

Summer 2017

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE In Further Pure Mathematics FP1 (6667/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 6667_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Summer 2017 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics FP1

Question Number	Scheme	Marks
1.	$f(x) = \frac{1}{3}x^2 + \frac{4}{x^2} - 2x - 1, \ x > 0$	
(a)	f(6) = -0.888888888 Either any one of $f(6) = awrt - 0.9$ or	M1
	f(7) = 1.414965986 $f(7) = awrt 1.4$	
	Sign change or $f(6) = -ve$ and $f(7) = +ve$ or Both $f(6) = awrt - 0.9$ and $f(7) = awrt 1.4$,	A1
	$f(6) \times f(7) = -ve \text{ o.e. (and } f(x) \text{ is continuous)}$ sign change and conclusion.	
	therefore a root $/\alpha$ (exists between $x = 6$ and $x = 7$) o.e. Allow $f(6) = -\frac{8}{9}$ and $f(7) = \frac{208}{147}$.	
		[2]
(b)	$f'(x) = \frac{2}{3}x - \frac{8}{x^3} - 2$ $\frac{1}{3}x^2 \to \pm Ax \text{ or } \frac{4}{x^2} \to \pm Bx^{-3} \text{ or } -2x - 1 \to -2$	M1
	At least two of these terms differentiated correctly.	A1
	Correct derivative.	A1
	$\{f'(6) = 1.962962963\} \qquad f'(6) = \frac{53}{27}$	
	("-0 888888888 ") Correct application of Newton-Raphson	M1
	$\alpha \simeq 6 - \left(\frac{"-0.888888888"}{"1.962962963"}\right)$ Correct application of Newton-Raphson using their values.	
	= 6.452830189 Exact form of α is $\frac{342}{53}$	
	= 6.45 (2 dp) 53 6.45	A1 cso
	0.15 (2dp)	[5]
		7
	Question 1 Notes	
1. (a)	Note Accept at least 'sign change therefore root' o.e. for A1. Any incorrect statements made in the conclusion award A0.	
(b)	Note Denominator in NR calculation may contain evidence for first 3 marks.	
~ /	Correct answer of 6.45 with minimal working will imply earlier marks for elements not e	explicitly
	stated. However, incorrect values leading to a correct final answer should be marked acc	· ·

		14	1
Question	Scheme	Ma	rks
Number 2.	$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$	MI	
(a)	$\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$ Either $\frac{1}{10}$ or $\begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	M1	
(b)	Correct matrix seen. $\mathbf{P} = \mathbf{A}\mathbf{B}$	A1	[2]
Way 1	$\mathbf{F} = \mathbf{A}\mathbf{B}$ $\Rightarrow \mathbf{A}^{-1}\mathbf{P} = \mathbf{A}^{-1}\mathbf{A}\mathbf{B} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}\mathbf{P}$		
	$\mathbf{B} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$ Multiplies their \mathbf{A}^{-1} by P in correct order. This substituted statement is sufficient.	M1	
	$= \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$ At least 2 elements correct or $k \begin{pmatrix} 20 & 10 \\ 10 & -40 \end{pmatrix}$ oe.	A1	
	May be unsimplified Correct simplified matrix.	A1	
(b)	$\{\mathbf{P} = \mathbf{A}\mathbf{B} \Longrightarrow\}$		[3]
	$\begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix} = \begin{pmatrix} 2a - c & 2b - d \\ 4a + 3c & 4b + 3d \end{pmatrix}$ Attempt to multiply A by B in the correct order and puts equal to P	M1	
	$\Rightarrow a = 2, c = 1, b = 1, d = -4$	A 1	
	So, $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$ At least 2 elements are correct.	A1	
	(1 -4) Correct matrix.	A1	
			[3] 5

		•
Question	Scheme	Marks
Number		
3. (a)	$x = 4t, \ y = \frac{4}{t}, \ t \neq 0$	
	$t = \frac{1}{4} \Rightarrow P(1, 16), t = 2 \Rightarrow Q(8, 2)$ Coordinates for either <i>P</i> or <i>Q</i> are correctly stated. (Can be implied).	B1
	Finds the gradient of the chord PQ with	M1
	$m(PQ) = \frac{2-16}{8-1} \ \{= -2\}$ Finds the gradient of the chord PQ with $\frac{y_2 - y_1}{x_2 - x_1} \ \text{then uses in } y = -\frac{1}{m}x.$	
	Condone incorrect sign of gradient.	
	$m(l) = \frac{1}{2}$	
	So, $l: y = \frac{1}{2}x$ or $2y = x$ $y = \frac{1}{2}x$ or $2y = x$	A1 oe
		[3]
(b)	$xy = 16$ or $y = \frac{16}{x}$ or $x = \frac{16}{y}$ Correct Cartesian equation. Accept	B1 oe
	$\frac{4}{y} = \frac{x}{4}$ or $xy = 4^2$	
		[1]
(c)	Way 1 Way 2 Way 3	N/1
	$\frac{1}{2}x = \frac{16}{x} \left\{ \frac{4}{t} = \frac{1}{2}(4t) \right\} \left\{ y^2 = 8 \right\}$ Attempts to substitute their <i>l</i> into either their Cartesian equation or parametric equations of <i>H</i>	M1
	${x^2 = 32}$ ${t^2 = 2}$ ${y^2 = 8}$	
	$(4\sqrt{2}, 2\sqrt{2}), (-4\sqrt{2}, -2\sqrt{2})$ At least one set of coordinates	A1
	(simplified of un-simplified) or	
	$x = \pm 4\sqrt{2}, y = \pm 2\sqrt{2}$	
	Both sets of simplified coordinates.	A1
	Accept written in pairs as $x = 4\sqrt{2}$, $y = 2\sqrt{2}$	
	$x = -4\sqrt{2}, y = -2\sqrt{2}$	
		[3] 7

Question Number	Scheme	Ma	rks
4. (i)	Mark (i)(a) and (i)(b) together.		
	$w = \frac{p-4i}{2-3i}$ arg $w = \frac{\pi}{4}$		
(a) Way 1	$w = \frac{(p-4i)}{(2-3i)} \times \frac{(2+3i)}{(2+3i)}$ Multiplies by $\frac{(2+3i)}{(2+3i)}$	M1	
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condone $a + ib$. Correct w in its simplest form.	A1 A1	[3]
(a) Way 2	(a+ib)(2-3i) = (p-4i)		[3]
	2a+3b = p 3a-2b = 4 Multiplies out to obtain 2 equations in two unknowns.	M1	
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condone $a + ib$. Correct w in its simplest form.	A1 A1	[2]
(b)	$\left\{\arg w = \frac{\pi}{4} \Rightarrow \right\} 2p + 12 = 3p - 8 \text{ o.e. seen anywhere.} \qquad \begin{array}{l} \text{Sets the numerators of the} \\ \text{real part of their } w \text{ equal to} \\ \text{the imaginary part of their } w \\ \text{or if arctan used, require} \end{array} \right.$	M1	[3]
	evidence of $\tan \frac{\pi}{4} = 1$ $\Rightarrow p = 20$ $p = 20$	A1	
(::)		Π	[2]
(ii) Way 1	$z = (1 - \lambda i)(4 + 3i) \text{ and } z = 45$ $\sqrt{1 + \lambda^2} \sqrt{4^2 + 3^2}$ Attempts to apply $ (1 - \lambda i)(4 + 3i) = \sqrt{1 + \lambda^2} \sqrt{4^2 + 3^2}$	M1	
	$\sqrt{1+\lambda^2} \sqrt{4^2+3^2} = 45$ Attempts to apply $ (1-\lambda t)(4+3t) = \sqrt{1+\lambda^2} \sqrt{4^2+3^2}$ Correct equation.	A1	
	$\{\lambda^2 = 9^2 - 1 \Longrightarrow\} \lambda = \pm 4\sqrt{5} \qquad \qquad \lambda = \pm 4\sqrt{5}$	A1	
Way 2	$z = (4 + 3\lambda) + (3 - 4\lambda)i$ $\sqrt{(4 + 3\lambda)^2 + (3 - 4\lambda)^2}$ Attempt to multiply out, group real and imaginary parts and apply the modulus.	M1	[3]
	$(4+3\lambda)^2 + (3-4\lambda)^2 = 45^2 \text{ or } $ Correct equation.	A1	
	$\sqrt{(4+3\lambda)^2 + (3-4\lambda)^2} = 45$ $\{16+24\lambda+9\lambda^2+9-24\lambda+16\lambda^2 = 2025\}$ Condone if middle terms in expansions not explicitly stated.		
	$\left\{25\lambda^2 = 2000 \Longrightarrow\right\}\lambda = \pm 4\sqrt{5}$	A1	
			[3] 8
(ii)	Question 4 Notes M1 Also allow $(1 + \lambda^2)(4^2 + 3^2)$ for M1		
	M1 Also allow $(4 + 3\lambda)^2 + (3 - 4\lambda)^2$ for M1.		

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Ma	rks
5. (i)	$\mathbf{A} = \begin{pmatrix} p & 2 \\ 3 & p \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -5 & 4 \\ 6 & -5 \end{pmatrix}, \ \mathbf{M} = \begin{pmatrix} a & -9 \\ 1 & 2 \end{pmatrix} \qquad p, a \text{ are constants.}$		
(a)	At least 2 elements are correct. At least 2 elements are correct.	M1	
	$\{\mathbf{AB}\} = \begin{pmatrix} -5p+12 & 4p-10 \\ -15+6p & 12-5p \end{pmatrix}$ At least 2 elements are correct. Correct matrix.	A1	
			[2]
(b)	$\left\{\mathbf{AB} + 2\mathbf{A} = k\mathbf{I}\right\}$		
	$\begin{pmatrix} -5p+12 & 4p-10 \\ -15+6p & 12-5p \end{pmatrix} + 2 \begin{pmatrix} p & 2 \\ 3 & p \end{pmatrix} = k \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ If 'simultaneous equations' used, allocate marks as below.		
	$ \begin{pmatrix} -3p+12 & 4p-6 \\ -9+6p & 12-3p \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} $		
	(-9+6p-12-5p) ($(-7, -1)$) " $(-7, -1)$ " $(-7, -1)$ " $(-7, -1)$ " Forms an equation in p	M1	
	or " $-9+6p$ " = " $4p-6$ "		
	$\Rightarrow p = \frac{3}{2} \text{o.e.}$	A1	
		M1	
	$k = -5\left(\frac{3}{2}\right) + 12 + 2\left(\frac{3}{2}\right) \Longrightarrow k = \dots$ Substitutes their $p = \frac{3}{2}$ into "their $(-5p+12)$ "+ 2p		
	to find a value for k or eliminates p to find k .	A 1	
	$k = \frac{15}{2}$ oe	AI	
			[4]
(ii) Way 1	$\pm \frac{270}{15}$ {= ±18} Can be implied from calculations.	B1	
vvay 1	$det \mathbf{M} = (a)(2) - (-9)(1)$ Applies $ad - bc$ to \mathbf{M} . Require clear	M1	
	evidence of correct formula being used for M1		
	if errors seen. $\Rightarrow 2a+9=18$ or $2a+9=-18$ Equates their det A to either 18 or -18	M1	
	$\Rightarrow a = 4.5 \text{ or } a = -13.5$ At least one of either $a = 4.5 \text{ or } a = -13.5$	A1	
	Both $a = 4.5$ and $a = -13.5$	A1	
(ii)	Consider vertices of triangle with area 15 units	B1	[5]
(ii) Way 2	Consider vertices of triangle with area 15 units e.g. (0,0),(15,0) and (0,2) and attempting 2	DI	
	values of a. $\begin{pmatrix} a & -9 \\ 0 & 15 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 15a & -18 \\ 0 & 15a & -18 \end{pmatrix}$ Pre-multiplies their matrix by M and obtains	M1	
	e.g. $\begin{pmatrix} a & -9 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 15 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 15a & -18 \\ 0 & 15 & 4 \end{pmatrix}$ Pre-multiplies their matrix by M and obtains single matrix	1011	
		M1	
	e.g. $\frac{1}{2}\begin{vmatrix} 0 & 15a & -18 & 0 \\ 0 & 15 & 4 & 0 \end{vmatrix} = 270$ Equates their determinant to 270 and attempts to solve.	1711	
	$\Rightarrow a = 4.5 \text{ or } a = -13.5$ At least one of either $a = 4.5$ or $a = -13.5$	A1	
		A1	
	Both $a = 4.5$ and $a = -13.5$		[5]
			[5] 11

Summer 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics FP1

6667

Question Number	Scheme		Mark
6.	$x^{3} + ax^{2} + bx - 52 = 0$, $a, b \in \mathbb{R}$, 4 and $2i - 3a$	re roots	
(a)	-2i-3	-2i-3 seen anywhere in solution for Q6.	B1
(b) Way 1	$(x - (2i - 3))(x - "(-2i - 3)"); = x^{2} + 6x + 13 \text{ or}$ $x = -3 \pm 2i \Longrightarrow (x + 3)^{2} = -4; = x^{2} + 6x + 13(=0)$ $(x - 4)(x - (2i - 3)); = x^{2} - (1 + 2i)x + 4(2i - 3)$ $(x - 4)(x - "(-2i - 3)"); = x^{2} - (1 - 2i)x + 4(-2i - 3)$	Must follow from their part (a). Any incorrect signs for their part (a) in initial statement award M0; accept any equivalent expanded expression for A1.	M1; A1
	$(x-4)(x^2+6x+13) = x^3+ax^2+bx-52$	$(x-3^{rd} root)$ (their quadratic).	M1
		Could be found by comparing coefficients from long division.	
	$a=2, b=-11 \text{ or } x^3+2x^2-11x-52$	At least one of $a=2$ or $b=-11$ Both $a=2$ and $b=-11$	A1 A1
			[
(b)	Sum = (2i - 3) + "(-2i - 3)" = -6	Attempts to apply either	M1
Way 2	Product = $(2i-3) \times "(-2i-3)" = 13$	$x^2 - (\text{sum roots})x + (\text{product roots}) = 0$	
	So quadratic is $x^2 + 6x + 13$	or $x^2 - 2\operatorname{Re}(\alpha)x + \alpha^2 = 0$	
		$x^2 + 6x + 13$	A1
	$(x-4)(x^2+6x+13) \{=x^3+ax^2+bx-52\}$	$(x-3^{rd} root)$ (their quadratic)	M1
	$a=2, b=-11 \text{ or } x^3+2x^2-11x-52$	At least one of $a = 2$ or $b = -11$	A1
		Both $a=2$ and $b=-11$	A1
(b)	$(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0$		[
Way 3	5a-3b=43 (real parts) and $6a-b=23(imaginary parts) or uses f(4) = 0 and f(a \text{ complex root}) = 0 to form equations in a and b.$	Substitutes $2i - 3$ into the displayed equation and equates both real and imaginary parts.	M1
		5a-3b=43 and $6a-b=23$ or 16a+4b=-12 and	A1
		$(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0/$	
		$(-2i-3)^3 + a(-2i-3)^2 + b(-2i-3) - 52 = 0$	
	So $a = 2, b = -11$ or $x^3 + 2x^2 - 11x - 52$	Solves these equations simultaneously to find at least one of either $a =$ or $b =$	M1
		At least one of $a = 2$ or $b = -11$	A1
		Both $a = 2$ and $b = -11$	A1
(b) Way 4	b = sum of product pairs	Attempts sum of product pairs.	M1
, ruj 7	= 4(2i-3) + 4"(-2i-3)" + (2i-3)"(-2i-3)" a = -(sum of 3 roots) = -(4+2i-3"-2i-3")	All pairs correct o.e. Adds up all 3 roots	A1 M1
	$a=2, b=-11 \text{ or } x^3+2x^2-11x-52$	At least one of $a = 2$ or $b = -11$	A1
	,	Both $a=2$ and $b=-11$	A1
			[

(b)	Uses $f(4) = 0$		M1	
Way 5				
	16a + 4b = -12		A1	
	a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')	Adds up all 3 roots	M1	
	a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'') $a = 2, \ b = -11 \text{ or } x^3 + 2x^2 - 11x - 52$	At least one of $a = 2$ or $b = -11$	A1	
		Both $a=2$ and $b=-11$	A1	
			[5]	I
			6	5

Summer 2017www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Mathematics FP1

Questin	Scheme		Marks
Number			
7. (a)	$y^2 = 4ax$, at $Q(aq^2, 2aq)$ $y = 2\sqrt{a}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \sqrt{a}x^{-\frac{1}{2}}$ or $2y\frac{dy}{dx} = 4a$ or $\frac{dy}{dx} = 2a \times \frac{1}{2aq}$	$\frac{dy}{dx} = \pm k x^{-\frac{1}{2}} \text{ or } k y \frac{dy}{dx} = c \text{ or }$	M1
	ar ar ar 2mg	their $\frac{dy}{dq}$	
		their $\frac{dx}{dq}$	
	When $x = aq^2$, $m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{aq^2}} = \frac{\sqrt{a}}{\sqrt{a}q} = \frac{1}{q}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{q}$	A1
	or when $y = 2aq$, $m_T = \frac{dy}{dx} = \frac{4a}{2(2aq)} = \frac{1}{q}$		
	$\mathbf{T}: y - 2aq = \frac{1}{q} \left(x - aq^2 \right)$	Applies $y - 2aq = (\text{their } m_T)(x - aq^2)$	dM1
		or $y = (\text{their } m_T)x + c$ and an	
		attempt to find c with gradient from calculus.	
	$\mathbf{T}: qy - 2aq^2 = x - aq^2$		
	T : $qy = x + aq^{2} \star$	CSO	A1 *
(b)	$X\left(-\frac{1}{4}a,0\right) \Rightarrow 0 = -\frac{1}{4}a + aq^2$	Substitutes $x = -\frac{1}{4}a$ and $y = 0$ into T	[4] M1
	$\Rightarrow \left\{ q^2 = \frac{1}{4} \Rightarrow q = -\frac{1}{2} \text{ (reject)} \right\} q = \frac{1}{2}$	$q = \frac{1}{2}$ oe	A1
	So, $\frac{1}{2}y = -a + a\left(\frac{1}{2}\right)^2$	Substitutes their " $q = \frac{1}{2}$ " and $x = -a$ in T or finds	M1
	2 (2)	$y_D = \frac{1}{a} \left(-a + aq^2 \right)$	
	giving, $y = -\frac{3a}{2}$. So $D(-a, -\frac{3}{2}a)$ o.e.	1	A1
	2		[4]
(c)	$\{f_{\text{focus}} E(a, 0)\}$		
Way 1	$\{\text{focus } F(a,0)\}$ $1(5a)(3a) = 15a^2$	Applies	M1
	Area(<i>FXD</i>) = $\frac{1}{2} \left(\frac{5a}{4} \right) \left(\frac{3a}{2} \right) = \frac{15a^2}{16}$	$\frac{1}{2}$ (their $ FX $)(their $ y_D $).	
		If their $y_D = \frac{1}{q} (-a + aq^2)$ then	
		require an attempt to sub for q to award M.	
		$\frac{15a^2}{16}$ or $0.9375a^2$	A1 cso
			[2]

Summer 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

(c) Way 2	Area(<i>FXD</i>) = $\frac{1}{2} \begin{vmatrix} a & -\frac{1}{4}a & -a & a \\ 0 & 0 & -\frac{3}{2}a & 0 \end{vmatrix}$ = $\frac{1}{2} \left \left(0 + \frac{3}{8}a^2 + 0 \right) - \left(0 + 0 - \frac{3}{2}a^2 \right) \right = \frac{15}{16}a^2$	A correct attempt to apply the shoelace method. $\frac{15a^2}{16} \text{ or } 0.9375a^2$	M1 A1cao
(c)	Rectangle – triangle 1 – triangle 2		[2]
Way 3	= $2a \cdot \frac{3a}{2} - \frac{1}{2} \cdot \frac{3a}{4} \cdot \frac{3a}{2} - \frac{1}{2} \cdot 2a \cdot \frac{3a}{2} = 3a^2 - \frac{9a^2}{16} - \frac{3a^2}{2}$		M1
(c)	Attempts sine rule using appropriate choice from	$\frac{15a^2}{16} \text{ or } 0.9375a^2$ Uses Area = $\frac{1}{2}ab\sin C$	A1cao
Way 4	$FX = \frac{5a}{4}, FD = \frac{5a}{2}, DX = \frac{3\sqrt{5a}}{4}, \sin F = \frac{3}{5}, \sin X = \frac{2}{\sqrt{5}}$		M1
	4 2 4 5 √5	$\frac{15a^2}{16}$ or $0.9375a^2$	A1cao 10

	Question 7 Notes
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2} \cdot 2a \cdot \frac{3a}{2} = \frac{3a^2}{2}$

Question Number	Scheme	Marks
8. (a)	$\sum_{r=1}^{n} (3r^2 + 8r + 3)$	
	$= \frac{3}{6}n(n+1)(2n+1) + \frac{8}{2}n(n+1) + 3n$ An attempt to use at least one of the correct standard formulae for first two terms.	M1
	Correct first two terms.	A1
	$3 \rightarrow 3n$	B1
	$= \frac{1}{2}n(n+1)(2n+1) + 4n(n+1) + 3n$	
	$= \frac{1}{2}n((2n+1)(n+1)+8(n+1)+6)$ Factorise out at least <i>n</i> from all terms at any point. There must be a factor of <i>n</i> in every term.	M1
	$=\frac{1}{2}n(2n^2+3n+1+8n+8+6)$	
	$=\frac{1}{2}n(2n^2+11n+15)$	
	$= \frac{1}{2}n(2n+5)(n+3)$ (*) Achieves the correct answer, no errors seen.	A1*cso
		[5]
	$\sum_{r=1}^{12} \left(3r^2 + 8r + 3 + k(2^{r-1}) \right) = 3520$	
(b)	$\sum_{r=1}^{12} (3r^2 + 8r + 3) = \frac{1}{2} (12)(29)(15) = 2610 $ Attempt to evaluate $\sum_{r=1}^{12} (3r^2 + 8r + 3) = \frac{1}{2} (3r^2 + 8r + 3) = \frac{1}{2}$	M1
	$\sum_{r=1}^{12} (2^{r-1}) = \frac{1(1-2^{12})}{1-2} \{=4095\}$ Attempt to apply the sum to 12 terms of a GP or adds up all 12 terms.	M1
	$\frac{1}{1-2} = \frac{1}{1-2} = \frac{1}{1-2} \text{ o.e. or } 4095.$	A1
	So, $2610 + 4095k = 3520 \implies 4095k = 910$	
	giving, $k = \frac{2}{9}$ or $0.\dot{2}$	A1
		[4] 9
	Question 8 Notes	
8. (b)	Note 2^{nd} M1 1 st A1: These two marks can be implied by seeing 4095 or 4095k	

Summer 2017www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Mathematics FP1

NT In	Scheme	Mar
Number 9.	$u = 6u = 0u = n > 1 = u = 6 = u = 27; u = 2^n (n + 1)$	
	$u_{n+2} = 6u_{n+1} - 9u_n$, $n \ge 1$, $u_1 = 6$, $u_2 = 27$; $u_n = 3^n(n+1)$	B1
(i)	$n=1;$ $u_1 = 3(2) = 6$ Check that $u_1 = 6$ and $u_2 = 27$	DI
	$n=2; u_2=3^2(2+1)=27$	
	So u_n is true when $n = 1$ and $n = 2$.	
	Assume that $u_k = 3^k (k+1)$ and $u_{k+1} = 3^{k+1} (k+2)$ are true. Could assume for	
	n = k, n = k - 1 and	
	show for $n = k + 1$	
	Then $u_{k+2} = 6u_{k+1} - 9u_k$ = $6(3^{k+1})(k+2) - 9(3^k)(k+1)$ Substituting u_k and u_{k+1} into	M1
		1011
	$u_{k+2} = 6u_{k+1} - 9u_k$	
	Correct expression $2(2^{k+2})(l+1)$	A1 M1
	$= 2(3^{k+2})(k+2) - (3^{k+2})(k+1)$ Achieves an expression in 3^{k+2}	IVI I
	$= (3^{k+2})(2k+4-k-1)$	
	$= (3^{k+2})(k+3)$	
	$= (3^{k+2})(k+2+1) $ (3 ^{k+2})(k+2+1) or (3 ^{k+2})(k+3)	A1
	If the result is true for $n = k$ and $n = k+1$ then it is now true for $n =$ Correct conclusion seen	A1
	<i>k</i> +2. As it is true for $n = 1$ and $n = 2$ then it is true for all $n \in \mathbb{Z}^+$. at the end. Condone true for $n = 1$ and $n = 2$ scen	cso
	for $n = 1$ and $n = 2$ seen anywhere.	
	This should be	
	compatible with	
	assumptions.	
	L L	
(ii)		
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19 In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19 In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the	
(ii) (ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19 In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only.	B1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$	
(ii)	f(n) = $3^{3n-2} + 2^{3n+1}$ is divisible by 19 In all ways, first M is for applying f(k+1) with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making f(k+1) the subject and the final A is correct solution only. f(1) = $3^1 + 2^4 = 19$ {which is divisible by 19}. f(n) is divisible by 19 when n = 1 } {Assume that for n = k, f(k) = $3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.}	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$	
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 2f(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1}) \text{ or } 7f(k); 19(3^{3k-2})$	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}.}$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k,$ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 2f(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1}) \text{ or } 7f(k); 19(3^{3k-2})$	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19$ {which is divisible by 19}. Shows $f(1) = 19$ { \therefore f (n) is divisible by 19 when $n = 1$ } {Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^{+}$. } $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 2f(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ or $= 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$	M1 A1;
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19 }}.$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 \}$ $\{ \text{Assume that for } n = k, $ $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by 19 for } k \in \mathbb{Z}^{+}. \}$ $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1}) \text{ Applies } f(k+1) \text{ with at least 1 power correct}$ $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1}) \text{ fight is divisible by 19 for } (3^{3k-2} + 2^{3k+1}) \text{ for } 7(3^{3k-2} + 2^{3k+1}) \text{ or } 7f(k); 19(3^{3k-2}) \text{ or } 26(3^{3k-2} + 2^{3k+1}) \text{ or } 26f(k); -19(2^{3k+1}) \text{ or } 26f(k) - 19(2^{3k+1}) $	B1 M1 A1; A1
	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying f(k+1) with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making f(k+1) the subject and the final A is correct solution only. f(1) = 3 ¹ + 2 ⁴ = 19 {which is divisible by 19}. Shows f(1) = 19 { f(n) is divisible by 19 when n = 1 } { Assume that for n = k, f(k) = 3 ^{3k-2} + 2 ^{3k+1} is divisible by 19 for k ∈ Z ⁺ . } f(k+1) - f(k) = 3 ^{3(k+1)-2} + 2 ^{3(k+1)+1} - (3 ^{3k-2} + 2 ^{3k+1}) Applies f(k+1) with at least 1 power correct f(k+1) - f(k) = 27(3 ^{3k-2}) + 8(2 ^{3k+1}) - (3 ^{3k-2} + 2 ^{3k+1}) f(k+1) - f(k) = 26(3 ^{3k-2}) + 7(2 ^{3k+1}) = 7(3 ^{3k-2} + 2 ^{3k+1}) + 19(3 ^{3k-2}) Either 7(3 ^{3k-2} + 2 ^{3k+1}) or 7f(k); 19(3 ^{3k-2}) or = 26(3 ^{3k-2} + 2 ^{3k+1}) - 19(2 ^{3k+1}) or 26(3 ^{3k-2} + 2 ^{3k+1}) or 26f(k); -19(2 ^{3k+1}) = 7f(k) + 19(3 ^{3k-2}) or = 26f(k) - 19(2 ^{3k+1}) ∴ f(k+1) = 8f(k) + 19(3 ^{3k-2}) Dependent on at least one of the previous accuracy marks being awarded	B1 M1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19$ {which is divisible by 19}. Shows $f(1) = 19$ { \therefore f (n) is divisible by 19 when $n = 1$ } {Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^{+}$. } $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 2f(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ for $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26f(k) - 19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ Or $26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes Applies $f(k+1)$ with at least 1 power correct	B1 M1 A1; A1
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only, $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by 19}}.$ Shows $f(1) = 19$ $\{ \therefore f(n) \text{ is divisible by 19 when } n = 1 $	B1 M1 A1; A1 dM
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by 19}$ In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the final A is correct solution only. $f(1) = 3^{1} + 2^{4} = 19$ {which is divisible by 19}. Shows $f(1) = 19$ { \therefore f (n) is divisible by 19 when $n = 1$ } {Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^{+}$. } $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 2f(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ for $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26f(k) - 19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ Or $26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes Applies $f(k+1)$ with at least 1 power correct	B1 M1 A1; A1 dM

Past Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcel	6667
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \ (\in \mathbb{Z}^+)$. Concert conclusion seen at the end. Condone true for $n = 1$ stated earlier.	A1 cso [6]
(ii)	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	B1
Way 2	$\{: f(n) \text{ is divisible by 19 when } n = 1 \}$	21
	Assume that for $n = k$,	
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.	
	$f(k+1) = 3^{3(k+1)-2} + 2^{3(k+1)+1}$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) = 27(3^{3k-2}) + 8(2^{3k+1})$	
	$= 8(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2}) $ Either $8(3^{3k-2} + 2^{3k+1})$ or $8f(k)$; $19(3^{3k-2})$	A1;
	$\mathbf{or} = 27(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1}) \qquad \qquad \mathbf{or} \qquad 27(3^{3k-2} + 2^{3k+1}) \text{ or } 27f(k); -19(2^{3k+1})$	A1
	$\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous	dM1
	or $f(k+1) = 27f(k) - 19(2^{3k+1})$ accuracy marks being awarded.	
	{ : $f(k+1) = 8f(k) + 19(3^{3k-2})$ is divisible by 19 as	
	both $8f(k)$ and $19(3^{3k-2})$ are both divisible by 19}	
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \ (\in \mathbb{Z}^+)$. Condone true for $n = 1$ stated earlier.	A1 cso
		[6]
	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19	
(ii)	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	B1
Way 3	$\{ :: f(n) \text{ is divisible by 19 when } n = 1 \}$	
	Assume that for $n = k$,	
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.	
	$f(k+1) - \alpha f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - \alpha (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) - \alpha f(k) = (27 - \alpha)(3^{3k-2}) + (8 - \alpha)2^{3k+1}$	
	$= (8-\alpha)(3^{3k-2}+2^{3k+1})+19(3^{3k-2}) \qquad (8-\alpha)(3^{3k-2}+2^{3k+1}) \text{ or } (8-\alpha)f(k); 19(3^{3k-2})$	A1; A1
	or = $(27 - \alpha)(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ NB choosing $\alpha = 8$ makes first term disappear. $(27 - \alpha)(3^{3k-2} + 2^{3k+1})$ or $(27 - \alpha)f(k); -19(2^{3k+1})$	711
	$\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ NB choosing $\alpha = 27$ makes first term disappear. Dependent on at least one of the previous	dM1
	or $f(k+1) = 27f(k) - 19(2^{3k+1})$ Makes $f(k+1)$ the subject.	
	$\{:: f(k+1) = 27f(k) - 19(2^{3k+1}) \text{ is divisible by 19 as both } 27f(k)$	
	and $19(2^{3k+1})$ are both divisible by 19	
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \ (\in \mathbb{Z}^+)$. Correct conclusion seen at the end. Condone true for $n = 1$ stated earlier.	A1 cso
		[6] 12
	Question 9 Notes	12
(ii)	Accept use of $f(k) = 3^{3k-2} + 2^{3k+1} = 19m$ o.e. and award method and accuracy as above.	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom