}}{2}\right) + 4i\left(\frac{1}{2}\right)$	Attempt to apply $r\cos\theta + ir\sin\theta$. Correct expression for <i>w</i> .	M1 A1	
	$= -2\sqrt{3} + 2i$ $a = -2\sqrt{3}, b = 2$	either $-2\sqrt{3} + 2i$ or awrt $-3.5 + 2i$	A1	(3
(d)	$ z = \sqrt{(-24)^2 + (-7)^2} = \underline{25}$	$\frac{ z = 25}{zw} = (48\sqrt{3} + 14) + (14\sqrt{3} - 48)i \text{ or}$ awrt 97.1-23.8i	B1	
	$ zw = z \times w = (25)(4)$	Applies $ z \times w $ or $ zw $	M1	
	= <u>100</u>	<u>100</u>	A1	(3 [9

Question Number	Scheme	Marks
8. (a)	$\mathbf{A} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$ det $\mathbf{A} = 2(3) - (-1)(-2) = 6 - 2 = 4$	<u>B1</u> (1)
(b)	$\mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ $\frac{1}{\det \mathbf{A}} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$ $\frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$	M1 A1 (2)
(c)	Area $(R) = \frac{72}{4} = \underline{18} \text{ (units)}^2$ $\frac{72}{\text{their det } \mathbf{A}} \text{ or } 72 \text{ (their det } \mathbf{A}\text{)}$ $\underline{18} \text{ or ft answer.}$	_
(d)	$\mathbf{AR} = \mathbf{S} \Rightarrow \mathbf{A}^{-1} \mathbf{AR} = \mathbf{A}^{-1} \mathbf{S} \Rightarrow \mathbf{R} = \mathbf{A}^{-1} \mathbf{S}$ $\mathbf{R} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 8 & 12 \\ 4 & 16 & 4 \end{pmatrix}$ $= \frac{1}{4} \begin{pmatrix} 8 & 56 & 44 \\ 8 & 40 & 20 \end{pmatrix}$ At least one attempt to apply \mathbf{A}^{-1} by any of the three vertices in \mathbf{S} .	M1
	$= \begin{pmatrix} 2 & 14 & 11 \\ 2 & 10 & 5 \end{pmatrix}$ At least one correct column o.e. At least two correct columns o.e.	A1√ A1
	Vertices are (2, 2), (14, 10) and (11, 5). All three coordinates correct.	A1 (4) [9]

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
9.	$u_{n+1} = 4u_n + 2$, $u_1 = 2$ and $u_n = \frac{2}{3}(4^n - 1)$ $n = 1;$ $u_1 = \frac{2}{3}(4^1 - 1) = \frac{2}{3}(3) = 2$ So u_n is true when $n = 1$.	Check that $u_n = \frac{2}{3}(4^n - 1)$ yields 2 when $n = 1$.	B1
	Assume that for $n = k$ that, $u_k = \frac{2}{3}(4^k - 1)$ is true for $k \in \mathbb{Z}^+$.		
	Then $u_{k+1} = 4u_k + 2$		
	$=4\left(\frac{2}{3}(4^{k}-1)\right)+2$	Substituting $u_k = \frac{2}{3}(4^k - 1)$ into $u_{n+1} = 4u_n + 2.$	M1
	$=\frac{8}{3}(4)^k - \frac{8}{3} + 2$	An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1
	$=\frac{2}{3}(4)(4)^{k}-\frac{2}{3}$		
	$=\frac{2}{3}4^{k+1}-\frac{2}{3}$		
	$= \frac{2}{3} \left(4^{k+1} - 1 \right)$	$\frac{2}{3}(4^{k+1}-1)$	A1
	Therefore, the general statement, $u_n = \frac{2}{3}(4^n - 1)$ is true when $n = k+1$. (As u_n is true for $n = 1$,) then u_n is true for all positive integers by mathematical induction	Require 'True when n=1', 'Assume true when $n=k$ ' and 'True when n = k+1' then true for all <i>n</i> o.e.	A1
			(5) [5]

