

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

Mathematics C4

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6666_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $pq = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

6666

Mathematics C4

Use of a formula

Past Paper (Mark Scheme)

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	ark Scheme) This resource was created and owned by Pearson Edexcel 6666								
Question Number	Scheme				Notes	Marks			
	$\left\{ \frac{1}{\left(2+5x\right)^3} = \right\} (2+5x)^{-3}$	Writes down $(2+5x)^{-3}$ or uses power of -3	M1						
	$= (2)^{-3} \left(1 + \frac{5x}{2}\right)^{-3} = \frac{1}{8} \left(1 + \frac{5x}{2}\right)^{-3}$ $= \frac{1}{8} \left(1 + \frac{5x}{2}\right)^{-3}$ $= \frac{1}{8} \left(1 + \frac{5x}{2}\right)^{-3}$								
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots \right]$ see notes								
	$ = \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x}{2} \right)^2 + \frac{(-3)(-4)}{3!} \left(\frac{5x}{2} \right)^2 + ($	1)(-5)	$\left(\frac{5x}{2}\right)^3 + \dots$						
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$								
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$								
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $1 15 11 2 10 17 3$								
	or $\frac{1}{8} - \frac{15}{16}x$; + $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 +$					[4]			
						[6] 6			
Way 2	$f(x) = (2+5x)^{-3}$ W	rites d	own (2 + 3	$(5x)^{-3}$ or	r uses power of -3	M1			
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$			Corre	ct $f''(x)$ and $f'''(x)$	B1			
	$f'(x) = -15(2+5x)^{-4}$			±a	$(2+5x)^{-4}, \ a \neq \pm 1$	M1			
	$\Gamma(\lambda) = -15(2 + 3\lambda)$				$-15(2+5x)^{-4}$	A1 oe			
	$\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) \right\}$	$=-\frac{18}{1}$	$\left.\frac{75}{6}\right\}$						
	So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$				Same as in Way 1	A1; A1			
			1			[6]			
Way 3	$(2+5x)^{-3}$				Same as in Way 1	M1			
	(-3)(-4)	(-5)	. 6 2		Same as in Way 1	<u>B1</u>			
	$= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)}{3!}$	y two terms correct	M1 A1						
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Same as in Way 1								
	Note: Terms can be simplified or un-s	implifi	ed for B1	2 nd M1	1 st A1	[6]			
	Note: The terms in C nee	ed to b	e evaluated	d					
	So ${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(5x) + {}^{-3}C_2(1)$,	-	$(5x)^3$				
	without further working is B0 1 st M0 1 st A0								

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

		Question 1 Notes					
1.	1st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.					
	<u>B1</u>	$\frac{2^{-3}}{8}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as candidate's constant term in their binomial expansion.					
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified,					
	Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^3$						
		or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.					
	1st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$					
		expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$. (on the RHS, not necessarily the LHS) in a candidate's expansion.					
	Note	You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(5x \right)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$					
		because (kx) is not consistent.					
	Note Incorrect bracketing: $= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x^2}{2} \right) + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x^3}{2} \right) \right]$						
		is M1A0 unless recovered.					
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.					
	3rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$					
	SC	If a candidate would otherwise score 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either					
		SC: $\frac{1}{8} \left[1 - \frac{15}{2}x; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2}x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4}x^3 + \dots \right]$					
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$					
		(where λ can be 1 or omitted), where each term in the [] is a simplified fraction or a decimal					
	SC	Special case for the 2 nd M1 mark					
		Award Special Case 2 nd M1 for a correct simplified or un-simplified					
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer					
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)					
		in a candidate's expansion. Note that $k \neq 1$.					
	Note	Ignore extra terms beyond the term in x^3					
	Note	You can ignore subsequent working following a correct answer.					

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question Number	Scheme							Mar	·ks	
2.	X	1	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$		
4.	у	0	0.2625	0.659485	1.2032	1.9044	2.7726	y - x m x		
(a)	${\mathbf A} \mathbf{t} \ x = 1$	1.4,} y	= 0.6595 (4	4 dp)				0.6595	B1 ca	10
								1		[1]
								Outside brackets		
	$\frac{1}{2}$ × (0.2)	$) \times [0 +$	2.7726 + 2	(0.2625 + the	eir 0.6595 +	1.2032 + 1	.9044)	$\frac{1}{2}$ × (0.2) or $\frac{1}{10}$	B1 o.e	.
(b)	2	<u> </u>		`				For structure of		
	{Note: T	The "0"	does not ha	ve to be inclu	ided in [.]}		[]	M1	
	ſ 1)					<u> </u>		
	$\begin{cases} = \frac{1}{10}(1) \end{cases}$	0.8318)	= 1.0831	8 = 1.083 (3 a)	dp)		anything t	hat rounds to 1.083	A1	
										[3]
			$\int u = 1$	$n x \rightarrow \frac{du}{dt} = 0$	$\frac{1}{2}$					
(c)	$\int_{\mathbf{I}} = \int_{\mathbf{r}^2} \mathbf{r}^2$	ln rdr	\	dx	$x \mid$					
Way 1	$\int_{0}^{\infty} \int_{0}^{\infty} dx$	III A CA	$\int \frac{dv}{dt} = 1$	$n x \Rightarrow \frac{du}{dx} = x^2 \Rightarrow v = \frac{1}{2}$	$\begin{bmatrix} 1 \\ -x^3 \end{bmatrix}$					
			dx	•	3]					
					Ei	ther $x^2 \ln x$	$x \to \pm \lambda x^3 \ln x$	$x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$		
								• ()	M1	
	$=\frac{x^3}{\ln x}$	$x - \int \frac{x^3}{x^3}$	$-\left(\frac{1}{x}\right)\{\mathrm{d}x\}$		(or $\pm \lambda x^3 \ln x$	$\mu x - \mu x^2 d$	$\{x\}$, where $\lambda, \mu > 0$		
	3	J 3	$(x)^{(-1)}$				<u> </u>			
						x^2	$\ln x \to \frac{1}{3} \ln x$	$x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) \{\mathrm{d}x\} ,$	A1	
	simplified or un-simplified									
	$=\frac{x^3}{3}\ln x$	$x - \frac{x^3}{9}$				$\frac{x^3}{3}$ ln $x -$	$\frac{x^3}{9}$, simplifi	ed or un-simplified	A1	
		ſг	3 3	72)			depende	nt on the previous		
	Area (R)	$\mathbf{a} = \left\{ \begin{vmatrix} z \\ -z \end{vmatrix} \right\}$	$\frac{x^3}{2}$ ln $x - \frac{x^3}{2}$		$(2-\frac{8}{2})-(0)$	$-\frac{1}{}$		Applies limits of	dM1	
		ĮĹ	3 9	\rfloor_1 \rfloor \backslash 3	9) (9)		and 1 and subtracts correct way round		
	$=\frac{8}{-\ln 2}$	7							A 1	
	$=\frac{-\ln 2}{3}$	<u> </u>					$\frac{-\ln 2}{3}$	or $\frac{1}{9}(24\ln 2 - 7)$	A1 oe	cso
								`		[5]
			_		$u = x^2$	$\Rightarrow \frac{d}{dt}$	$\frac{u}{x} = 2x$			
(c) Way 2	$I = x^2(x)$	$c \ln x - 3$	$(x) - \int 2x(x)$	$\ln x - x) dx$		d	x	}		
vvay 2			J		$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = \ln x & \Rightarrow v = x \ln x - x \end{cases}$					
			•		(dx			J		
	So, 3I=	$x^2(x \ln$	$(x-x)+\int 2^{x}$	$x^2 \{ dx \}$						
					A full m	ethod of a	pplying $u = 1$	x^2 , $v' = \ln x$ to give		
	and $I = \frac{1}{3}x^2(x \ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$ $\frac{\pm \lambda x^2(x \ln x - x) \pm \mu \int x^2 \{dx\}}{1 + \frac{1}{3}\int 2x^2 \{dx\}}$						M1			
							A 1			
	simplified or un-simplified					A1				
	1 ,.	1	2 3			x^3 .				
	$=\frac{3}{3}x^2$	$x \ln x -$	$x) + \frac{2}{9}x^3$			$\frac{1}{3}$ ln x –	$\frac{1}{9}$, sımplifi	ed or un-simplified	A1	
					Ther	award dN	11A1 in the	same way as above	M1 A	
										[5]
<u> </u>									L	9

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

st Paper (Mai		Question 2 Notes					
2. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.					
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.					
	M1	or structure of trapezium rule					
	Note No errors are allowed [eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> ordinate].						
	A1	anything that rounds to 1.083					
	Note Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704) Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594					
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$					
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly					
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)					
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2.7726) + 2(0.2625 + their 0.6595 + 1.2032 + 1.9044) (answer of 8.33646)					
	Altern	native method: Adding individual trapezia					
	Area ≈	$0.2 \times \left[\frac{0 + 0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2} \right] = 1.08318$					
	B1	0.2 and a divisor of 2 on all terms inside brackets					
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2					
(-)	A1	anything that rounds to 1.083					
(c)	A1 Note	Exact answer needs to be a two term expression in the form $a \ln b + c$ Give A1 e.g. $\frac{8}{3} \ln 2 - \frac{7}{9}$ or $\frac{1}{9} (24 \ln 2 - 7)$ or $\frac{4}{3} \ln 4 - \frac{7}{9}$ or $\frac{1}{3} \ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3} \ln 2$					
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.					
	Note	Give final A0 for a final answer of $\frac{8 \ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{1}{3} \ln 1 - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{8}{9} + \frac{1}{9}$					
		or $\frac{8}{3} \ln 2 - \frac{7}{9} + c$					
	Note	$\left[\frac{x^3}{3} \ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0					
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)					
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$					
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"					
		formula but makes only one error when applying it can be awarded Special Case 1st M1.					

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks			
3.	$2x^2y + 2x + 4y - \cos(\pi y) =$	17				
(a) Way 1	$\left\{ \underbrace{\frac{\partial y}{\partial x}}_{\text{obs}} \times \right\} \left(\underbrace{\frac{4xy + 2x^2 \frac{dy}{dx}}{dx}}_{\text{obs}} \right) + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$					
	$\frac{dy}{dx} (2x^2 + 4 + \pi \sin(\pi y)) + 4xy + 2 = 0$					
	$\left\{ \frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)} $ Correct answer or equivalent					
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\rm T} = \frac{{\rm d}y}{{\rm d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin\left(\frac{1}{2}\pi\right)} \left\{ = \frac{-8}{22 + \pi} \right\}$ Substituting $x = 3$ & $y = \frac{1}{2}$ into an equation involving $\frac{{\rm d}y}{{\rm d}x}$					
	$m_{\rm N} = \frac{22 + \pi}{8}$		$m_{\rm N} = \frac{-1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$	M1		
	• $y - \frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$ • $\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(3) + c \Rightarrow c = \frac{1}{2} - \frac{66 + 3\pi}{8}$ $\Rightarrow y = \left(\frac{22 + \pi}{8}\right)x + \frac{1}{2} - \frac{66 + 3\pi}{8}$ Cuts x -axis $\Rightarrow y = 0$ $\Rightarrow -\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$	$y = m_{N}x + $ with a num	Can be implied by later working $y - \frac{1}{2} = m_{\rm N}(x - 3) \text{ or }$ $y = m_{\rm N} x + c \text{ where } \frac{1}{2} = (\text{their } m_{\rm N}) 3 + c$ with a numerical $m_{\rm N}$ ($\neq m_{\rm T}$) where $m_{\rm N}$ is in terms of π and sets $y = 0$ in their normal equation.			
	So, $\left\{ x = \frac{-4}{22 + \pi} + 3 \implies \right\} \ x = \frac{3\pi + 62}{\pi + 22}$	$\frac{3\pi}{\pi} + 2$	$\frac{62}{22}$ or $\frac{6\pi + 124}{2\pi + 44}$ or $\frac{62 + 3\pi}{22 + \pi}$	A1 o.e.		
				[4] 9		
(a) Way 2	$\left\{ \underbrace{\frac{dx}{dy}} \right. \times \left\{ \underbrace{\left(\underbrace{4xy\frac{dx}{dy} + 2x^2}\right)}_{} + 2\frac{dx}{dy} + 4 + \pi s \right\}$	$ in(\pi y) = 0 $		Ml <u>Al</u> <u>Bl</u>		
	$\frac{\mathrm{d}x}{\mathrm{d}y}(4xy+2)+2x^2+4+\pi\sin(\pi)$	y) = 0		dM1		
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy}{-2x^2 - 4}$		Correct answer or equivalent	A1 cso [5]		
	Question 3 Notes					
3. (a)	Note Writing down from no working • $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)} \text{ scores M1A1B1M1A1}$ • $\frac{dy}{dx} = \frac{4xy + 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ scores M1A0B1M1A0}$ Note Few candidates will write $4xydx + 2x^2dy + 2dx + 4dy + \pi \sin(\pi y)dy = 0$ leading to					
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or equiva	•				

Mathematics C4 6666

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

		Question 3 Notes Continued						
3. (a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \to 4\frac{dy}{dx}$ or $-\cos(\pi y) \to \pm \lambda \sin(\pi y) \frac{dy}{dx}$						
	(Ignore $\left(\frac{dy}{dx}\right)$). λ is a constant which can be 1.							
	1st A1 $2x + 4y - \cos(\pi y) = 17 \rightarrow 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = 0$ Note $4xy + 2x^2\frac{dy}{dx} + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} \rightarrow 2x^2\frac{dy}{dx} + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = -4xy - 2$							
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.						
	B1	$2x^2y \to 4xy + 2x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$						
	Note	If an extra term appears then award 1 st A0.						
	dM1	Dependent on the first method mark being awarded.						
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.						
		ie. $\frac{dy}{dx} (2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$						
	Note	Writing down an extra $\frac{dy}{dx} = \dots$ and then including it in their factorisation is fine for dM1.						
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.						
()	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.						
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.						
(b)	1 st M1	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of						
		substituting $y = \frac{1}{2}$. E.g. " $-4xy$ " \rightarrow " -6 " in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear						
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.						
	3 rd M1	is dependent on the first M1.						
	Note	The 2 nd M1 mark can be implied by later working.						
		Eg. Award 2nd M1 3rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$						
	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.							
		But, $\sin \pi$ by itself or $\sin \left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.						
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.						

Question	G.1	X7 .	3.7. 1		
Number	Scheme	Notes	Marks		
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$				
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown. dx and be in the wrong positions, though thi implied by later working. Ignore the	s mark can be B1		
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \cdot$ or $\pm k \rightarrow \pm kt$ (with respect to			
	$\frac{1}{2}$	$\ln x = -\frac{5}{2}t + c , \text{ in}$			
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	Finds their c and uses c	-		
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ or }$	to achieve $x = 60e^{\frac{5}{2}t}$ with no incorrect	e ²		
	2 <u>c</u> with no incorrect working see				
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$ Either $\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$				
	2	Integrates both either $t =$ or $\pm \alpha \ln px$	○ N/1		
	$t = -\frac{2}{5}\ln x + c$	$t = -\frac{2}{5}\ln x + c, \text{ in}$			
	$\left\{t=0, x=60 \Rightarrow\right\} c = \frac{2}{5}\ln 60 \Rightarrow t=-$	$\frac{2}{5} \ln x + \frac{2}{5} \ln 60$ Finds their c and uses c	orrect algebra		
	3	$e^{-\frac{5}{2}t}$ or $x = \frac{60}{2^{\frac{5}{2}t}}$			
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x = 60}e^{-\frac{5}{2}t} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen				
			[4]		
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$		Ignore limits B1		
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$	Integrates both sides to give either $\pm \cdot$ or $\pm k \rightarrow \pm kt$ (with respect to	X 1V11		
	$\begin{bmatrix} \lim x \end{bmatrix}_{60} = \begin{bmatrix} -\frac{1}{2}t \end{bmatrix}_{0}$	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t} \text{ including the}$			
	$\ln x - \ln 60 = -\frac{5}{2}t \implies \underline{x = 60e^{-\frac{5}{2}t}}$ or	$c = \frac{60}{e^{\frac{5}{2}t}}$ Correct algebra leading to a	correct result A1 cso		
		Substitutes = 20 into an aquati-	[4]		
(b)	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0				
	- (/				
	$\left\{ = 0.4394449 \text{ (days)} \right\} $ either $t = A \ln \left(\frac{60}{20} \right)$ or $A \ln \left(\frac{20}{60} \right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3} \right)$ o.e. or				
	Note: t must be greater than 0 $t = A(\ln 20 - \ln 60)$ or $A(\ln 60 - \ln 20)$ o.e. $(A \in \square, t > 0)$				
	\Rightarrow t = 632.8006 = 633(to the nearest minute) awrt 633 or 10 hours and awrt 33 minutes Note: dM1 can be implied by t = awrt 0.44 from no incorrect working.				
	r	-	7		

Summer 2016 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question		Scheme			Notes	Marks	
Number							
4.	_	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$	G	Separates variables as shown. dx and dt should not			
(a) Way 4	$\int \frac{2}{5}$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.			B1		
		•	0.11	_	tes both sides to give either $\pm \alpha \ln(px)$ $\pm kt$ (with respect to t); $k, \alpha \neq 0$; $p > 0$	M1	
		$\frac{2}{5}\ln(5x) = -t + c$	OF				
				A1			
	${t=0}$	$x = 60 \Rightarrow$ $\begin{cases} \frac{2}{5} \ln 300 = c \end{cases}$ Finds their and was correct cleables					
	$\frac{2}{2}$ ln(5	$f(x) = -t + \frac{2}{5}\ln 300 \implies \underline{x = 60e^{-\frac{5}{2}}}$	t Or		Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{2}e^{\frac{5}{2}t}$		
	3	,	_ 01		with no incorrect working seen	A1 cso	
	$x = \frac{60}{e^{\frac{5}{2}}}$	<u>J</u> !			with no incorrect working seen	711 650	
		_				[4]	
(a) Way 5	$\left\{ \frac{\mathrm{d}t}{\mathrm{d}x} = \right.$	$-\frac{2}{5x} \Rightarrow $ $t = \int_{60}^{x} -\frac{2}{5x} dx$			Ignore limits	B1	
		· · · · · · · · · · · · · · · · · · ·		Integr	ates both sides to give either $\pm k \rightarrow \pm kt$		
		$\begin{bmatrix} 2 \end{bmatrix}^x$	(M1			
		$t = \left[-\frac{2}{5} \ln x \right]_{60}^{x}$					
				t =	$\left[-\frac{2}{5} \ln x \right]_{60}^{x}$ including the correct limits	A1	
	$t = -\frac{2}{5}$	$\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln x$	160				
	$\Rightarrow \underline{x} =$	$60e^{-\frac{5}{2}t} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$	Correct algebra leading to a correct result			A1 cso	
			(Ouestion	4 Notes	[4]	
4. (a)	B1	For the correct separation of vari					
	Note	B1 can be implied by seeing eith	er ln:	$x = -\frac{5}{2}$	$t + c$ or $t = -\frac{2}{5} \ln x + c$ with or without	+ <i>c</i>	
	Note	B1 can also be implied by seeing	$g[\ln x]$	$_{60}^{x} = \left[-\frac{1}{2} \right]$	$\left[\frac{5}{2}t\right]_{0}^{t}$		
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or x	$=\frac{60}{\sqrt{e^{50}}}$	with n	o incorrect working seen		
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$					
	Note		_		final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)		
	Note	Way 1 to Way 5 do not exhaust all the different methods that candidates can give.					
	Note	Give B0M0A0A0 for writing do	wn x =	$= 60e^{-\frac{5}{2}t}$	or $x = \frac{60}{2^{\frac{5}{2}t}}$ with no evidence of working of	or integration	
		seen.			e ²		
(b)	A1	You can apply cso for the work of					
	Note	2			by $t = \text{awrt } 633 \text{ from no incorrect working}$	ıg.	
	Note	Substitutes $x = 40$ into their equation from part (a) is M0dM0A0					

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number		Scheme	Notes	Marks			
5.	x = 4 ta	$an t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$					
(a) Way 1	$\frac{dx}{dt} = 4\sec^2 t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\Rightarrow \frac{dy}{dx} = \frac{10\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$		Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1			
	dx	$4\sec^2 t$ $\left(\begin{array}{c} 2 \\ \end{array} \right)$	Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe			
	$\int At P \bigg(4 \sqrt{4} \bigg)$	$\sqrt{3}$, $\frac{15}{2}$, $t = \frac{\pi}{3}$					
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{100}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{15}{16\sqrt{3}}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only				
				[4]			
(b)	$\begin{cases} 10\sqrt{3}\cos \theta \end{cases}$	$2t = 0 \Rightarrow t = \frac{\pi}{4}$					
	So $x = 4 ta$	$ \operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right) $	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = 4$ or $y = 5\sqrt{3}$	M1			
	Coordinate	es are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1			
				[2]			
			-42 5 N.4	6			
5. (a)	1st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$ or any equivalent form.					
	Note	Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$					
	Note	Give the final A0 for more than one value stated for $\frac{dy}{dx}$					
(b)	Note	Also allow M1 for either $x = 4 \tan(45)$	(i) or $y = 5\sqrt{3}\sin(2(45))$				
, ,	Note	M1 can be gained by ignoring previou					
	Note	Give A0 for stating more than one set					
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by	Virting $x = 4$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 4)$ is A0.				

Question Number	Scheme		Notes	Marks	
5.	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$				
(a) Way 2	$\tan t = \frac{x}{4} \implies \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \implies$	$y = \frac{40\sqrt{3}}{x^2 + 1}$	<u>x</u> 6		
	$\begin{cases} u = 40\sqrt{3}x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$		·		
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}$	M1	
	dx	Correc	$\frac{dy}{dx}$; simplified or un-simplified	A1	
	$\frac{dy}{dx} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	$= \frac{40\sqrt{3}(48+16)-80\sqrt{3}(48)}{(48+16)^2}$ dependent on the some even of the source o			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso	
		I	nom a correct solution omy	[4]	
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	<u>d</u>	$\frac{y}{x} = \pm A \cos \left(2 \tan^{-1} \left(\frac{x}{4} \right) \right) \left(\frac{1}{1 + x^2} \right)$	M1	
	$ dx \qquad (4/)(1+(\frac{x}{4})^2)(4) $		Correct $\frac{dy}{dx}$; simplified or un-simplified.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right\}$		dependent on the previous M mark Some evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso	
		1		[4]	

a	a	a	c

Question Number	Scheme			ı	Notes	Marks	
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy$, $y > 0$, (ii) $\int_0^3 \sqrt{\left(\frac{1}{4}\right)^3} dy$	$\frac{x}{(x-x)} dx$, $x =$	$=4\sin^2\theta$				
(i) Way 1	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y+2)$ $y=0 \Rightarrow -4 = 2A \Rightarrow A=-2$	+2) + By			See notes st one of their $R = 0$	M1 A1	
	$y = 0 \implies -4 = 2A \implies A = -2$ $y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$	A = -2 or their $B = 9Both their A = -2 and their B = 9$			A1		
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$	Integrates to give at least one of either $\frac{A}{y} \to \pm \lambda \ln y \text{or} \frac{B}{(3y+2)} \to \pm \mu \ln(3y+2)$ $A \neq 0, B \neq 0$					
		At leas			owed through r from their B	A1 ft	
	$= -2\ln y + 3\ln(3y+2) \left\{ + c \right\}$		$-2 \ln y + 3 \ln(3y + 2)$ or $-2 \ln y + 3 \ln(y + \frac{2}{3})$ with correct bracketing, simplified or un-simplified. Can apply isw.				
					T	[6]	
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} =$	$4\sin 2\theta$ or	$dx = 8\sin\theta$	$\cos \theta d\theta$		B1	
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4}{4-\theta}} d\theta$	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 4\sin2\theta \left\{ d\theta \right\}$					
	$= \int \underline{\tan \theta} \cdot 8 \sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4 \sin 2\theta$	$O\left\{d\theta\right\}$	$\left[\left(\frac{x}{4-x} \right) \right] \to$	$\pm K \tan \theta$ or	$r \pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	<u>M1</u>	
	$= \int 8\sin^2\theta d\theta$		$\int 8$	$\int 8\sin^2\theta d\theta \text{including } d\theta$			
	$3 = 4\sin^2\theta \text{ or } \frac{3}{4} = \sin^2\theta \text{ or } \sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = $ $\{x = 0 \rightarrow \theta = 0\}$		nvolving $x =$	= 3 leading	rrect equation to $\theta = \frac{\pi}{3}$ and garding limits	B1	
	<u> </u>	11.	o meoricei w	ork seem re	Surumg mints	[5]	
(ii) (b)	$= \left\{ 8 \right\} \int \left(\frac{1 - \cos 2\theta}{2} \right) d\theta \left\{ = \int \left(4 - 4 \cos 2\theta \right) d\theta \right\}$	θ	-	-	$\theta = 1 - 2\sin^2\theta$ l. (See notes)	M1	
			For	$\pm \alpha \theta \pm \beta \sin \theta$	$n2\theta, \alpha, \beta \neq 0$	M1	
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\} $ $\sin^2 \theta \rightarrow \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right)$					A1	
	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta d\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left[\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - (0+0) \right]$						
	$= \frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact answ	er of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}\left(4\pi-3\sqrt{3}\right)$	A1 o.e.	
						[4]	
						15	

		Question 6 Notes				
		T				
6. (i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their <i>A</i> or their <i>B</i> .				
	Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$				
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.				
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)				
	Note	Give $2^{\text{nd}} \text{ M0 for } \frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$				
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$				
6. (ii)(a)	1st M1	Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{d\theta}$) into $\sqrt{\left(\frac{x}{4-x}\right)}dx$				
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$				
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$				
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan\theta$ or $\pm K \left(\frac{\sin\theta}{\cos\theta}\right)$				
	Note	Integral sign is not needed for this mark.				
	1st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$				
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen				
		regarding limits				
	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$				
	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3$, $\theta = \frac{\pi}{3}$; $x = 0$, $\theta = 0$				
(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$				
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$				
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.				
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$,				
		$\alpha \neq 0, \beta \neq 0$				
	1 st A1	(can be simplified or un-simplified). Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.				
		Can be implied by $k \sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.				
	2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of				
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$				
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.				
	Note	Candidates can work in terms of λ (note that λ is not given in (ii))				
-		and gain the 1 st three marks (i.e. M1M1A1) in part (b).				
	Note	If they incorrectly obtain $\int_0^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)				
		then the final A1 is available for a correct solution in part (ii)(b).				

1	0.1		NT :	37.1
	Scheme Scheme		Notes	Marks
6. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y$			
	$\frac{3y+6}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 3y+6 = A(3y+2) + By$		See notes	M1
	$y(3y + 2) \qquad y \qquad (3y + 2)$ $y = 0 \qquad \Rightarrow 6 = 2A \Rightarrow A = 3$			A1
	$y = 0 \implies 6 = 2A \implies A = 3$ $y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$			A1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$	M1
	$= \int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$	У	$(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	
	$\int \int 3y^2 + 2y dy \int y dy \int (3y + 2) dy$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{ + c \right\}$		$ln(3y^2+2y) - 3ln y + 2ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$	2) dy		
	$\frac{5}{v(3v+2)} \equiv \frac{A}{v} + \frac{B}{(3v+2)} \implies 5 = A(3v+2)$	$\equiv \frac{A}{1} + \frac{B}{12} \Rightarrow 5 = A(3y+2) + By$		M1
1	$1 v(3v \pm 2) v(3v \pm 2)$			
			At least one of their $A = \frac{5}{2}$	A1
	$y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$		or their $B = -\frac{15}{2}$	
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$	Τ	Or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1 A1
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$	
	$y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y - 4}{y(3y + 2)} dy$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either	A1
	$y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y - 4}{y(3y + 2)} dy$	or $\frac{A}{y} \rightarrow$	Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$	A1
	$y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$	or $\frac{A}{y} \rightarrow$ At lea	Both their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	A1 M1
	$y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y - 4}{y(3y + 2)} dy$	or $\frac{A}{y} \rightarrow$ At lea	Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$ ast one term correctly followed through $\frac{1}{2} \ln(3y^2 + 2y) - \frac{5}{2} \ln y + \frac{5}{2} \ln(3y+2)$ with correct bracketing,	A1 M1 A1 ft

	T			T
	Scheme		Notes	
6. (i) Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$			
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+1)} \mathrm{d}y$			
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 4 = A(3y+2) + A(3y+2) = A(3y+2) + A(3y+2) = A(3y+2) =$	- By	See notes	M1
	$y(3y+2) y (3y+2)$ $y = 0 \Rightarrow 4 = 2A \Rightarrow A = 2$,	At least one of their $A = 2$ or their $B = -6$	A1
			Both their $A = 2$ and their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Integrates to give at least one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	2 4		M1
	[3		$\frac{B}{(3y+2)} \to \pm \mu \ln(3y+2),$	
	$ = \int \frac{3}{3y+2} dy - \int \frac{2}{y} dy + \int \frac{6}{(3y+2)} dy $	_	$A \neq 0, B \neq 0, C \neq 0$	
		At lea	ast one term correctly followed through $ln(3y+2) - 2 ln y + 2 ln(3y+2)$	A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{+c\right\}$		with correct bracketing,	A1 cao
			simplified or un-simplified	[6]
	Alternative methods for B1M1M1A1 in (ii)(a)			
(ii)(a) Way 2	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$		As in Way 1	B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}}.8\sin\theta\cos\theta \left\{ d\theta \right\}$		As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ d\theta \right\}$			
	$= \int \frac{\sin \theta}{\sqrt{(1-\sin^2 \theta)}} \cdot 8\sqrt{(1-\sin^2 \theta)} \sin \theta \left\{ d\theta \right\}$			
	$= \int \sin \theta . 8 \sin \theta \{ d\theta \}$		Correct method leading to $\sqrt{(1-\sin^2\theta)}$ being cancelled out	M1
	$= \int 8\sin^2\theta d\theta$		$\int 8\sin^2\theta d\theta \text{including } d\theta$	A1 cso
(ii)(a) Way 3	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$		As in Way 1	B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$)		
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$			M1
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$			
	$= \int \frac{2 - 2\cos 2\theta}{4\sin 2\theta} \left\{ \frac{1}{3} d\theta \right\} = \int \frac{2(2 - 2\cos 2\theta)}{3} \left\{ \frac{1}{3} d\theta \right\}$ Correct method		Correct method leading to $\sin 2\theta$ being cancelled out	M1
	$= \int 8\sin^2\theta d\theta \qquad \qquad \int 8\sin^2\theta d\theta \text{including } d\theta$		A1 cso	

[4] 8

			1			
Question Number	Scheme			Notes		Marks
7.	$y = (2x-1)^{\frac{3}{4}}, x \geqslant \frac{1}{2}$ passes though $P(k, 8)$					
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x\pm 1)^{\frac{3}{2}}$	$\rightarrow \pm \lambda (2x \pm 1)$ where $u = 2$.		M1
	(J	$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or witho	put + c. Must be	e simplified.	A1
						[2]
(b)	${P(k, 8) \Rightarrow} 8 = (2k-1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{4}{3}} + 1}{2}$		`	$(-1)^{\frac{3}{4}}$ or $8 = (2x^{\frac{3}{4}})^{\frac{3}{4}}$ or $x = (2x^{\frac{3}{4}})^{\frac{3}{4}}$ or $x = (2x^{\frac{3}{4}})^{\frac{3}{4}}$		M1
	So, $k = \frac{17}{2}$			k (or x) =	$=\frac{17}{2}$ or 8.5	A1
						[2]
(c)	$\pi \int \left((2x-1)^{\frac{3}{4}} \right)^2 \mathrm{d}x$		For $\pi \int \left(C \right)$	$(2x-1)^{\frac{3}{4}}\bigg)^2 \text{ or } \pi$	$\tau \int (2x-1)^{\frac{3}{2}}$	B1
			Ignore lim	its and dx. Can	be implied.	
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x \right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$	$ = \frac{1024}{5} $	to part (b))	limits of "8.5" (to and 0.5 to an experime $\pm \beta (2x - 1)^{\frac{5}{2}}$ reacts the correct	expression of $\frac{5}{2}$; $\beta \neq 0$ and	M1
	Note: It is not necessary to write the -0 "			. /		
	$\left\{ V_{\text{cylinder}} \right\} = \pi(8)^2 \left(\frac{17}{2} \right) \left\{ = 544\pi \right\}$		$\pi(8)^2$ (their answer to part (b)) $V_{\text{cylinder}} = 544\pi \text{ implies this mark}$		B1 ft	
	[1024 \pi] 14	506	An exact correct answer in the form $k\pi$			
	$\left\{ \operatorname{Vol}(S) = 544\pi - \frac{1024\pi}{5} \right\} \Rightarrow \operatorname{Vol}(S) = \frac{1696}{5}\pi$		E.g. $\frac{1696}{5}\pi$, $\frac{3392}{10}\pi$ or 339.2π		A1	
				Г		[4]
Alt. (c)	$\operatorname{Vol}(S) = \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \int_{0.5}^{8.5} \left(8^{2} - (2x - 1)^{\frac{3}{2}}\right) dx$ For $\underline{\pi} \int \dots (2x - 1)^{\frac{3}{2}}$				B1	
		2.5		Ignore lin	nits and dx.	
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x - 1)^{\frac{5}{2}}\right]_{0.5}^{8.5}$					
	(1) ((1 5) (1 5)) a			as above	M1	
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \left(\left(\underbrace{\underline{64("8.5")}}_{\underline{2}} - \frac{1}{5}(2(8.5) - 1)^{\frac{5}{2}}\right) - \left(\underbrace{\underline{64(0.5)}}_{\underline{2}} - \frac{1}{5}(2(0.5) - 1)^{\frac{5}{2}}\right) \right) $ as above				<u>B1</u>	
	$\left\{ = 32\pi + \pi \left(\left(544 - \frac{1024}{5} \right) - \left(32 - 0 \right) \right) \right\}$	$\left\{ = 32\pi + \pi \left(\left(544 - \frac{1024}{5} \right) - \left(32 - 0 \right) \right) \right\} \Rightarrow \operatorname{Vol}(S) = \frac{1696}{5}\pi$			A1	

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

	Question 7 Notes					
7. (b)	SC	Allow Special Case SC M1 for a candidate who sets $8 = (2k-1)^{\frac{3}{2}}$ or $8 = (2x-1)^{\frac{3}{2}}$ and				
		rearranges to give $k = (\text{or } x =)$ a	numerica	ıl value.		
7. (c)	M1	Can also be given for applying <i>u</i> -limits of "16" $(2("part (b)") - 1)$ and 0 to an expression of the				
		form $\pm \beta u^{\frac{3}{2}}$; $\beta \neq 0$ and subtracts the correct way round.				
	Note	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{\frac{1}{2}}^{\frac{17}{2}} = \frac{1024}{5}$				
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{0}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$				
	B1ft		•	rlinder with radius 8 and their (part (b)) heig		
	Note	to give a correct expression for i		volume of this cylinder they need to apply te.	neir limits	
		0.5		nt for B1 but $\pi(64(8.5) - 0)$ is sufficient for	or B1.	
7.	MISREAI	DING IN BOTH PARTS (B) AN	D (C)			
	Apply the	Apply the misread rule (MR) for candidates who apply $y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)				
(b)				Sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$ and rearranges to give $k = (\text{or } x =)$ a numerical value.		
		So, $k = \frac{5}{2}$		$k \text{ (or } x) = \frac{5}{2} \text{ or } 2.5$	A1	
(c)	$\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2 \mathrm{d}x$			For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$ Ignore limits and dx. Can be implied.	[2] B1	
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 dx \right\} = \left[\frac{(2x-1)^4}{8} \right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8} \right) - (0) \right)$		= 32}	Applies x-limits of "2.5" (their answer to part (b)) and 0.5 to an expression of the form $\pm \beta (2x-1)^4$; $\beta \neq 0$ and subtracts the correct way round.	M1	
	$V_{\text{cylinder}} = \pi(8)^2 \left(\frac{5}{2}\right) \left\{= 160\pi\right\}$			$\pi(8)^2$ (their answer to part (b)) Sight of 160π implies this mark	B1 ft	
	Vol(S) =	$= 160\pi - 32\pi$ $\Rightarrow Vol(S) = 128\pi$		An exact correct answer in the form $k\pi$ E.g. 128π		
	de E				[4] rt (b)	
	Note If a candidate uses $y = (2x - 1)^{\frac{3}{4}}$ in part (b) and then uses $y = (2x - 1)^{\frac{3}{2}}$ in part (c) do not apply a misread in part (c).					

6666

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks
8.	$l_1: \mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}. \qquad \overrightarrow{OA} \text{ occurs when } \mu = 1. \overrightarrow{OP} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$			
(a)	A(3,5,0)		(3, 5, 0)	B1
(b)	$ \{l_2: \} \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $ with either $\mathbf{a} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ or $\mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, or a multiple of $-5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$			[1] M1
			$\frac{\log \mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =}{l}$	A1
		tallow l_2 : or $l_2 \rightarrow$	• or $l_1 = $ for the A1 mark.	[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$			
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$	F	ull method for finding AP	M1
	$M = \sqrt{(-2)} + (0) + (2) = \sqrt{6} = 2\sqrt{2}$		$2\sqrt{2}$	A1
		(5) Realis	ation that the dot product is	[2]
(d)	So $\overrightarrow{AP} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{d}_2 = \begin{bmatrix} -5 \\ 4 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$	required required requirements	ired between $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	M1
	$\left\{\cos\theta = \right\} \frac{\overrightarrow{AP} \cdot \mathbf{d}_2}{\left \overrightarrow{AP}\right \cdot \left \mathbf{d}_2\right } = \frac{\pm \left(\begin{pmatrix} -2\\0\\2 \end{pmatrix} \cdot \begin{pmatrix} -5\\4\\3 \end{pmatrix}\right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 - (-5)^2}}$	between $\frac{1}{(4)^2 + (3)^2}$	dependent on the previous M mark. Applies dot product formula ween their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	dM1
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$	{co	$\{s \theta\} = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$	A1 cso
	1 - 1		1 –	[3]
(e)	$\left\{ \text{Area } APE = \right\} \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta \qquad \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta$	their $2\sqrt{2}$) ² sin θ or	$\frac{1}{2}$ (their $2\sqrt{2}$) ² sin(their θ)	M1
	= 2.4	2	.4 or $\frac{12}{5}$ or $\frac{24}{10}$ or awrt 2.40	A1
(f)	$\overrightarrow{DE} = (52)^2 + (42)^2 + (22)^2 $ and $\overrightarrow{DE} = 4$ hair 3	2./2 6		[2]
(1)	$PE = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k} \text{ and } PE = \text{their } 2\lambda$ $\left\{ PE^2 = \right\} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2$		This mark can be implied.	M1
	$\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$		Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	
	$l_2: \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ dependent on the previous M mark Substitutes at least one of their values of λ into l_2 .		dM1	
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{6} \end{pmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{pmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$	At leas	st one set of coordinates are correct.	A1
	$\begin{bmatrix} 3 \\ \frac{4}{5} \end{bmatrix} \begin{bmatrix} 0.8 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{16}{5} \end{bmatrix} \begin{bmatrix} 3.2 \end{bmatrix}$ Both sets of coordinates are correct.		A1	
				[5] 15
				1

	Question 8 Notes				
		Question 8 Notes (3) 3			
8. (a)	B1				
0. (a)	D1	Allow $A(3,5,0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ or benefit of the doubt 5			
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$			
		i.e. Writing $\mathbf{r} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \lambda \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ or $\mathbf{r} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \lambda \mathbf{d}$ where \mathbf{d} is a multiple of $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$			
		i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where d is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.			
	Note	Allow the use of parameters μ or t instead of λ .			
(c)	M1	Finds the difference between \overline{OP} and their \overline{OA} and applies Pythagoras to the result to find AP			
	1,777	()			
	Note	Allow M1A1 for $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.			
(d)	Note	For both the M1 and dM1 marks \overrightarrow{AP} (or \overrightarrow{PA}) must be the vector used in part (c) or the difference			
		\overrightarrow{OP} and their \overrightarrow{OA} from part (a).			
	Note	Applying the dot product formula correctly without $\cos \theta$ as the subject is fine for M1dM1			
	Note	Evaluating the dot product (i.e. $(-2)(-5) + (0)(4) + (2)(3)$) is not required for M1 and dM1 marks.			
	Note	In part (d) allow one slip in writing \overrightarrow{AP} and \mathbf{d}_2			
	Note	$\cos \theta = \frac{-10 + 0 - 6}{\sqrt{8} \cdot \sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso			
		12.1.2			
		Give M1dM1A1 for $\{\cos \theta =\} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8 \cdot 10 \sqrt{2}}} = \frac{20 + 12}{40} = \frac{4}{5}$			
	Note	Give MIdMIA1 for $\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 6 \end{pmatrix}$ 20 + 12 4			
		$\left\{\cos\theta = \right\} = \sqrt{500000000000000000000000000000000000$			
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta = 0.8$ followed by 36.869°			
		ve Method: Vector Cross Product			
_	Only app	ly this scheme if it is clear that a candidate is applying a vector cross product method. Realisation that the vector			
	$\overline{AP} \times \mathbf{d}_{\alpha}$	$= \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{k} \end{cases} $ cross product is required between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and M1			
	2	$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$			
		$\pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$			
		Applies the vector product $(8)^{2} + (4)^{2} + (8)^{2}$			
	$\sin \theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}} $ $\left(\frac{\overline{AP} \text{ or } \overline{PA}}{\overline{PA}}\right) \text{ and } \pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$ $\left(\frac{\overline{AP} \text{ or } \overline{PA}}{\overline{PA}}\right) \text{ and } \pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$				
	$\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}$ $\left(\overrightarrow{AP} \text{ or } \overrightarrow{PA} \right) \text{ and } \pm K \mathbf{d}_2 \text{ or } \pm K \mathbf{d}_1$				
		$\sin \theta = \frac{12}{\sqrt{8}.\sqrt{50}} = \frac{3}{5} \Rightarrow \frac{\cos \theta = \frac{4}{5}}{\cos \theta} \qquad \cos \theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20} $ A1			
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40			
	Note	Candidates must use their θ from part (d) or apply a correct method of finding			
		their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$			

Summer 2016 Past Paper (Mark Scheme)			www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics C4 6666
			Question 8 Notes Continued	
	8. (f)	Note	Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorre	ect working

		Question 8 Notes Continued				
8. (f)	Note	Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorrect working				
	SC Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no work					
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$				
	Note	Note Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})$ or equivalent				
	Note	Note Give 1 st M1 for $\lambda = \frac{\text{their } AP = \sqrt[n]{2}\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$				
	Note	So $\left\{ \hat{\mathbf{d}}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\}$ "vector" = $\frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ is M1A	Al			
	Note	The 2^{nd} dM1 in part (f) can be implied for at least 2 (out of 6) correct x , y , z ordinates from the values of λ .				
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final Al				
	CAREFUL	Putting l_2 equal to A gives				
		$\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -5 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \lambda = \frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{bmatrix}$ Give M0 dI using $\lambda = \frac{2}{5}$ from this				
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overline{AP}$ gives				
		$ \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $ Give M0 dM using $\lambda = -\frac{2}{5}$ from this				
	General	You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1				
	General	You can follow through their \mathbf{d}_2 in part (b) for ((d) M1dM1, (f) M1dM1.			

Summer 2016

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6666

Mathematics C4