

Mark Scheme (Results)

January 2012

GCE Further Pure FP1 (6667) Paper 01

PFARSON

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Winter 2012 www.mystudybro.com Mathematics FP1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030475
All the material in this publication is copyright
© Pearson Education Ltd 2012

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

This resource was created and owned by Pearson Edexcel

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

General Principals for Core Mathematics Marking

6667

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2012 6667 Further Pure Mathematics FP1 **Mark Scheme**

Question Number	Scheme	Notes	Marks
1(a)	$\arg z_1 = -\arctan(1)$	-arctan(1) or arctan(-1)	M1
	$=-\frac{\pi}{4}$	or -45 or awrt -0.785 (oe e.g $\frac{7\pi}{4}$)	A1
	Correct ar	nswer only 2/2	(2)
(b)	$z_1 z_2 = (1-i)(3+4i) = 3-3i+4i-4i^2$	At least 3 correct terms (Unsimplified)	M1
	=7+i	cao	A1
			(2)
(c)	$\frac{z_2}{z_1} = \frac{(3+4i)}{(1-i)} = \frac{(3+4i).(1+i)}{(1-i).(1+i)}$	Multiply top and bottom by (1 + i)	M1
	$= \frac{(3+4i).(1+i)}{2}$ $= -\frac{1}{2} + \frac{7}{2}i$	(1+i)(1-i)=2	A1
		or $\frac{-1+7i}{2}$	A1
	Special case $\frac{z_1}{z_2} = \frac{(1-i)}{(3+4i)} = \frac{1}{(3+4i)}$	$\frac{(1-i).(3-4i)}{(3+4i).(3-4i)}$ Allow M1A0A0	
			(3)
	Correct answers only in	(b) and (c) scores no marks	Total 7

www.mystudybro.com

Mathematics FP1

6667

This resource was created and owned by Pearson Edexcel

Question Scheme **Notes** Marks Number $f(x) = x^4 + x - 1$ 2 $f(0.5) = -0.4375 \quad (-\frac{7}{16})$ (a) Either any one of f(0.5) = awrt - 0.4 or f(1) = 1M1Sign change (positive, negative) (and f(x) is f(0.5) = awrt - 0.4 and f(1) = 1, sign change continuous) therefore (a **root**) α is between **A**1 and conclusion x = 0.5 and x = 1.0**(2)** $f(0.75) = 0.06640625(\frac{17}{256})$ $f(0.625) = -0.222412109375(-\frac{911}{4096})$ Attempt f(0.75)M1(b) f(0.75) = awrt 0.07 and f(0.625) = awrt -0.2**A**1 0.625 , α , 0.75 or $0.625 < \alpha < 0.75$ or [0.625, 0.75] or (0.625, 0.75). $0.625, \alpha, 0.75$ **A**1 or equivalent in words. In (b) there is no credit for linear interpolation and a (3)correct answer with no working scores no marks. Correct derivative (May be implied later (c) $f'(x) = 4x^3 + 1$ **B**1 by e.g. $4(0.75)^3 + 1$ $x_1 = 0.75$ $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$ M1 Attempt Newton-Raphson Correct first application – a correct numerical expression e.g. 0.75 $x_2 = 0.72529(06976...) = \frac{499}{688}$ A1or awrt 0.725 (may be implied) $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right)$ Awrt 0.724 **A**1 $(\alpha) = 0.724$ **A**1 cao A final answer of 0.724 with evidence of NR applied twice with no incorrect **(5)** work should score 5/5 Total 10

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP1

6667

Total 8

Question Number	Scheme	Notes	Marks
3(a)	Focus (4,0)		B1
	Discostrice at 1 0	x + "4" = 0 or x = - "4"	M1
	Directrix $x+4=0$	x + 4 = 0 or $x = -4$	A1
			(3)
(b)	$y = 4x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \ x^{-\frac{1}{2}}$	
	$y^2 = 16x \Rightarrow 2y \frac{dy}{dx} = 16$	$ky \frac{dy}{dx} = c$	
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 8 \cdot \frac{1}{8t}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = 2x^{-\frac{1}{2}} \text{ or } 2y \frac{dy}{dx} = 16 \text{ or } \frac{dy}{dx} = 8.\frac{1}{8t}$	Correct differentiation	A1
	At P , gradient of normal = $-t$	Correct normal gradient with no errors seen.	A1
	$y - 8t = -t(x - 4t^2)$	Applies $y - 8t = \text{their } m_N \left(x - 4t^2 \right)$ or $y = \left(\text{their } m_N \right) x + c$ using $x = 4t^2$ and $y = 8t$ in an attempt to find c. Their m_N must be different from their m_T and must be a function of t .	M1
	$y + tx = 8t + 4t^3 *$	cso **given answer**	A1
	Special case – if the correct gradient is	guoted could score M0A0A0M1A1	(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP1

Question Number	Scheme	Notes	Marks
4(a)	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix} $	Attempt to multiply the right way round with at least 4 correct elements	M1
	T' has coordinates $(1,1)$, $(1,2)$ and $(4,2)$ or $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ NOT just $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix}$	Correct coordinates or vectors	A1
			(2)
(b)	· · · · · · ·	Reflection	B1
	Reflection in the line $y = x$	y = x	B1
	Allow 'in the axis' 'about the line' $y = x$ etc. Provided bot reference to the origin unless there is a c		
		I	(2)
(c)	(4 2)(1 2) (2 0)	2 correct elements	M1 (2)
	$\mathbf{QR} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$	Correct matrix	A1
	Note that $\mathbf{RQ} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -10 \end{pmatrix}$ scores M0A0 in (c) but	
	allow all the marks in (d) and (e)		
			(2)
(d)	$\det\left(\mathbf{QR}\right) = -2 \times 2 - 0 = -4$	"-2"x"2" – "0"x"0"	M1
		-4	A1
	Answer only scores 2/	/2	(2)
	1		
	$\overline{\det(\mathbf{Q}\mathbf{R})}$ scores Mo	0	
(e)	Area of $T = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$	Correct area for T	B1
	3	Attempt at " $\frac{3}{2}$ "×±"4"	M1
	Area of $T'' = \frac{3}{2} \times 4 = 6$	6 or follow through their det(QR) x Their triangle area provided area > 0	A1ft
			(3)
			Total 11

Mathematics FP1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
5(a)	$(z_2) = 3 - i$		B1
	$(z - (3+i))(z - (3-i)) = z^2 - 6z + 10$	Attempt to expand $(z - (3+i))(z - (3-i))$ or any valid method to establish the quadratic factor e.g. $z = 3 \pm i \Rightarrow z - 3 = \pm i \Rightarrow z^2 - 6z + 9 = -1$ $z = 3 \pm \sqrt{-1} = \frac{6 \pm \sqrt{-4}}{2} \Rightarrow b = -6, c = 10$ Sum of roots 6, product of roots 10 $\therefore z^2 - 6z + 10$	M1
	$(z^2 - 6z + 10)(z - 2) = 0$	Attempt at linear factor with their cd in $(z^2 + az + c)(z + d) = \pm 20$ Or $(z^2 - 6z + 10)(z + a) \Rightarrow 10a = -20$ Or attempts f(2)	M1
	$(z_3)=2$		A1
	Showing that $f(2) = 0$ is equivalent to so 4 marks quite easily e.g. $z_2 = 3 - i$ B1, s Answers only can score 4/4	coring both M's so it is possible to gain all shows $f(2) = 0$ M2, $z_3 = 2$ A1.	(4)
5(b)	First B1 for plotting (3, 1) and (3, -1) corn with coordinates (allow points/lines/cross on imaginary axis.	rectly with an indication of scale or labelled res/vectors etc.) Allow <i>i/-i</i> for 1/-1 marked rative to the conjugate pair with an indication st 2	B1 B1
			Total 6

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	FP1
	0007

Question Number	Scheme	Notes	Marks
6(a)	$n = 1$, LHS = $1^3 = 1$, RHS = $\frac{1}{4} \times 1^2 \times 2^2 = 1$	Shows both LHS = 1 and RHS = 1	B1
	Assume true for $n = k$		
	When $n = k + 1$		
	$\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	Adds $(k + 1)^3$ to the given result	M1
	1	Attempt to factorise out $\frac{1}{4}(k+1)^2$	dM1
	$= \frac{1}{4}(k+1)^2[k^2+4(k+1)]$ Correct expression with		
	7	$\frac{1}{4}(k+1)^2$ factorised out.	A1
	$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$ Must see 4 things: true for n = 1,	Fully complete proof with no errors and comment. All the previous marks must	A1cso
	assumption true for $n = k$, said true for $n = k + 1$ and therefore true for all $n = k + 1$	have been scored.	TTCSO
	See extra notes for	alternative approaches	(5)
(b)	$\sum (r^3 - 2) = \sum r^3 - \sum 2$	Attempt two sums	M1
	$\sum r^3 - \sum 2n \text{ is M0}$		
	$=\frac{1}{4}n^2\left(n+1\right)^2-2n$	Correct expression	A1
	$= \frac{n}{4}(n^3 + 2n^2 + n - 8) *$	Completion to printed answer with no errors seen.	A1
			(3)
(c)	$\sum_{r=20}^{r=50} (r^3 - 2) = \frac{50}{4} \times 130042 - \frac{19}{4} \times 7592$	Attempt $S_{50} - S_{20}$ or $S_{50} - S_{19}$ and substitutes into a correct expression at least once.	M1
	(=1625525 – 36062)	Correct numerical expression (unsimplified)	A1
	= 1 589 463	cao	A1
			(3)
(c) Way 2	$\sum_{r=20}^{r=50} (r^3 - 2) = \sum_{r=20}^{r=50} r^3 - \sum_{r=20}^{r=50} (2) = \frac{50^2}{4} \times 51^2 - \frac{1}{12} \times \frac{1}{12} = \frac{1}{12} \times \frac{1}{$	$-\frac{19^{2}}{4} \times 20^{2} - 2 \times 31 = \begin{bmatrix} M1 \text{ for } (S_{50} - S_{20} \text{ or } S_{50} \\ -S_{19} \text{ for cubes}) - (2x30 \\ \text{ or } 2x31) \\ A1 \text{ correct numerical expression} \end{bmatrix}$	Total 11
	=1 589 463	A1	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	FP1
	6667

Question Number	Scheme	Notes	Marks
7(a)	$u_2 = 3, \ u_3 = 7$		B1, B1
			(2)
(b)	At $n = 1$, $u_1 = 2^1 - 1 = 1$ and so result true for $n = 1$		B1
	Assume true for $n = k$; $u_k = 2^k - 1$		
	2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Substitutes u_k into u_{k+1} (must see this line)	M1
	and so $u_{k+1} (= 2u_k + 1) = 2(2^k - 1) + 1$	Correct expression	A1
	$u_{k+1} (= 2^{k+1} - 2 + 1) = 2^{k+1} - 1$	Correct completion to $u_{k+1} = 2^{k+1} - 1$	A1
	Must see 4 things: $\underline{\text{true for } n = 1}$, $\underline{\text{assumption true for } n = k$, $\underline{\text{said true for } n = k + 1}$ and therefore $\underline{\text{true for all } n}$	Fully complete proof with no errors and comment. All the previous marks in (b) must have been scored.	Alcso
	Ignore any subsequent attempts e.g. u_i	$u_{k+2} = 2u_{k+1} + 1 = 2(2^{k+1} - 1) + 1$ etc.	(5)
			Total 7

Winter 2012 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics FP1

0007

Question Number	Scheme		Notes	Marks
8(a)	$\det(\mathbf{A}) = 3 \times 0 - 2 \times 1 (= -2)$	Correct attem	pt at the determinant	M1
	$det(\mathbf{A}) \neq 0$ (so A is non singular)	$det(A) = -2 \mathbf{a}$	nd some reference to zero	A1
	$\frac{1}{\det(\mathbf{A})}$	scores M0		(2)
(b)	$\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$	Recognising	that A^{-1} is required	M1
	At least 3 correct terms in $\begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$		M1	
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$	$\frac{1}{\text{their} \det(A)} \bigg($		B1ft
	Connect or one	Fully correct		A1 (4)
	Ignore poor matrix algebra	er only score 4/ notation if the		Total 6
(b) Way 2	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \begin{cases} 2a + 6b = 0 \\ 3a + 11b = 1 \end{cases} o $	2c + 6d = 2 $3c + 11d = 3$	2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
	2 2		A1 All 4 values correct	
(b) Way 3	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$\left(\mathbf{A}^{2}\right)^{-1} = \frac{1}{"2"\times"11"-"3"\times"6"} \begin{pmatrix} "11" & "-12" \\ "-6" & "22" \end{pmatrix}$	see note	Attempt inverse of A ²	M1
	$\mathbf{A} \left(\mathbf{A}^2 \right)^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 11 & -3 \\ -6 & 2 \end{pmatrix} or \frac{1}{4} \begin{pmatrix} 11 \\ -6 \end{pmatrix}$	$\begin{array}{c} -3 \\ 2 \end{array} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$	Attempts $\mathbf{A}(\mathbf{A}^2)^{-1} or(\mathbf{A}^2)^{-1} \mathbf{A}$	M1
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$		Fully correct answer	A1
(b) Way 4	DA _ Y		Decognising that DA – I	B1
(b) way 4	$ \begin{array}{c} \mathbf{BA} = \mathbf{I} \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} 2b = 1 \\ a + 3b = 0 \end{cases} \text{ or } \\ a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0 $	2d = 0 $c + 3d = 1$	Recognising that BA = I 2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
			A1 All 4 values correct	

Mathematics FP1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
9 (a)	$y = 9x^{-1} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -9x^{-2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$	
	$xy = 9 \Rightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Correct use of product rule. The sum of two terms, one of which is correct.	M1
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}} \right)$	IVII
	$\frac{dy}{dx} = -9x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	Correct differentiation.	A1
		Applies $y - \frac{3}{p} = (\text{their } m)(x - 3p) \text{ or }$	
	$y - \frac{3}{p} = -\frac{1}{p^2}(x - 3p)$	y = (their m)x + c using	
	$p - p^2$	$x = 3p$ and $y = \frac{3}{p}$ in an attempt to find c.	M1
		Their m must be a function of p and come from their dy/dx.	
	$x + p^2 y = 6p *$	Cso **given answer**	A1
	Special case – if the correct gradient	is <u>quoted</u> could score M0A0M1A1	(4)
(b)	$x + q^2 y = 6q$	Allow this to score here or in (c)	B1
(c)	2 2 2	Attempt to obtain an equation in one	(1)
(C)	$6p - p^2 y = 6q - q^2 y$	variable x or y	M1
	$y(q^2 - p^2) = 6(q - p) \Rightarrow y = \frac{6(q - p)}{q^2 - p^2}$ $x(q^2 - p^2) = 6pq(q - p) \Rightarrow x = \frac{6pq(q - p)}{q^2 - p^2}$	Attempt to isolate x or y – must reach x or $y = f(p, q)$ or $f(p)$ or $f(q)$	M1
	$y = \frac{6}{p+q}$	One correct simplified coordinate	A1
	$x = \frac{6pq}{p+q}$	Both coordinates correct and simplified	A1
	r · 4		(4)
			Total 9

This resource was created and owned by Pearson Edexcel

6(a) To show equivalence between $\frac{1}{4}k^2(k+1)^2 + (k+1)^3$ and $\frac{1}{4}(k+1)^2(k+2)^2$

$$\frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3} = \frac{1}{4}k^{4} + \frac{3}{2}k^{3} + \frac{13}{4}k^{2} + 3k + 1$$

M1

Attempt to expand one correct expression up to a quartic

$$\frac{1}{4}(k+1)^2(k+2)^2 = \frac{1}{4}k^4 + \frac{3}{2}k^3 + \frac{13}{4}k^2 + 3k + 1$$

Attempt to expand both correct expressions up to a quartic M1

One expansion completely correct (dependent on both M's)

A1

Both expansions correct and conclusion A1

Or

To show
$$\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2 = (k+1)^3$$

$$\frac{1}{4}(k+1)^{2}(k+2)^{2} - \frac{1}{4}k^{2}(k+1)^{2}$$
 Attempt to subtract M1

$$\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2 = k^3 + 3k^2 + 3k + 1$$
 Obtains a cubic expression M1

$$\frac{1}{4}(k+1)^{2}(k+2)^{2} - \frac{1}{4}k^{2}(k+1)^{2} = (k+1)^{3}$$
 Correct completion and comment A1

8(b) Way 3

Attempting inverse of \mathbf{A}^2 needs to be recognisable as an attempt at an inverse

E.g
$$(\mathbf{A}^2)^{-1} = \frac{1}{Their Det(\mathbf{A}^2)} (A changed \mathbf{A}^2)$$

Winter 2012

Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics FP1

6667

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030475 January 2012

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com/quals}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