Question Number	Scheme		Marks
10.	$xy = 36$ at $(6t, \frac{6}{t})$.		
(a)	$y = \frac{36}{x} = 36x^{-1} \implies \frac{dy}{dx} = -36x^{-2} = -\frac{36}{x^2}$	An attempt at $\frac{dy}{dx}$. or $\frac{dy}{dt}$ and $\frac{dx}{dt}$	M1
	At $\left(6t, \frac{6}{t}\right), \frac{dy}{dx} = -\frac{36}{\left(6t\right)^2}$	An attempt at $\frac{dy}{dx}$. in terms of <i>t</i>	M1
	So, $m_T = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2}$	$\frac{dy}{dx} = -\frac{1}{t^2} *$ Must see working to award here	A1
	T : $y - \frac{6}{t} = -\frac{1}{t^2}(x - 6t)$	Applies $y - \frac{6}{t} = \text{their } m_T (x - 6t)$	M1
	T : $y - \frac{6}{t} = -\frac{1}{t^2}x + \frac{6}{t}$ T : $y = -\frac{1}{t^2}x + \frac{6}{t} + \frac{6}{t}$		
	T : $y = -\frac{1}{t^2}x + \frac{12}{t}*$	Correct solution .	A1 cso (5)
(b)	Both T meet at (-9, 12) gives $12 = -\frac{1}{t^2}(-9) + \frac{12}{t}$ $12 = \frac{9}{t^2} + \frac{12}{t} (\times t^2)$	Substituting (-9,12) into T .	M1
	$12t^{2} = 9 + 12t$ $12t^{2} - 12t - 9 = 0$ $4t^{2} - 4t - 3 = 0$	An attempt to form a "3 term quadratic"	M1
	$(2t - 3)(2t + 1) = 0$ $t = \frac{3}{2}, -\frac{1}{2}$	An attempt to factorise.	M1
	$t=rac{3}{2}$, $-rac{1}{2}$	$t=\frac{3}{2},-\frac{1}{2}$	A1
	$t = \frac{3}{2} \implies x = 6\left(\frac{3}{2}\right) = 9$, $y = \frac{6}{\left(\frac{3}{2}\right)} = 4 \implies (9, 4)$	An attempt to substitute either their $t = \frac{3}{2}$ or their $t = -\frac{1}{2}$ into <i>x</i> and <i>y</i> .	M1
	$t = -\frac{1}{2} \implies x = 6\left(-\frac{1}{2}\right) = -3,$	At least one of $(9, 4)$ or $(-3, -12)$.	A1
	$y = \frac{6}{\left(-\frac{1}{2}\right)} = -12 \implies (-3, -12)$	Both $(9, 4)$ and $(-3, -12)$.	A1
	(2)		(7) [12]

Other Possible Solutions

Question Number	Scheme	Marks
4.	$z^{2} + p z + q = 0, \ z_{1} = 2 - 4i$	
(a) (i) Aliter	$z_2 = 2 + 4i$ 2 + 4i	B1
(ii) Way 2	Product of roots = $(2 - 4i)(2 + 4i)$ No i^2 . Attempt Sum and Product of roots or Sum and discriminant	M1
	= 4 + 16 = 20 or $b^2 - 4ac = (8i)^2$ Sum of roots = $(2 - 4i) + (2 + 4i) = 4$	
	$z^{2} - 4z + 20 = 0$ Any one of $p = -4, q = 20$. Both $p = -4, q = 20$.	A1 A1 (4)
4.	$z^2 + p z + q = 0, \ z_1 = 2 - 4i$	
(a) (i) Aliter	$z_2 = 2 + 4i$ 2 + 4i	B1
(ii) Way 3	$(2-4i)^{2} + p(2-4i) + q = 0$ $-12 - 16i + p(2-4i) + q = 0$ An attempt to substitute either $z_{1} \text{ or } z_{2} \text{ into } z^{2} + pz + q = 0$ and no i ² .	M1
	Imaginary part: $-16 - 4p = 0$	
	Real part: $-12 + 2p + q = 0$	
	$4p = -16 \Rightarrow p = -4, q = 20.$ $q = 12 - 2p \Rightarrow q = 12 - 2(-4) = 20$ Any one of $p = -4, q = 20.$ Both $p = -4, q = 20.$	A1 A1 (4)

Question Number	Scheme		Marks
Aliter 7. (c) Way 2	$ w = 4$, $\arg w = \frac{5\pi}{6}$ and $w = a + ib$		
	$ w = 4 \implies a^2 + b^2 = 16$	Attempts to write down an equation in terms of a and b for either the modulus or the argument of w .	M1
	$\arg w = \frac{5\pi}{6} \implies \arctan\left(\frac{b}{a}\right) = \frac{5\pi}{6} \implies \frac{b}{a} = -\frac{1}{\sqrt{3}}$	Either $a^2 + b^2 = 16$ or $\frac{b}{a} = -\frac{1}{\sqrt{3}}$	A1
	$a = -\sqrt{3} b \implies a^2 = 3b^2$		
	So, $3b^2 + b^2 = 16 \implies b^2 = 4$		
	$\Rightarrow b = \pm 2$ and $a = \mp 2\sqrt{3}$		
	As <i>w</i> is in the second quadrant		
	$w = -2\sqrt{3} + 2i$	either $-2\sqrt{3} + 2i$ or awrt $-3.5 + 2i$	A1 (3)
	$a = -2\sqrt{3}, \ b = 2$		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026332 January 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH