

**Summer 2018** 

# Mark Scheme (Results)

# **Summer 2018**

**Pearson Edexcel GCE Mathematics** Core Mathematics C4 (6666)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2018 Publications Code 6666\_01\_1806\_MS All the material in this publication is copyright © Pearson Education Ltd 2018

#### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL GCE MATHEMATICS**

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- aef "any equivalent form"
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

### **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles)

#### Method mark for solving 3 term quadratic:

#### 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = ...$ 

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

### 2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

#### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to x = ...

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

#### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### <u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.mystudybro.com This resource was created and owned by Pearson Edexcel

| Question<br>Number |                                | Scheme                                                                                                                                                                                                                            | Notes                                                                         | Marks     |  |  |  |  |
|--------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------|--|--|--|--|
| <b>1.</b> (a)      | √(4 -                          | $\overline{9x} = (4 - 9x)^{\frac{1}{2}} = \underline{(4)}^{\frac{1}{2}} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$                                                  | $\underline{(4)^{\frac{1}{2}}} \text{ or } \underline{2}$                     | <u>B1</u> |  |  |  |  |
|                    | = {2}                          | $\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^{2} + \dots\right]$                                                                                                                          | see notes                                                                     | M1 A1ft   |  |  |  |  |
|                    | = {2}                          | $\left[1 + \left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^{2} + \dots\right]$                                                        |                                                                               |           |  |  |  |  |
|                    | $=2\left[1-\frac{1}{2}\right]$ | $-\frac{9}{8}x - \frac{81}{128}x^2 + \dots$                                                                                                                                                                                       | see notes                                                                     |           |  |  |  |  |
|                    | = 2 -                          | $\frac{9}{4}x; -\frac{81}{64}x^2 + \dots$                                                                                                                                                                                         | isw                                                                           | A1; A1    |  |  |  |  |
|                    |                                | I                                                                                                                                                                                                                                 |                                                                               | [5]       |  |  |  |  |
|                    |                                | Ū.                                                                                                                                                                                                                                | For $10\sqrt{3.1}$ (can be implied by later                                   |           |  |  |  |  |
| (b)                | √310                           | $= 10\sqrt{3.1} = 10\sqrt{(4-9(0.1))}$ , so $x = 0.1$ we                                                                                                                                                                          | brking) and $x = 0.1$ (or uses $x = 0.1$ )                                    | B1        |  |  |  |  |
|                    |                                |                                                                                                                                                                                                                                   | Note: $\sqrt{(100)(3.1)}$ by itself is B0                                     |           |  |  |  |  |
|                    |                                | 0 01                                                                                                                                                                                                                              | Substitutes their x, where $\left x\right  < \frac{4}{9}$                     |           |  |  |  |  |
|                    | When                           | $x = 0.1 \sqrt{(4-9x)} \approx 2 - \frac{9}{4}(0.1) - \frac{81}{64}(0.1)^2 + \dots$                                                                                                                                               |                                                                               | M1        |  |  |  |  |
|                    |                                | 4 64                                                                                                                                                                                                                              | into all three terms of their<br>binomial expansion                           |           |  |  |  |  |
|                    |                                | = 2 - 0.225 - 0.01265625 = 1.76234375                                                                                                                                                                                             |                                                                               |           |  |  |  |  |
|                    | So, $$                         | $\overline{310} \approx 17.6234375 = \underline{17.623} \ (3 \text{ dp})$                                                                                                                                                         | 17.623 <b>cao</b>                                                             | A1 cao    |  |  |  |  |
|                    | Note                           | : the calculator value of $\sqrt{310}$ is 17.60681686                                                                                                                                                                             | which is 17.607 to 3 decimal places                                           | [3]       |  |  |  |  |
|                    |                                |                                                                                                                                                                                                                                   |                                                                               | 8 marks   |  |  |  |  |
|                    |                                | Question 1                                                                                                                                                                                                                        | Notes                                                                         |           |  |  |  |  |
| <b>1.</b> (a)      | B1                             | $(4)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's co                                                                                                                                      | onstant term in their binomial expansion                                      | n         |  |  |  |  |
|                    | M1                             | Expands $(+kx)^{\frac{1}{2}}$ to give any 2 terms out of 3 to                                                                                                                                                                     | erms simplified or un-simplified,                                             |           |  |  |  |  |
|                    |                                | E.g. $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ or                                                                                 | $1 + \dots + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2$                    |           |  |  |  |  |
|                    |                                | where k is a numerical value and where $k \neq 1$                                                                                                                                                                                 |                                                                               |           |  |  |  |  |
|                    | A1ft                           | A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(kx)$                                                                                                                                                          | $+\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2$ expansion with <b>consist</b> | ent (kx)  |  |  |  |  |
|                    | Note                           | $(kx), k \neq 1$ must be consistent (on the RHS, not n                                                                                                                                                                            |                                                                               |           |  |  |  |  |
|                    | Note                           | Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)\left(-9x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^2+\right]$ because $(kx)$ is not consistent                            |                                                                               |           |  |  |  |  |
|                    | Note                           | <b>Incorrect bracketing:</b> $2\left[1 + \left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x^2}{4}\right) + \dots\right]$ is B1M1A0 unless recovered |                                                                               |           |  |  |  |  |
|                    | A1                             | 2 - $\frac{9}{4}x$ (simplified fractions) or allow 2 - 2.25                                                                                                                                                                       | $5x \text{ or } 2 - 2\frac{1}{4}x$                                            |           |  |  |  |  |
|                    | A1                             | Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or $-1.265625$                                                                                                                                                            | x <sup>2</sup>                                                                |           |  |  |  |  |

|                                                                                                                                |      |                                                                                                                                                        | Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | estion 1 Not                                          | es Continued                                                          |                        |                                   |                |  |
|--------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------|-----------------------------------|----------------|--|
| <b>1.</b> (a) ctd.                                                                                                             | SC   | If a candidate would                                                                                                                                   | otherwise sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ore 2 <sup>nd</sup> A0, 3                             | <sup>rd</sup> A0 (i.e. scores                                         | A0A0 in th             | ne final two                      | marks to (a))  |  |
| eta.                                                                                                                           |      | -                                                                                                                                                      | ecial Case 2 <sup>nd</sup> A1 for either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                       |                        |                                   |                |  |
|                                                                                                                                |      | SC: $2\left[1-\frac{9}{8}x;\right]$ or SC: $2\left[1+\frac{81}{128}x^2+\right]$ or SC: $\lambda\left[1-\frac{9}{8}x-\frac{81}{128}x^2+\right]$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                       |                        |                                   |                |  |
|                                                                                                                                |      | or $\mathbf{SC}:\left[\lambda - \frac{9\lambda}{8}x - \frac{81\lambda}{128}x^2 +\right]$ (where $\lambda$ can be 1 or omitted), where each term in the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                       |                        |                                   |                |  |
|                                                                                                                                |      | is a simplified fracti                                                                                                                                 | on or a decim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al,                                                   |                                                                       |                        |                                   |                |  |
|                                                                                                                                |      | <b>OR SC:</b> for $2 - \frac{18}{8}$                                                                                                                   | $x - \frac{162}{128}x^2 + \frac{1}{128}x^2 $ | (i.e. for no                                          | t simplifying the                                                     | eir correct co         | pefficients)                      |                |  |
|                                                                                                                                | Note | Candidates who wri                                                                                                                                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | L                                                                     | , where $k =$          | $=\frac{9}{4}$ and not            | $-\frac{9}{4}$ |  |
|                                                                                                                                |      | and achieve $2 + \frac{9}{4}x$                                                                                                                         | $x; -\frac{81}{64}x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . will get B1                                         | M1A1A0A1                                                              |                        |                                   |                |  |
|                                                                                                                                | Note | Ignore extra terms b                                                                                                                                   | beyond the ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $m in x^2$                                            |                                                                       |                        |                                   |                |  |
|                                                                                                                                | Note | You can ignore subs                                                                                                                                    | equent worki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng following                                          | a correct answe                                                       | r                      |                                   |                |  |
|                                                                                                                                | Note | Allow B1M1A1 for                                                                                                                                       | $2\left\lfloor 1 + \left(\frac{1}{2}\right)\right\rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-\frac{9x}{4} + \frac{(\frac{1}{2})(-)}{2!}$         | $\frac{\frac{1}{2}}{\left(\frac{9x}{4}\right)^2} + \dots$             |                        |                                   |                |  |
|                                                                                                                                | Note | Allow B1M1A1A1A                                                                                                                                        | A1 for $2\left[1+\left(\frac{1}{2}\right)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right)+$ | $\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}\left(\frac{9x}{4}\right)^2 +$ | $ = 2 - \frac{2}{2}$   | $\frac{9}{4}x - \frac{81}{64}x^2$ | +              |  |
| (b)                                                                                                                            | Note | Give B1 M1 for $\sqrt{3}$                                                                                                                              | $\overline{10} \approx 10 \bigg( 2 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{9}{4}(0.1) - \frac{81}{64}$                    | $(0.1)^2$                                                             |                        |                                   |                |  |
|                                                                                                                                | Note | Other alternative s                                                                                                                                    | uitable value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s for x for                                           | $\sqrt{310} \approx \beta \sqrt{4-9}$                                 | P(their  x)            |                                   |                |  |
|                                                                                                                                |      | b                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Estimate                                              |                                                                       | b                      | x                                 | Estimate       |  |
|                                                                                                                                |      | 7                                                                                                                                                      | $-\frac{38}{147}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.479                                                |                                                                       | 14                     | $\frac{79}{294}$                  | 18.256         |  |
|                                                                                                                                |      | 8                                                                                                                                                      | $-\frac{3}{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.599                                                |                                                                       | 15                     | $\frac{118}{405}$                 | 18.555         |  |
|                                                                                                                                |      | 9                                                                                                                                                      | $\frac{14}{729}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.607                                                |                                                                       | 16                     | <u>119</u><br>384                 | 18.899         |  |
|                                                                                                                                |      | 10                                                                                                                                                     | $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.623                                                |                                                                       | 17                     | <u>94</u><br>289                  | 19.283         |  |
|                                                                                                                                |      | 11                                                                                                                                                     | $\frac{58}{363}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.690                                                |                                                                       | 18                     | $\frac{493}{1458}$                | 19.701         |  |
|                                                                                                                                |      | 12                                                                                                                                                     | <u>133</u><br>648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.819                                                |                                                                       | 19                     | <u>126</u><br>361                 | 20.150         |  |
|                                                                                                                                |      | 13                                                                                                                                                     | $\frac{122}{507}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.009                                                |                                                                       | 20                     | $\frac{43}{120}$                  | 20.625         |  |
|                                                                                                                                | Note | Apply the scheme in                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                       | ×2)                    |                                   |                |  |
|                                                                                                                                |      | E.g. Give B1 M1 A                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                       |                        |                                   |                |  |
| Note Allow B1 M1 A1 for $\sqrt{310} \approx 100 \left(2 - \frac{9}{4} (0.441) - \frac{81}{64} (0.441)^2\right) = 76.161 (3 c)$ |      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                       | 61 (3 dp)              |                                   |                |  |
|                                                                                                                                | Note | Give B1 M1 A0 for                                                                                                                                      | $\sqrt{310} \approx 10 \bigg($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2 - \frac{9}{4}(0.1) -$                              | $\frac{81}{64}(0.1)^2 - \frac{729}{512}$                              | $\left(0.1\right)^3 =$ | 17.609 (3 dp                      | ))             |  |

|               |                                   | Question 1 Notes Contin                                                                                                                                                                | ued                       |        |  |  |  |
|---------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|--|--|--|
| <b>1.</b> (b) | Note                              | Note Send to review using $\beta = \sqrt{155}$ and $x = \frac{2}{9}$ (which gives 17.897 (3 dp))                                                                                       |                           |        |  |  |  |
|               | Note                              | Send to review using $\beta = \sqrt{1000}$ and $x = 0.41$ (which g                                                                                                                     | ives 27.346 (3 dp))       |        |  |  |  |
| <b>1.</b> (a) |                                   | tive method 1: Candidates can apply an alternative form                                                                                                                                | of the binomial expansion |        |  |  |  |
| Alt 1         | $\begin{cases} (4-9) \end{cases}$ | $ x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} + (\frac{1}{2})(4)^{-\frac{1}{2}}(-9x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(4)^{-\frac{3}{2}}(-9x)^{2} $                                    |                           |        |  |  |  |
|               | <b>B</b> 1                        | $(4)^{\frac{1}{2}}$ or 2                                                                                                                                                               |                           |        |  |  |  |
|               | M1                                | Any two of three (un-simplified) terms correct                                                                                                                                         |                           |        |  |  |  |
|               | A1                                | All three (un-simplified) terms correct                                                                                                                                                | 1                         |        |  |  |  |
|               | A1                                | 2 - $\frac{9}{4}x$ (simplified fractions) or allow 2 - 2.25x or                                                                                                                        | $2 - 2\frac{1}{4}x$       |        |  |  |  |
|               | A1                                | Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or $-1.265625x^2$<br>The terms in C need to be evaluated.                                                                      |                           |        |  |  |  |
|               | Note                              | The terms in C need to be evaluated.<br>So ${}^{\frac{1}{2}}C_0(4)^{\frac{1}{2}} + {}^{\frac{1}{2}}C_1(4)^{-\frac{1}{2}}(-9x); + {}^{\frac{1}{2}}C_2(4)^{-\frac{3}{2}}(-9x)^2$ without | further working is B0M0A0 |        |  |  |  |
| <b>1.</b> (a) | Alterna                           | <b>tive Method 2: Maclaurin Expansion</b> $f(x) = (4 - 9x)^{\frac{1}{2}}$                                                                                                              |                           |        |  |  |  |
|               | f"( <i>x</i> )=-                  | $\frac{81}{4}(4-9x)^{-\frac{3}{2}}$                                                                                                                                                    | Correct $f^{\alpha}(x)$   | B1     |  |  |  |
|               | s(c) 1                            | $\pm a(4-9x)^{-\frac{1}{2}}; a \neq \pm 1$ M1                                                                                                                                          |                           |        |  |  |  |
|               | $f'(x) = -\frac{1}{2}$            | $\frac{\pm a(4-9x)^{-\frac{1}{2}}; \ a \neq \pm 1}{\frac{1}{2}(4-9x)^{-\frac{1}{2}}; \ -9)}  A1 \text{ oe}$                                                                            |                           |        |  |  |  |
|               | $\left\{ \therefore f(0) \right.$ | $\left\{ \therefore f(0) = 2, f'(0) = -\frac{9}{4} \text{ and } f''(0) = -\frac{81}{32} \right\}$                                                                                      |                           |        |  |  |  |
|               | So, $f(x)$                        | $= 2 - \frac{9}{4}x; - \frac{81}{64}x^2 + \dots$                                                                                                                                       |                           | A1; A1 |  |  |  |

www.mystudybro.com This resource was created and owned by Pearson Edexcel

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |              | Notes                                  | Marks  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------------------------------|--------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.                 | $x^2 + xy + y^2 - 4x - 5y + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |              |                                        |        |
| $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5} \qquad \text{o.e.}  \text{A1 cso}$ $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5} \qquad \text{o.e.}  \text{A1 cso}$ $(b)  \left\{ \frac{dy}{dx} = 0 \Longrightarrow \right\} 2x + y - 4 = 0 \qquad \qquad \text{M1}$ $\frac{(y = 4 - 2x \Longrightarrow) x^2 + x(4 - 2x) + (4 - 2x)^2 - 4x - 5(4 - 2x) + 1 = 0}{(y = 4 - 2x)^2 + 4x - 2x^2 + 16 - 16x + 4x^2 - 4x - 20 + 10x + 1 - 0}$ $gives 3x^2 - 6x - 3 - 0 \text{ or } 3x^2 - 6x - 3 \text{ or } x^2 - 2x - 1 = 0 \qquad \qquad \text{Correct 3TQ in terms of } x  \text{A1}$ $\frac{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =}{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =} \qquad \qquad \text{Method mark for } \frac{dM1}{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =}$ $\frac{(b)}{x + 1} \qquad \frac{x = 1 + \sqrt{2}, 1 - \sqrt{2}}{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =} \qquad \qquad \text{M1}$ $\frac{(b)}{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =} \qquad \qquad \text{M2}$ $\frac{(b)}{(x - 1)^2 - 1 - 1 = 0 \text{ and } x =} \qquad \qquad \text{M2}$ $\frac{(b)}{(x - 1)^2 - 1 - \sqrt{2}} \qquad \qquad x = 1 + \sqrt{2}, 1 - \sqrt{2} \text{ only } \text{A1}$ $\frac{(c)}{(x - 1)^2 - 1 - 1 - 0 \text{ and } x =} \qquad \qquad \text{M1}$ $\frac{(c)}{(x - 1)^2 - 1 - \sqrt{2}} \qquad \qquad x = 1 + \sqrt{2}, 1 - \sqrt{2} \text{ only } \text{A1}$ $\frac{(c)}{(x - 1)^2 - 1 - \sqrt{2}} + \left\{ \frac{4 - y}{2} \right\} y + y^2 - 4\left\{ \frac{4 - y}{2} \right\} - 5y + 1 = 0 \qquad \qquad \text{M1}$ $\frac{(c)}{(x - 1)^2 - 1 - 2 \text{ or } 3y^2 - 12y - 12 \text{ or } y^2 - 4y - 4 = 0 \qquad \qquad \text{Correct 3TQ in terms of } y  \text{A1}$ $\frac{(y - 2)^2 - 4 - 4 - 0 \text{ and } y =}{x = 4 - (2 - 2\sqrt{2})} \qquad \qquad \text{and finds at least one value for } x \qquad \qquad \text{dM1}$ $\frac{x = 4 - (2 + 2\sqrt{2})}{2}, x = \frac{4 - (2 - 2\sqrt{2})}{2} \qquad \qquad \text{and finds at least one value for } x \qquad \qquad \text{M1}$ $\frac{(a)}{(x - 1)^2} \frac{\left\{\frac{Mx}{Mx} \times\right\} 2x \frac{My}{My} + \frac{My}{My} + 2y - 4\frac{dx}{My} - 5 = 0 \qquad \qquad$                                                                                                                                                                                    | (a)                | $\left\{ \underbrace{\underbrace{x}}_{\underline{x}} \times \right\}  \underline{2x} + \left( \underbrace{y + x \frac{dy}{dx}}_{\underline{x}} \right) \underbrace{+ 2y \frac{dy}{dx} - 4 - 5 \frac{dy}{dx}}_{\underline{x}} = \underbrace{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                        |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $2x + y - 4 + (x + 2y - 5)\frac{dy}{dx} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |              |                                        | dM1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |              | 0.e.                                   | A1 cso |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        | [5]    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b)                | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\} 2x + y - 4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              |                                        | M1     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $\{y = 4 - 2x \implies \} x^2 + x(4 - 2x) + (4 - 2x)^2 - 4x - 5(4 - 2x)^2 - 5(4 - 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (x) + 1 = 0                           |              |                                        | dM1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $x^2 + 4x - 2x^2 + 16 - 16x + 4x^2 - 4x - 20 + 10x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0                                   |              |                                        |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | gives $3x^2 - 6x - 3 = 0$ or $3x^2 - 6x = 3$ or $x^2 - 2x - 1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                     | Corre        | ct 3TQ in terms of $x$                 | A1     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $(x-1)^2 - 1 - 1 = 0$ and $x =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        | ddM1   |
| $\begin{array}{c c c c c c c c c } \textbf{Alt 1} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | $x = 1 + \sqrt{2}, \ 1 - \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | <i>x</i> = 1 | $+\sqrt{2}, \ 1-\sqrt{2} \text{ only}$ | A1     |
| $\frac{\left\{x = \frac{4-y}{2} \Rightarrow\right\}  \left(\frac{4-y}{2}\right)^2 + \left(\frac{4-y}{2}\right)y + y^2 - 4\left(\frac{4-y}{2}\right) - 5y + 1 = 0}{\left(\frac{16-8y+y^2}{2}\right) + \left(\frac{4y-y^2}{2}\right) + y^2 - 2(4-y) - 5y + 1 = 0}{\left(\frac{16-8y+y^2}{2}\right) + \left(\frac{4y-y^2}{2}\right) + y^2 - 2(4-y) - 5y + 1 = 0}{\left(\frac{y-2}{2}\right)^2 - 4 - 4 = 0 \text{ and } y = \dots}{\left(\frac{y-2}{2}\right)^2 - 4 - 4 = 0 \text{ and } y = \dots}{\left(\frac{x}{2} + \frac{4-(2+2\sqrt{2})}{2}\right)},  x = \frac{4-(2-2\sqrt{2})}{2}$<br>$x = \frac{4-(2+2\sqrt{2})}{2},  x = \frac{4-(2-2\sqrt{2})}{2}$ and finds at least one value for x and dM1<br>$x = 1 + \sqrt{2},  1 - \sqrt{2}$ $x = 1 + \sqrt{2},  1 - \sqrt{2} \text{ only A1}$ (a)<br>$\frac{\left\{\frac{34x}{4x} \times\right\}}{2x\frac{dy}{dy}} + \left(\frac{y\frac{dx}{dy} + x}{dy}\right) + \frac{2y - 4\frac{dx}{dy} - 5}{2} = 0$ $\frac{M1A1}{\frac{B1}{2}}$ $x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0$ $\frac{M1}{2}$ $\frac{dM1}{\frac{dy}{dx}} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$ $\text{o.e. A1 cso}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        | [5]    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow\right\} 2x + y - 4 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              |                                        | M1     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | $\left\{x = \frac{4-y}{2} \Longrightarrow\right\}  \left(\frac{4-y}{2}\right)^2 + \left(\frac{4-y}{2}\right)y + y^2 - 4\left(\frac{4-y}{2}\right)y + y^2 - 4\left(\frac{4-y}{2}\right$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\left(\frac{y}{2}\right) - 5y + 1 =$ | = 0          |                                        | dM1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | $\left(\frac{16-8y+y^2}{2}\right) + \left(\frac{4y-y^2}{2}\right) + y^2 - 2(4-y) - 5y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y + 1 = 0                             |              |                                        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | gives $3y^2 - 12y - 12 = 0$ or $3y^2 - 12y = 12$ or $y^2 - 4y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4 = 0                               | Corre        | ct 3TQ in terms of y                   | A1     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and fi                                | nds at le    |                                        | ddM1   |
| (a)<br>Alt 1 $\left\{ \frac{dx}{dx} \times \right\}$ $\frac{2x\frac{dx}{dy} + \left( \frac{y\frac{dx}{dy} + x}{dy} \right) + \frac{2y - 4\frac{dx}{dy} - 5}{\frac{dy}{dy} - 5} = 0}{\frac{2x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0}{\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}}$ M1A1<br>BI $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}$ or $\frac{4 - 2x - y}{x + 2y - 5}$ o.e.A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | <i>x</i> = 1 | $+\sqrt{2}, 1-\sqrt{2}$ only           | A1     |
| $\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        |        |
| $x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0$ $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$ o.e. A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        | 10     |
| $x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0$ $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$ o.e. A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a)<br>Alt 1       | $\left\{ \underbrace{\underbrace{}}_{} \underbrace{}_{} \underbrace{}_{} _{} \underbrace{x} \\ 2x \underbrace{}_{} \underbrace{dx} \\ \frac{y}{} \underbrace{dx} \\ \frac{y}{} \underbrace{dx} \\ + x \\ \frac{y}{} \underbrace{x} \\ \frac{y}{} \underbrace{dx} \\ - 5 = \underbrace{0} \\ \underbrace{x} \\ \frac{y}{} \underbrace{dx} \\ \frac{y}{} \underbrace{x} \\ \frac{y}{\underbrace{x} \\\frac{y}{\underbrace{x} \\ \frac{y}{\underbrace{x} \\ \frac{y}{\underbrace{x} \\ \frac{y}{\underbrace{x} \\\frac{y}{\underbrace{x} \\\frac{y}$ |                                       |              |                                        |        |
| $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5} $ o.e. A1 cso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                                        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              | 0.e.                                   | A1 cso |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | ux  3 - x - 2y  x + 2y - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |              |                                        | [5]    |

Summer 2018wwwPast Paper (Mark Scheme)This resource was of

www.mystudybro.com This resource was created and owned by Pearson Edexcel

#### **Mathematics C4**

|               |            | Question 2 Notes                                                                                                                                                                                                                                         |
|---------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            |                                                                                                                                                                                                                                                          |
| 2 (a)         | M1         | Differentiates implicitly to include either $x \frac{dy}{dx}$ or $y^2 \rightarrow 2y \frac{dy}{dx}$ or $-5y \rightarrow -5 \frac{dy}{dx}$ .                                                                                                              |
| <b>2.</b> (a) | M1         | $\left(\text{Ignore } \frac{\mathrm{d}y}{\mathrm{d}x} = \dots\right)$                                                                                                                                                                                    |
|               | A1         | $x^{2} \rightarrow 2x$ and $y^{2} - 4x - 5y + 1 = 0 \rightarrow 2y \frac{dy}{dx} - 4 - 5 \frac{dy}{dx} = 0$                                                                                                                                              |
|               | <b>B</b> 1 | $xy \rightarrow y + x \frac{\mathrm{d}y}{\mathrm{d}x}$                                                                                                                                                                                                   |
|               | Note       | If an extra term appears then award 1 <sup>st</sup> A0                                                                                                                                                                                                   |
|               | Note       | $2x + y + x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 4 - 5\frac{\mathrm{d}y}{\mathrm{d}x} \rightarrow 2x + y - 4 = -x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y\frac{\mathrm{d}y}{\mathrm{d}x} + 5\frac{\mathrm{d}y}{\mathrm{d}x}$ |
|               | 13.64      | will get $1^{\text{st}} A1$ (implied) as the " = 0" can be implied the rearrangement of their equation.                                                                                                                                                  |
|               | dM1        | dependent on the previous M mark                                                                                                                                                                                                                         |
|               |            | An attempt to factorise out <b>all the terms in</b> $\frac{dy}{dx}$ as long as there are <b>at least two terms</b> in $\frac{dy}{dx}$ .                                                                                                                  |
|               | A1         | $\frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$                                                                                                                                                                                |
|               |            |                                                                                                                                                                                                                                                          |
|               | CSO        | If the candidate's solution is not completely correct, then do not give the final A mark                                                                                                                                                                 |
| (b)           | M1         | Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.                                                                                                                               |
|               | Note       | This mark can also be gained by setting $\frac{dy}{dr}$ equal to zero in their differentiated equation from (a)                                                                                                                                          |
|               | Note       | If the numerator involves one variable only then <i>only</i> the 1 <sup>st</sup> M1 mark is possible in part (b).                                                                                                                                        |
|               | dM1        | <b>dependent on the previous M mark</b><br>Substitutes their $x$ or their $y$ (from their numerator = 0) into the printed equation to give an equation in one variable only                                                                              |
|               | A1         | For obtaining the correct 3TQ. E.g.: either $3x^2 - 6x - 3 = 0$ or $-3x^2 + 6x + 3 = 0$                                                                                                                                                                  |
|               | Note       | This mark can also be awarded for a correct 3 term equation. E.g. either $3x^2 - 6x = 3$                                                                                                                                                                 |
|               |            | $x^{2} - 2x - 1 = 0$ or $x^{2} = 2x + 1$ are all fine for A1                                                                                                                                                                                             |
|               | ddM1       | dependent on the previous 2 M marks                                                                                                                                                                                                                      |
|               |            | See page 6: Method mark for solving THEIR 3-term quadratic in one variable<br>Quadratic Equation to solve: $3x^2 - 6x - 3 = 0$                                                                                                                           |
|               |            |                                                                                                                                                                                                                                                          |
|               |            | <u>Way 1:</u> $x = \frac{6 \pm \sqrt{(-6)^2 - 4(3)(-3)}}{2(3)}$                                                                                                                                                                                          |
|               |            | Way 2: $x^2 - 2x - 1 = 0 \Rightarrow (x - 1)^2 - 1 - 1 = 0 \Rightarrow x =$                                                                                                                                                                              |
|               |            | <b>Way 3:</b> Or writes down at least one <i>exact</i> correct <i>x</i> -root ( <i>or one correct x-root to 2 dp</i> ) from                                                                                                                              |
|               |            | <i>their</i> quadratic equation. This is usually found on their calculator.                                                                                                                                                                              |
|               |            | • ( <i>X</i> <sup>2</sup> + <i>bx</i> + <i>c</i> ) = ( <i>x</i> + <i>p</i> )( <i>x</i> + <i>q</i> ), where $ pq  =  c $ , leading to $x =$                                                                                                               |
|               |            | • $(x + bx + c) = (x + p)(x + q)$ , where $ pq  = c $ , reading to $x =$<br>• $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where $ pq  = c $ and $ mn  = a$ , leading to $x =$                                                                                 |
|               | Note       | If a candidate applies <i>the alternative method</i> then they also need to use their $x = \frac{4 - y}{2}$                                                                                                                                              |
|               |            | to find <b>at least one value</b> for x in order to gain the final M mark.                                                                                                                                                                               |
|               | A1         | Exact values of $x = 1 + \sqrt{2}$ , $1 - \sqrt{2}$ (or $1 \pm \sqrt{2}$ ), <b>cao</b> Apply isw if y-values are also found.                                                                                                                             |
|               | Note       | It is possible for a candidate who does not achieve full marks in part (a), (but has a correct                                                                                                                                                           |
|               |            | numerator for $\frac{dy}{dx}$ ) to gain all 5 marks in part (b)                                                                                                                                                                                          |

www.mystudybro.com This resource was created and owned by Pearson Edexcel

#### **Mathematics C4**

|                 |            | Question 2 Notes                                                                                                                                                                                                                                         |
|-----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. (a)<br>Alt 1 | M1         | Differentiates implicitly to include either $y \frac{dx}{dy}$ or $x^2 \rightarrow 2x \frac{dx}{dy}$ or $-4x \rightarrow -4 \frac{dx}{dy}$ . (Ignore $\frac{dx}{dy} =$ )                                                                                  |
|                 | A1         | $x^{2} \rightarrow 2x \frac{dx}{dy}$ and $y^{2} - 4x - 5y + 1 = 0 \rightarrow 2y - 4 \frac{dx}{dy} - 5 = 0$                                                                                                                                              |
|                 | <b>B</b> 1 | $xy \rightarrow y \frac{\mathrm{d}x}{\mathrm{d}y} + x$                                                                                                                                                                                                   |
|                 | Note       | If an extra term appears then award 1 <sup>st</sup> A0                                                                                                                                                                                                   |
|                 | Note       | $2x\frac{\mathrm{d}x}{\mathrm{d}y} + y\frac{\mathrm{d}x}{\mathrm{d}y} + x + 2y - 4\frac{\mathrm{d}x}{\mathrm{d}y} - 5 \rightarrow x + 2y - 5 = -2x\frac{\mathrm{d}x}{\mathrm{d}y} - y\frac{\mathrm{d}x}{\mathrm{d}y} + 4\frac{\mathrm{d}x}{\mathrm{d}y}$ |
|                 |            | will get $1^{st}$ A1 (implied) as the " = 0" can be implied the rearrangement of their equation.                                                                                                                                                         |
|                 | dM1        | dependent on the previous M mark                                                                                                                                                                                                                         |
|                 |            | An attempt to factorise out <b>all the terms in</b> $\frac{dx}{dy}$ as long as there are <b>at least two terms</b> in $\frac{dx}{dy}$                                                                                                                    |
|                 | A1         | $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}$                                                                                                                                                |
|                 | CSO        | If the candidate's solution is not completely correct, then do not give the final A mark                                                                                                                                                                 |
| (a)             | Note       | Writing down <i>from no working</i>                                                                                                                                                                                                                      |
|                 |            | • $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}$ scores M1 A1 B1 M1 A1                                                                                                                               |
|                 |            | • $\frac{dy}{dx} = \frac{4 - 2x - y}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{2x + y - 4}{x + 2y - 5}$ scores M1 A0 B1 M1 A0                                                                                                                               |
|                 | Note       | Writing $2xdx + ydx + xdy + 2ydy - 4dx - 5dy = 0$ scores M1 A1 B1                                                                                                                                                                                        |

#### **Summer 2018**

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Notes                                                                                                                                                                                                                   | Marks     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>3.</b> (i)      | $\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                                                                                                                                         |           |
| (a)                | B = 6, C = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | At least one of $B = 6$ or $C = 1$                                                                                                                                                                                      | B1        |
|                    | $13 - 4x \equiv A(2x+1)(x+3) + B(x+3) + C(2x+1)(x+3) + C(2x+1)(x+1)(x+3) + C(2x+1)(x+3) + C(2x+1)(x+$ | l) <sup>2</sup>       | Both $B = 6$ and $C = 1$<br>Writes down a correct identity                                                                                                                                                              | B1        |
|                    | $x = -3 \Rightarrow 25 = 25C \Rightarrow C = 1$ $x = -\frac{1}{2} \Rightarrow 13 - 2 = \frac{5}{2}B \Rightarrow 15 = 2.5B \Rightarrow B =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                     | and attempts to find the value of<br>either one of A or B or C                                                                                                                                                          | M1        |
|                    | Either $x^2: 0 = 2A + 4C$ , constant: $13 = 3A + 4C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                         | _         |
|                    | $x: -4 = 7A + B + 4C \text{ or } x = 0 \Longrightarrow 13 = 3A$<br>leading to $A = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +3B+C                 | Using a correct identity to find $A = -2$                                                                                                                                                                               | A1        |
|                    | $\int 13-4x$ $\int -2$ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     |                                                                                                                                                                                                                         | [4]       |
| (b)                | $\int \frac{13-4x}{(2x+1)^2(x+3)}  \mathrm{d}x = \int \frac{-2}{(2x+1)} + \frac{6}{(2x+1)^2}  \mathrm{d}x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+\frac{1}{(x+3)} dx$ | ;                                                                                                                                                                                                                       |           |
|                    | $=\frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \{+c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •1                    | See notes                                                                                                                                                                                                               | M1        |
|                    | 2 (1)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | <i>t least two</i> terms correctly integrated orrect answer, o.e. Simplified or un-                                                                                                                                     | A1ft      |
|                    | o.e.<br>$\left\{ = -\ln(2x+1) - 3(2x+1)^{-1} + \ln(x+3) \left\{ + c \right\} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | plified. The correct answer must be<br>stated on one line<br>Ignore the absence of $+c^2$                                                                                                                               | A1        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                         | [3]       |
| (ii)               | $\left\{ \left( e^{x} + 1 \right)^{3} = \right\} e^{3x} + 3e^{2x} + 3e^{x} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^{3x} + 3e^{2x}$    | $+3e^{x}+1$ , simplified or un-simplified                                                                                                                                                                               | B1        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | At least 3 examples (see notes)<br>of correct ft integration                                                                                                                                                            | M1        |
|                    | $\left\{ \int (e^x + 1)^3 dx \right\} = \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^x + x \left\{ + c \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | simpli                | $\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$<br>fied or un-simplified with or without + <i>c</i>                                                                                                               | A1        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                         | [3]       |
| (iii)              | $\int \frac{1}{4x + 5x^{\frac{1}{3}}}  \mathrm{d}x, \ x > 0; \ u^3 = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                                                                                         |           |
|                    | $3u^2\frac{\mathrm{d}u}{\mathrm{d}x}=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ${}^{2}\frac{\mathrm{d}u}{\mathrm{d}x} = 1 \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = 3u^{2} \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{3}x^{-\frac{2}{3}}$<br>or $3u^{2}\mathrm{d}u = \mathrm{d}x$ o.e. | B1        |
|                    | $= \int \frac{1}{4u^3 + 5u} . 3u^2  \mathrm{d}u  \left\{ = \int \frac{3u}{4u^2 + 5}  \mathrm{d}u \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | pression of the form $\int \frac{\pm ku^2}{4u^3 \pm 5u} \{ du \},$<br>k \ne 0<br>ot have to include integral sign or du                                                                                                 | M1        |
|                    | $=\frac{3}{8}\ln(4u^2+5)\{+c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Can be implied by later working<br><b>lependent on the previous M mark</b><br>$\pm \lambda \ln(4u^2 + 5); \lambda \text{ is a constant}; \lambda \neq 0$                                                                | dM1       |
|                    | $=\frac{3}{8}\ln\left(4x^{\frac{2}{3}}+5\right)\{+c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co                    | rrect answer in x with or without $+ c$                                                                                                                                                                                 | A1        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                         | [4]<br>14 |

|                   |                                                                                                                                                                                                                       | One                                                                                                                                           | estion 3 Notes                                                                                                                           |                   |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| <b>3.</b> (iii)   | Alterna                                                                                                                                                                                                               | tive method 1 for part (iii)                                                                                                                  |                                                                                                                                          |                   |  |  |  |
| Alt 1             |                                                                                                                                                                                                                       |                                                                                                                                               | Attempts to multiply numerator and denominator by $x^{-\frac{1}{3}}$                                                                     | M1                |  |  |  |
|                   | $\left\{\int \frac{1}{4x+1}\right\}$                                                                                                                                                                                  | $\frac{1}{5x^{\frac{1}{3}}} dx \bigg\} = \int \frac{x^{-\frac{1}{3}}}{4x^{\frac{2}{3}} + 5} dx$                                               | Expression of the form $\int \frac{\pm kx^{-\frac{1}{3}}}{4x^{\frac{2}{3}} \pm 5} dx, \ k \neq 0$ M1                                     |                   |  |  |  |
|                   |                                                                                                                                                                                                                       |                                                                                                                                               | Does not have to include integral sign or d <i>u</i><br>Can be implied by later working                                                  |                   |  |  |  |
|                   | $=\frac{3}{8}\ln\left(4x^{\frac{2}{3}}+5\right)\{+c\}$ $\frac{\pm\lambda\ln(4x^{\frac{2}{3}}+5); \ \lambda \text{ is a constant}; \ \lambda \neq 0 \ d}{\text{Correct answer in } x \text{ with or without } + c \ A$ |                                                                                                                                               |                                                                                                                                          |                   |  |  |  |
|                   | 0 (                                                                                                                                                                                                                   | )                                                                                                                                             | Correct answer in x with or without $+ c$                                                                                                | A1                |  |  |  |
| <b>3.</b> (i) (a) | M1<br>Note                                                                                                                                                                                                            |                                                                                                                                               | this can be implied) and attempts <i>to find the</i><br>can be achieved by <i>either</i> substituting values in<br>rking scores B1B1M1A1 |                   |  |  |  |
|                   | 11010                                                                                                                                                                                                                 | _                                                                                                                                             |                                                                                                                                          |                   |  |  |  |
| (i) (b)           | M1                                                                                                                                                                                                                    | At least 2 of either $\pm \frac{1}{(2x+1)} \rightarrow \pm D \ln D$<br>or<br>$\pm \frac{R}{(x+3)} \rightarrow \pm F \ln(x+3)$ for their const | $h(2x+1) \text{ or } \pm D\ln(x+\frac{1}{2}) \text{ or } \pm \frac{Q}{(2x+1)^2} \to \pm R$<br>stants $P, Q, R$ .                         | $E(2x+1)^{-1}$    |  |  |  |
|                   | A1ft                                                                                                                                                                                                                  | At least two terms from any of $\pm \frac{P}{(2x+1)}$ or $\pm \frac{Q}{(2x+1)^2}$ or $\pm \frac{R}{(x+3)}$ correctly integrated.              |                                                                                                                                          |                   |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Can be un-simplified for the A1ft mark.                                                                                                       |                                                                                                                                          |                   |  |  |  |
|                   | A1 Correct answer of $\frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \{+c\}$ simplified or un-sin                                                                                                  |                                                                                                                                               |                                                                                                                                          |                   |  |  |  |
|                   |                                                                                                                                                                                                                       | with or without '+ $c$ '.                                                                                                                     |                                                                                                                                          |                   |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Allow final A1 for equivalent answers,<br>$\ln\left(\frac{2x+6}{2x+1}\right) - \frac{3}{2x+1} \{+c\}$                                         | , e.g. $\ln\left(\frac{x+3}{2x+1}\right) - \frac{3}{2x+1} \{+c\}$ or                                                                     |                   |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Beware that $\int \frac{-2}{(2x+1)} dx = \int \frac{-1}{(x+\frac{1}{2})}$                                                                     | $dx = -\ln(x + \frac{1}{2}) \{+c\}$ is correct integration                                                                               |                   |  |  |  |
|                   | Note                                                                                                                                                                                                                  | E.g. Allow M1 A1ft A1 for a correct un                                                                                                        | n-simplified $\ln(x+3) - \ln(x+\frac{1}{2}) - \frac{3}{2}(x+\frac{1}{2})^{-1} \{+$                                                       | <i>c</i> }        |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Condone 1st A1ft for poor bracketing, b                                                                                                       | ut do not allow poor bracketing for the final A1                                                                                         |                   |  |  |  |
|                   |                                                                                                                                                                                                                       | E.g. Give final A0 for $-\ln 2x + 1 - 3(2x)$                                                                                                  | $(x+1)^{-1} + \ln x + 3 \{+c\}$ unless recovered                                                                                         |                   |  |  |  |
| (ii)              | Note                                                                                                                                                                                                                  | Give B1 for an un-simplified $e^{3x} + 2e^{2x}$                                                                                               |                                                                                                                                          |                   |  |  |  |
|                   | M1                                                                                                                                                                                                                    | At least 3 of either $ae^{3x} \rightarrow \frac{a}{2}e^{3x}$ or be                                                                            | $e^{2x} \rightarrow \frac{b}{2}e^{2x}$ or $de^x \rightarrow de^x$ or $\mu \rightarrow \mu x; \alpha, \beta, \delta$                      | $\xi, \mu \neq 0$ |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Give A1 for an un-simplified $\frac{1}{3}e^{3x} + e^{2x}$                                                                                     | $\frac{2}{x^{x} + \frac{1}{2}e^{2x} + 2e^{x} + e^{x} + x}$ , with or without $+c$                                                        |                   |  |  |  |
| (iii)             | Note                                                                                                                                                                                                                  | 1 <sup>st</sup> M1 can be implied by $\int \frac{\pm \kappa u}{4u^2 \pm 5} \{du\}$                                                            | }, $k \neq 0$ . Does not have to include integral sign                                                                                   | or d <i>u</i>     |  |  |  |
|                   | Note                                                                                                                                                                                                                  | Condone 1 <sup>st</sup> M1 for expressions of the form $\int \left(\frac{\pm 1}{4u^3 \pm 5u}, \frac{\pm k}{u^{-2}}\right) \{du\}, k \neq 0$   |                                                                                                                                          |                   |  |  |  |
|                   | Note                                                                                                                                                                                                                  |                                                                                                                                               | <i>i</i> 's not cancelled) unless recovered in later work                                                                                | ting              |  |  |  |
|                   | Note                                                                                                                                                                                                                  |                                                                                                                                               | g to $\frac{3}{4}u\ln(4u^2+5)$ as this is not in the form                                                                                |                   |  |  |  |
|                   |                                                                                                                                                                                                                       | $\pm\lambda\ln(4u^2+5)$                                                                                                                       |                                                                                                                                          |                   |  |  |  |

| Note | Condone 2 <sup>nd</sup> M1 for poor bracketing, but do not allow poor bracketing for the final A1 |
|------|---------------------------------------------------------------------------------------------------|
|      | E.g. Give final A0 for $\frac{3}{8} \ln 4x^{\frac{2}{3}} + 5$ {+ <i>c</i> } unless recovered      |

| <b>3.</b> (ii)<br><b>Alt 1</b> $\int (e^x + 1)^3 dx;  u = e^x + 1 \implies \frac{du}{dx} = e^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Alt 1 $\int (c + 1) dx$ , $u + c + 1 \rightarrow dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| $\left\{ = \int \frac{u^3}{(u-1)} du = \right\} \int \left( u^2 + u + 1 + \frac{1}{u-1} \right) du \qquad \int \left( u^2 + u + 1 + \frac{1}{u-1} \right) \{ du \} \text{ where } u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= e^x + 1$ B1  |
| $=\frac{1}{3}u^{3} + \frac{1}{2}u^{2} + u + \ln(u-1) \{+c\}$ At least 3 of either $\alpha u^{2} \rightarrow \frac{\alpha}{3}u^{3}$ or $\beta u$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u-1} \rightarrow \lambda \ln(u-1); \alpha, \beta, \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - M1            |
| $=\frac{1}{3}(e^{x}+1)^{3}+\frac{1}{2}(e^{x}+1)^{2}+(e^{x}+1)+\ln(e^{x}+1-1)\{+c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| $\frac{1}{3}(e^x+1)^3 + \frac{1}{2}(e^x+1)^2 + (e^x)^3 + \frac{1}{2}(e^x+1)^2 + (e^x)^3 + \frac{1}{2}(e^x+1)^2 + (e^x)^3 + \frac{1}{2}(e^x+1)^3 + $ | (+1) + x        |
| $= \frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + (e^{x}+1) + x \{+c\}$ or $\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + \frac{1}{2}(e^{x}+1)^$                                                                       | A1              |
| <b>Note:</b> $\ln(e^x + 1 - 1)$ = be simplified to x for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [3]             |
| 3. (ii)<br>Alt 2 $\int (e^x + 1)^3 dx;  u = e^x \implies \frac{du}{dx} = e^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| $\left\{ = \int \frac{(u+1)^3}{u} du = \right\} \int \left( u^2 + 3u + 3 + \frac{1}{u} \right) du \qquad \int \left( u^2 + 3u + 3 + \frac{1}{u} \right) \{ du \} \text{ where}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $u = e^x$ B1    |
| $=\frac{1}{3}u^{3} + \frac{3}{2}u^{2} + 3u + \ln u \{+c\}$ At least 3 of either $\alpha u^{2} \rightarrow \frac{\alpha}{3}u^{3}$ or $\beta u$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u} \rightarrow \lambda \ln u; \alpha, \beta, \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>2</sup> M1 |
| $=\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x \{+c\}$ simplified or un-simplified with or with <b>Note:</b> ln(e <sup>x</sup> ) needs to be simplified to x for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | put + $c$ A1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [3]             |

## Summer 2018www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

|                    | Mark Scheme) This resource was created and owned by rearson Edexcer                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                                                                                                  |               |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Notes                                                                                                                                                                                            | Marks         |  |
| <b>4.</b> (a)      | $\frac{r}{h} = \tan 30 \Rightarrow r = h \tan 30 \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} h \right\}$ or $\frac{h}{r} = \tan 60 \Rightarrow r = \frac{h}{\tan 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} h \right\}$ Correct use of trigonometry to find r in terms of h or correct use of Pythagoras to find r <sup>2</sup> in terms of h <sup>2</sup> or $h^{2} + r^{2} = (2r)^{2} \Rightarrow r^{2} = \frac{1}{3}h^{2}$ |       |                                                                                                                                                                                                  |               |  |
|                    | $\left\{ V = \frac{1}{3}\pi r^2 h \Longrightarrow \right\} V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Longrightarrow V = \frac{1}{9}\pi h^3 *$                                                                                                                                                                                                                                                                                                                                            | Or sł | broof of $V = \frac{1}{9}\pi h^3$ or $V = \frac{1}{9}h^3\pi$<br>hows $\frac{1}{9}\pi h^3$ or $\frac{1}{9}h^3\pi$ with some<br>efference to $V =$ in their solution                               | A1 *          |  |
| (b)                | dV _ 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                  | [4]           |  |
| Way 1              | $\frac{\mathrm{d}V}{\mathrm{d}t} = 200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                  |               |  |
|                    | $\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{3}\pi h^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | $\frac{1}{3}\pi h^2$ o.e.                                                                                                                                                                        | B1            |  |
|                    | Either<br>• $\left\{ \frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \right\} \left( \frac{1}{3} \pi h^2 \right) \frac{dh}{dt} = 200$<br>• $\left\{ \frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} \Rightarrow \right\} \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3} \pi h^2}$                                                                                                                                                                                                     |       | either $\left( \text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 200$<br>or $200 \div \left( \text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right)$ | M1            |  |
|                    | When<br>$h = 15,  \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2}  \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$                                                                                                                                                                                                                                                                                                                                                                |       | dependent on the previous M<br>mark                                                                                                                                                              | dM1           |  |
|                    | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cms}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                |       | $\frac{8}{3\rho}$                                                                                                                                                                                | A1 <b>cao</b> |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                                                                                                                                                  | [4]<br>6      |  |
| (b)<br>Way 2       | $\frac{\mathrm{d}V}{\mathrm{d}t} = 200 \implies V = 200t + c \implies \frac{1}{9}\pi h^3 = 200t + c$                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                                                                                                                  |               |  |
|                    | $\left(\frac{1}{3}\pi h^2\right)\frac{\mathrm{d}h}{\mathrm{d}t} = 200$                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | $\frac{1}{3}\pi h^2$ o.e.                                                                                                                                                                        | B1            |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | as in Way 1                                                                                                                                                                                      | M1            |  |
|                    | When<br>$h = 15,  \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2}  \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$                                                                                                                                                                                                                                                                                                                                                                |       | dependent on the previous M<br>mark                                                                                                                                                              | dM1           |  |
|                    | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cms}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                |       | $\frac{8}{3\rho}$                                                                                                                                                                                | A1 cao        |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                                                                                                                                                  | [4]           |  |

#### Summer 2018

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

|               |                                                                                                                                                                          | Question 4 Notes                                                                                                                                                                          |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>4.</b> (a) | Note                                                                                                                                                                     | Allow M1 for writing down $r = h \tan 30$                                                                                                                                                 |  |
|               | Note                                                                                                                                                                     | Give M0 A0 for writing down $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$ with no evidence of using trigonometry                                                                  |  |
|               |                                                                                                                                                                          | on <i>r</i> and <i>h</i> or Pythagoras on <i>r</i> and <i>h</i>                                                                                                                           |  |
|               | Note                                                                                                                                                                     | Give M0 (unless recovered) for evidence of $\frac{1}{3}\pi r^2 h = \frac{1}{9}\pi h^3$ leading to either $r^2 = \frac{1}{3}h^2$                                                           |  |
|               |                                                                                                                                                                          | or $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$                                                                                                                                  |  |
|               |                                                                                                                                                                          |                                                                                                                                                                                           |  |
| (b)           | B1                                                                                                                                                                       | Correct simplified or un-simplified differentiation of V. E.g. $\frac{1}{3}\pi h^2$ or $\frac{3}{9}\pi h^2$                                                                               |  |
|               | Note                                                                                                                                                                     | $\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating their V                                                                       |  |
|               | M1                                                                                                                                                                       | $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 200 \text{ or } 200 \div \left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right)$ |  |
|               | dM1                                                                                                                                                                      | dependent on the previous M mark                                                                                                                                                          |  |
|               |                                                                                                                                                                          | Substitutes $h = 15$ into an expression which is a result                                                                                                                                 |  |
|               | of either $200 \div \left( \text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right)$ or $200 \times \frac{1}{\left( \text{their } \frac{\mathrm{d}V}{\mathrm{d}h} \right)}$ |                                                                                                                                                                                           |  |
|               | A1                                                                                                                                                                       | $\frac{8}{3\rho}$ (units are not required)                                                                                                                                                |  |
|               | Note                                                                                                                                                                     | Give final A0 for using $\frac{dV}{dt} = -200$ to give $\frac{dh}{dt} = -\frac{8}{3\pi}$ , unless recovered to $\frac{dh}{dt} = \frac{8}{3\pi}$                                           |  |

## Summer 2018www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

| Question      |                                                                                                                                                                                       | Scheme                                                                                                                                                                   |                                                 |                                                                         |                                                                          | Notes                                                                                                                      | Marks         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|
| Number        | r = 1 + t                                                                                                                                                                             | $-5\sin t, \ y = 2 - 4\cos t, \ -\pi \leqslant t \leqslant \pi$                                                                                                          | $\cdot A(k, 2)$                                 | k > 0 lies of                                                           | n (                                                                      | 110005                                                                                                                     | 10141110      |
| 5.            |                                                                                                                                                                                       |                                                                                                                                                                          | , A(k, 2), I                                    | x > 0, lies 0                                                           |                                                                          |                                                                                                                            |               |
| (a)           | {When $y = 2$ , $2 = 2 - 4\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$<br>$k (\text{or } x) = 1 + \frac{\pi}{2} - 5\sin\left(\frac{\pi}{2}\right)$ or $k (\text{or } x) = 1$ |                                                                                                                                                                          | and some e                                      |                                                                         | s $y=2$ to find t<br>vidence of using<br>in t to find $x=$               | M1                                                                                                                         |               |
|               | $\left\{ \text{When } t \right.$                                                                                                                                                      | $= -\frac{\pi}{2}, k > 0, $ so $k = 6 - \frac{\pi}{2}$ or $\frac{12}{2}$                                                                                                 | $\frac{2-\pi}{2}$                               |                                                                         | k (or $x$ ) = $0$                                                        | $6 - \frac{\pi}{2}$ or $\frac{12 - \pi}{2}$                                                                                | A1            |
|               |                                                                                                                                                                                       |                                                                                                                                                                          | I                                               |                                                                         |                                                                          |                                                                                                                            | [2]           |
| (b)           | $\frac{\mathrm{d}x}{\mathrm{d}x} = 1$                                                                                                                                                 | $-5\cos t$ , $\frac{\mathrm{d}y}{\mathrm{d}t} = 4\sin t$                                                                                                                 | At least o                                      | ne of $\frac{\mathrm{d}x}{\mathrm{d}t}$ or                              | $r \frac{dy}{dt}$ correct (                                              | (Can be implied)                                                                                                           | B1            |
| (0)           | $\frac{1}{\mathrm{d}t} = 1$                                                                                                                                                           | $-3\cos t$ , $\frac{1}{\mathrm{d}t} = 4\sin t$                                                                                                                           | Both                                            | $\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}t}$ | are correct (                                                            | (Can be implied)                                                                                                           | <b>B</b> 1    |
|               | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{1-x}$                                                                                                                                     |                                                                                                                                                                          | A                                               |                                                                         | <i>ui</i>                                                                | I by their $\frac{dx}{dt}$ and                                                                                             |               |
|               | at $t = -\frac{\pi}{2}$                                                                                                                                                               | $\frac{dy}{dx} = \frac{4\sin\left(-\frac{\pi}{2}\right)}{1 - 5\cos\left(-\frac{\pi}{2}\right)} \ \{=-4\}$                                                                |                                                 |                                                                         |                                                                          | For t into their $\frac{dy}{dx}$<br>side $-\pi \le t \le \pi$<br>for this mark                                             | M1            |
|               |                                                                                                                                                                                       | $-4\left(x - \left(6 - \frac{\pi}{2}\right)\right)$<br>$-4\left(6 - \frac{\pi}{2}\right) + c \implies y = -4x + 2 + 2$                                                   | $4\left(6-\frac{\pi}{2}\right)$                 | ar $m_T (\neq$                                                          | the equation of<br>$(m_N)$ is four<br><b>Note:</b> the<br>be in terms of | t line method for<br>a tangent where<br>ad using calculus<br>heir k (or x) must<br>of $\pi$ and correct<br>used or implied | M1            |
|               | { <i>y</i> -2=                                                                                                                                                                        | $-4x+24-2\pi \Longrightarrow$ } $y = -4x+26$                                                                                                                             | $-2\pi$                                         |                                                                         | dependent<br>m                                                           | t on all previous<br>arks in part (b)<br>$= -4x + 26 - 2\pi$                                                               | A1 <b>cso</b> |
|               |                                                                                                                                                                                       |                                                                                                                                                                          | $(p = -4, q = 26 - 2\pi)$                       |                                                                         | [5]                                                                      |                                                                                                                            |               |
|               |                                                                                                                                                                                       |                                                                                                                                                                          |                                                 |                                                                         |                                                                          |                                                                                                                            | 7             |
|               |                                                                                                                                                                                       |                                                                                                                                                                          | Question 5                                      |                                                                         |                                                                          |                                                                                                                            |               |
| <b>5.</b> (a) | Note                                                                                                                                                                                  | M1 can be implied by either $x$ or                                                                                                                                       | -                                               |                                                                         |                                                                          | -                                                                                                                          | 2.43          |
|               | Note<br>Note                                                                                                                                                                          | An answer of 4.429 without re<br>M1 can be earned in part (a) by w                                                                                                       |                                                 |                                                                         | act answer is                                                            | s A0                                                                                                                       |               |
|               |                                                                                                                                                                                       |                                                                                                                                                                          | Ŭ                                               | Ŭ                                                                       | -2 1 cost                                                                | $\pi \rightarrow k - \pi$                                                                                                  | π             |
|               | Note                                                                                                                                                                                  | Give M0 for not substituting their                                                                                                                                       |                                                 |                                                                         |                                                                          |                                                                                                                            | 2             |
|               | Note                                                                                                                                                                                  | If two values for <i>k</i> are found, they must identify the correct answer for A1                                                                                       |                                                 |                                                                         |                                                                          |                                                                                                                            |               |
|               | Note                                                                                                                                                                                  | Condone M1 for $2 = 2 - 4\cos t =$                                                                                                                                       | $\Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ | $\frac{\pi}{2} \Rightarrow x = 1 - \frac{\pi}{2}$                       | $-\frac{\pi}{2}-5\sin\left(\frac{\pi}{2}\right)$                         | $\left(\frac{1}{2}\right)$                                                                                                 |               |
| (b)           | Note                                                                                                                                                                                  | The 1 <sup>st</sup> M mark may be implied b                                                                                                                              | by their valu                                   | the for $\frac{dy}{dx}$                                                 |                                                                          |                                                                                                                            |               |
|               |                                                                                                                                                                                       | e.g. $\frac{dy}{dx} = \frac{4\sin t}{1-5\cos t}$ , followed by an answer of $-4$ (from $t = -\frac{\pi}{2}$ ) or 4 (from $t = \frac{\pi}{2}$ )                           |                                                 |                                                                         |                                                                          |                                                                                                                            |               |
|               | Note                                                                                                                                                                                  | Give 1 <sup>st</sup> M0 for <b>applying</b> their $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ |                                                 |                                                                         |                                                                          | $\frac{x}{t}$                                                                                                              |               |
|               | $2^{nd} M1  \bullet \text{ applies } y-2 = (\text{their } m_T)(x-(\text{their } k)),$                                                                                                 |                                                                                                                                                                          |                                                 |                                                                         |                                                                          |                                                                                                                            |               |
|               |                                                                                                                                                                                       | • applies $2 = (\text{their } m_T)(\text{their } k$                                                                                                                      | (k) + c lead                                    | ing to $y = 0$                                                          | (their $m_T$ )x -                                                        | + (their $c$ )                                                                                                             |               |
|               |                                                                                                                                                                                       | where k must be in terms of $\pi$ and                                                                                                                                    |                                                 |                                                                         |                                                                          |                                                                                                                            |               |
|               | Note                                                                                                                                                                                  | Correct bracketing must be used                                                                                                                                          | for 2 <sup>nd</sup> M1,                         | but this ma                                                             | rk can be im                                                             | plied by later wor                                                                                                         | king          |

www.mystudybro.com This resource was created and owned by Pearson Edexcel

| 6666 |  |
|------|--|

|               |                                                                                      | Question 5 Notes Continued                                                                                |  |  |
|---------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| <b>5.</b> (b) | ) Note The final A mark is dependent on all previous marks in part (b) being scored. |                                                                                                           |  |  |
|               |                                                                                      | This is because the correct answer can follow from an incorrect $\frac{dy}{dx}$                           |  |  |
|               | Note                                                                                 | The first 3 marks can be gained by using degrees in part (b)                                              |  |  |
|               | Note                                                                                 | Condone mixing a correct $t$ with an incorrect $x$ or an incorrect $t$ with a correct $x$ for the M marks |  |  |
|               | <b>Note</b> Allow final A1 for any answer in the form $y = px + q$                   |                                                                                                           |  |  |
|               |                                                                                      | E.g. Allow final A1 for $y = -4x + 26 - 2\pi$ , $y = -4x + 2 + 4\left(6 - \frac{\pi}{2}\right)$ or        |  |  |
|               | $y = -4x + \left(\frac{52 - 4\pi}{2}\right)$                                         |                                                                                                           |  |  |
|               | Note                                                                                 | Do not apply isw in part (b). So, an incorrect answer following from a correct answer is A0               |  |  |
|               | Note                                                                                 | Do not allow $y = 2(-2x+13-\pi)$ for A1                                                                   |  |  |
|               | Note                                                                                 | $y = -4x + 26 - 2\pi$ followed by $y = 2(-2x + 13 - \pi)$ is condoned for final A1                        |  |  |

| Question<br>Number |                                                  | Scheme                                                                                                                                        | Notes                                                                                                              | Marks    |  |
|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|--|
| 6.                 | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{30}$ | $\frac{y^2}{\cos^2 2x}$ ; $-\frac{1}{2} < x < \frac{1}{2}$ ; $y = 2$ at $x = -\frac{\pi}{8}$                                                  |                                                                                                                    |          |  |
|                    | •                                                | $-dy = \int \frac{1}{3\cos^2 2x}  dx$                                                                                                         | Separates variables as shown<br>Can be implied by<br>a correct attempt at integration<br>Ignore the integral signs | B1       |  |
|                    | $\int \frac{1}{y^2}$                             | $\mathrm{d}y = \int \frac{1}{3} \sec^2 2x  \mathrm{d}x$                                                                                       |                                                                                                                    |          |  |
|                    |                                                  | $1  1(\tan 2r)$                                                                                                                               | $\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$                                                             | M1       |  |
|                    |                                                  | $-\frac{1}{y} = \frac{1}{3} \left( \frac{\tan 2x}{2} \right) \{+c\}$                                                                          | $\pm \lambda \tan 2x$                                                                                              | M1       |  |
|                    |                                                  | · · · ·                                                                                                                                       | $-\frac{1}{y} = \frac{1}{3} \left( \frac{\tan 2x}{2} \right)$                                                      | A1       |  |
|                    |                                                  | $1 \ 1 \ (.(\pi))$                                                                                                                            | Use of $x = -\frac{\pi}{8}$ and $y = 2$ in an                                                                      |          |  |
|                    |                                                  | $-\frac{1}{2} = \frac{1}{6} \tan\left(2\left(-\frac{\pi}{8}\right)\right) + c$                                                                | integrated equation <i>containing a</i><br><i>constant of integration</i> , e.g. <i>c</i>                          | M1       |  |
|                    | -                                                | $-\frac{1}{2} = -\frac{1}{6} + c \Rightarrow c = -\frac{1}{3}$<br>$-\frac{1}{y} = \frac{1}{6} \tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$ |                                                                                                                    |          |  |
|                    | -                                                | $-\frac{1}{y} = \frac{1}{6}\tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$                                                                    |                                                                                                                    |          |  |
|                    | <i>y</i> =                                       | $\frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{ or } y = \frac{6}{2 - \tan 2x} \text{ or } y = \frac{6\cot 2x}{-1 + 2\cot 2x}$            | $\frac{2x}{\operatorname{ot} 2x}  \left\{-\frac{1}{2} < x < \frac{1}{2}\right\}$                                   | A1 o.e.  |  |
|                    |                                                  |                                                                                                                                               |                                                                                                                    | [6]<br>6 |  |
|                    |                                                  | Question 6 N                                                                                                                                  | Notes                                                                                                              | U        |  |
| 6.                 | B1                                               | Separates variables as shown. $dy$ and $dx$ shoul                                                                                             | d be in the correct positions, though thi                                                                          | s mark   |  |
|                    |                                                  | can<br>be implied by later working. Ignore the integral<br>side.                                                                              | l signs. The number "3" may appear on                                                                              | either   |  |
|                    |                                                  | E.g. $\int \frac{1}{y^2} dy = \int \frac{1}{3} \sec^2 2x  dx$ or $\int \frac{3}{y^2} dy = \int \frac{1}{y^2} dy$                              | $\frac{1}{\cos^2 2x}$ dx are fine for B1                                                                           |          |  |
|                    | Note                                             | Allow e.g. $\int \frac{1}{y^2} \frac{dy}{dx} dx = \int \frac{1}{3} \sec^2 2x  dx \text{ for B1} dx$                                           |                                                                                                                    |          |  |
|                    | Note                                             | B1 can be implied by correct integration of both                                                                                              | n sides                                                                                                            |          |  |
|                    | M1                                               | $\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$                                                                                        |                                                                                                                    |          |  |
|                    | M1                                               | $\frac{1}{\cos^2 2x} \text{ or } \sec^2 2x \to \pm \lambda \tan 2x; \lambda \neq 0$                                                           |                                                                                                                    |          |  |
|                    | A1                                               | $-\frac{1}{y} = \frac{1}{3} \left( \frac{\tan 2x}{2} \right)$ with or without '+ c'. E.g                                                      | $-\frac{6}{y} = \tan 2x$                                                                                           |          |  |
|                    | M1                                               | Evidence of using both $x = -\frac{\pi}{8}$ and $y = 2$ in an                                                                                 | integrated or changed equation contain                                                                             | ing c    |  |
|                    | Note<br>Note                                     | This mark can be implied by the correct value o<br>You may need to use your calculator to check th                                            | f c                                                                                                                |          |  |
|                    | Note                                             | Condone using $x = \frac{\pi}{8}$ instead of $x = -\frac{\pi}{8}$                                                                             |                                                                                                                    |          |  |
|                    | A1                                               | $y = \frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{ or } y = \frac{6}{2 - \tan 2x} \text{ or any equ}$                                    |                                                                                                                    | = f(x)   |  |
|                    | Note                                             | You can ignore subsequent working, which foll                                                                                                 |                                                                                                                    |          |  |

|    |      | Question 6 Notes Continued                                                                                                                                              |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. | Note | Writing $\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x} \implies \frac{dy}{dx} = \frac{1}{3}y^2 \sec^2 2x$ leading to e.g.                                                      |
|    |      | • $y = \frac{1}{9} y^3 \left(\frac{1}{2} \tan 2x\right)$ gets $2^{nd}$ M0 for $\pm \lambda \tan 2x$                                                                     |
|    |      | • $u = \frac{1}{3}y^2$ , $\frac{dv}{dx} = \sec^2 2x \Longrightarrow \frac{du}{dx} = \frac{2}{3}y$ , $v = \frac{1}{2}\tan 2x$ gets $2^{nd}$ M0 for $\pm \lambda \tan 2x$ |
|    |      | because the variables have not been separated                                                                                                                           |

www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C4** 

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                  | Marks     |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 7.                 | $\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \ \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \ \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \ \overrightarrow{OQ} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} +4\mu \\ -6\mu \\ +2\mu \end{array} \text{ or } \overrightarrow{OQ} = \begin{pmatrix} 9+2\mu \\ 1-3\mu \\ 8+\mu \end{array} \right)  \text{Let } \theta = \text{ size of angle} \\ PAB. A, B \text{ lie on } l_1 \\ \text{ and } P \text{ lies on } l_2 \end{array} $                                                                                                               |           |  |
| (a)                | $\left\{\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \Longrightarrow\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attempts to add $\overrightarrow{OA}$ to $\overrightarrow{AB}$                                                                                                                                                                                                                                                                                                                                         | M1        |  |
|                    | $\overrightarrow{OB} = \begin{pmatrix} -3\\7\\2 \end{pmatrix} + \begin{pmatrix} 4\\-6\\2 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \Longrightarrow B(1,1,4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1, 1, 4) or $\begin{pmatrix} 1\\1\\4 \end{pmatrix}$ or $\mathbf{i} + \mathbf{j} + 4\mathbf{k}$                                                                                                                                                                                                                                                                                                        | A1        |  |
|                    | × *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tt least 2 correct components for <i>B</i>                                                                                                                                                                                                                                                                                                                                                             | [2]       |  |
| (b)                | $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= \begin{pmatrix} -12 \\ 6 \\ -6 \end{pmatrix}$ An attempt to find $\overrightarrow{AP}$ or $\overrightarrow{PA}$                                                                                                                                                                                                                                                                                     | M1        |  |
|                    | $\left\{\cos\theta = \frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{ \overrightarrow{AP}    \overrightarrow{AB} }\right\} = \frac{\begin{pmatrix} 12\\ -6\\ 6 \end{pmatrix}}{\sqrt{(12)^2 + (-6)^2 + (6)^2}},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 4\\ -6\\ 2 \end{array} \\ \hline \sqrt{(4)^2 + (-6)^2 + (2)^2} \end{array} \qquad \begin{array}{c} \text{Applies dot product} \\ \text{formula between their} \\ \left( \overrightarrow{AP} \text{ or } \overrightarrow{PA} \right) \\ \text{and} \left( \overrightarrow{AB} \text{ or } \overrightarrow{BA} \right) \text{ or a} \\ \text{multiple of these vectors} \end{array} $ | dM1       |  |
|                    | $\left\{\cos\theta = \frac{96}{\sqrt{216}.\sqrt{56}} \Rightarrow \cos\theta\right\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$                                                                                                                                                                                                                                                                                                                                                       |           |  |
|                    | $\begin{pmatrix} & 4 \end{pmatrix}$ $\sqrt{21.16}$ $\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A correct method for converting an exact                                                                                                                                                                                                                                                                                                                                                               | [3]       |  |
| (c)                | $\left\{\cos\theta = \frac{4}{\sqrt{21}}\right\} \Longrightarrow \sin\theta = \frac{\sqrt{21-16}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}} = \frac{\sqrt{5}$ | $\frac{105}{21}$ value for $\cos q$ to an exact value for $\sin q$                                                                                                                                                                                                                                                                                                                                     | M1        |  |
|                    | Area $PAB = \frac{1}{2} \left( \sqrt{216} \right) \left( \sqrt{56} \right) \left( \frac{\sqrt{5}}{\sqrt{21}} \right) = 12\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\overline{11}\left(\frac{\sqrt{5}}{\sqrt{5}}\right) = 12\sqrt{5}$ see notes                                                                                                                                                                                                                                                                                                                           | M1        |  |
|                    | $\operatorname{Alca} TAB = \frac{2}{2} \left( \sqrt{210} \right) \left( \sqrt{21} \right) \left( -\frac{12}{\sqrt{21}} \right) \int_{-\frac{12}{\sqrt{21}}}^{-\frac{12}{\sqrt{21}}} \left( \sqrt{21} \right) \int_{-\frac{12}{\sqrt{21}}}^{-\frac{12}{\sqrt{21}}} \frac{12\sqrt{5}}{12\sqrt{5}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |
| (d)                | $\{l_2:\} \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1\\1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{p} + \lambda \mathbf{d} \text{ or } \mathbf{p} + \mu \mathbf{d}, \mathbf{p} \neq 0, \mathbf{d} \neq 0 \text{ with}$<br>either $\mathbf{p} = 9\mathbf{i} + \mathbf{j} + 8\mathbf{k}$ or $\mathbf{d} = 4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$<br>or $\mathbf{d} = $ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$                                                                      | [3]<br>M1 |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Correct vector equation                                                                                                                                                                                                                                                                                                                                                                                | A1        |  |
| (e)                | $\overrightarrow{BQ} = \begin{pmatrix} 9+4\mu\\ 1-6\mu\\ 8+2\mu \end{pmatrix} - \begin{pmatrix} 1\\ 1\\ 4 \end{pmatrix} \begin{cases} = \begin{pmatrix} 8+4\mu\\ -6\mu\\ 4+2\mu \end{pmatrix} \end{cases}  \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\ 1\\ 1\\ 4 \end{pmatrix} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= \begin{pmatrix} -8 - 4\mu \\ 6\mu \\ -4 - 2\mu \end{pmatrix} $ Applies their $\overrightarrow{OQ}$ – their $\overrightarrow{OB}$<br>or their $\overrightarrow{OB}$ – their $\overrightarrow{OQ}$                                                                                                                                                                                                    | [2]<br>M1 |  |
|                    | $\overrightarrow{BQ} \cdot \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8+4\mu \\ -6\mu \\ 4+2\mu \end{pmatrix} \cdot \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applies $\overrightarrow{BQ} \cdot \overrightarrow{AP} = 0$ , o.e. and <i>solves</i> the resulting equation to find a value for $\mu$                                                                                                                                                                                                                                                                  | dM1       |  |
|                    | $\Rightarrow 96 + 48\mu + 36\mu + 24 + 12\mu = 0 \Rightarrow 96\mu + 12\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mu = 0 \implies \mu = -\frac{5}{4}$ $\mu = -\frac{120}{96} \text{ or } \mu = -\frac{5}{4}$                                                                                                                                                                                                                                                                                                           | A1 o.e.   |  |
|                    | $\overrightarrow{OQ} = \begin{pmatrix} 9+4(-1.25)\\ 1-6(-1.25)\\ 8+2(-1.25) \end{pmatrix} = \begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$ Substitutes their value of $\mu$ into $\overrightarrow{OQ}$ $(4, 8.5, 5.5) \text{ or } \begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \text{ or } 4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        | [5]       |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        | 15        |  |

#### **Summer 2018**

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

**Mathematics C4** 

| Question     | Scheme                                                                                                                                                                                                                                                                                              | 1                                                                                                                                            | Notes                                                                                                                                                                                           | Marks   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Number       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                 | IVIAIKS |
| 7.           | $\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \ \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \ \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \ \overrightarrow{OQ} = \begin{pmatrix} 9+1\\1-8\\8+1 \end{pmatrix}$                                  | $ \begin{pmatrix} 4\mu\\ 6\mu\\ 2\mu \end{pmatrix} \text{ or } \overrightarrow{OQ} = \begin{pmatrix} 9+2\mu\\ 1-3\mu\\ 8+\mu \end{pmatrix} $ | $\begin{pmatrix} l \\ l $                                                                                                                               |         |
| (e)<br>Alt 1 | $\overrightarrow{BQ} = \begin{pmatrix} 9+2\mu\\ 1-3\mu\\ 8+\mu \end{pmatrix} - \begin{pmatrix} 1\\ 1\\ 4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+2\mu\\ -3\mu\\ 4+\mu \end{pmatrix} \right\}  \left\{ \overrightarrow{QB} = \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $ | : ))                                                                                                                                         | plies their $\overrightarrow{OQ}$ – their $\overrightarrow{OB}$<br>or their $\overrightarrow{OB}$ – their $\overrightarrow{OQ}$                                                                 | M1      |
|              | $\overrightarrow{BQ} \cdot \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8+2\mu \\ -3\mu \\ 4+\mu \end{pmatrix} \cdot \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = \dots$                                                                                                | Applies $\overrightarrow{BQ} \cdot \overrightarrow{D}$<br>resulting equ                                                                      | $\overrightarrow{AP} = 0$ , o.e. and <i>solves</i> the action to find a value for $\mu$                                                                                                         | dM1     |
|              | $\Rightarrow 96 + 24\mu + 18\mu + 24 + 6\mu = 0 \Rightarrow 48\mu + 120 =$                                                                                                                                                                                                                          | $0 \Longrightarrow \mu = -\frac{5}{2}$                                                                                                       | $\mu = -\frac{5}{2}$                                                                                                                                                                            | A1 o.e. |
|              | (9+2(-25)) (4)                                                                                                                                                                                                                                                                                      | Substitutes                                                                                                                                  | their value of $\mu$ into $\overrightarrow{OQ}$                                                                                                                                                 | ddM1    |
|              | $\overrightarrow{OQ} = \begin{pmatrix} 9+2(-2.5)\\ 1-3(-2.5)\\ 8+1(-2.5) \end{pmatrix} = \begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$                                                                                                                                    | (4, 8.5, 5.5) or                                                                                                                             | $\begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix} \text{ or } 4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k}$                                                                                           | A1 o.e. |
|              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                 | [5]     |
| (b)<br>Alt 1 | <u>Vector Cross Product:</u> Use this scheme if a ve                                                                                                                                                                                                                                                | •                                                                                                                                            | thod is being applied                                                                                                                                                                           |         |
| Alt I        | $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} =$                                                                      | $\begin{pmatrix} -12\\ 6\\ -6 \end{pmatrix}$                                                                                                 | An attempt to find $\overrightarrow{AP}$<br>or $\overrightarrow{PA}$                                                                                                                            | M1      |
|              | $\mathbf{d}_{1} \times \mathbf{d}_{2} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}}_{\times} \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}}_{=} = \begin{cases} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{cases} = 24\mathbf{i} + \mathbf{i}$                | $0\mathbf{j}-48\mathbf{k}$                                                                                                                   |                                                                                                                                                                                                 |         |
|              | $\sin\theta = \frac{\sqrt{(24)^2 + (0)^2 + (-48)^2}}{\sqrt{(12)^2 + (-6)^2 + (6)^2}} \sqrt{(4)^2 + (-6)^2 + (2)^2}$                                                                                                                                                                                 | <del>2</del> bet                                                                                                                             | ector cross product formula<br>ween their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and<br>$(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$<br>a multiple of these vectors | dM1     |
|              | $\left\{\sin\theta = \frac{\sqrt{2880}}{\sqrt{216}\sqrt{56}} = \sqrt{\frac{5}{21}}\right\} \left\{\Rightarrow\cos\theta\right\} = \sqrt{\frac{16}{21}}$                                                                                                                                             |                                                                                                                                              | $\frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$                                                                                                                                         | A1      |
| (1-)         | Cosina Dula                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                 | [3]     |
| (b)<br>Alt 2 | <u>Cosine Rule</u><br>$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} =$                                                | $ \begin{pmatrix} -12 \\ 6 \\ -6 \end{pmatrix} $ An                                                                                          | attempt to find $\overrightarrow{AP}$ or $\overrightarrow{PA}$                                                                                                                                  | M1      |
|              | Note: $ \overrightarrow{PA}  = \sqrt{216}$ , $ \overrightarrow{AB}  = \sqrt{56}$ and $ \overrightarrow{PB}  = \sqrt{80}$                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                                                                 |         |
|              | $\left(\sqrt{80}\right)^2 = \left(\sqrt{216}\right)^2 + \left(\sqrt{56}\right)^2 - 2\left(\sqrt{216}\right)\left(\sqrt{56}\right)c$                                                                                                                                                                 | $\partial s \theta$                                                                                                                          | Applies the cosine rule<br>the correct way round                                                                                                                                                | dM1     |
|              | $\cos\theta = \frac{216 + 56 - 80}{2\sqrt{216}\sqrt{56}} = \frac{192}{2\sqrt{216}\sqrt{56}}$                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                 |         |
|              | $\{\Rightarrow\cos\theta\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$                                                                                                                                                                                                                 |                                                                                                                                              | $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$                                                                                                                                                | A1      |
|              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           | [3]     |

|        |      | Question 7 Notes                                                                                                                                                                                                                                                                                                          |
|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. (b) | Note | If no "subtraction" seen, you can award 1 <sup>st</sup> M1 for 2 out of 3 correct components of the difference                                                                                                                                                                                                            |
|        | Note | For dM1 the dot product formula can be applied as                                                                                                                                                                                                                                                                         |
|        |      | (12)(4)                                                                                                                                                                                                                                                                                                                   |
|        |      | $\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2} \cos \theta = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$                                                                                                                                           |
|        |      |                                                                                                                                                                                                                                                                                                                           |
|        | Note | <i>Evaluation</i> of the dot product for $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} & 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is not required for the dM1 mark                                                                                                                                                             |
|        |      |                                                                                                                                                                                                                                                                                                                           |
|        | A1   | For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or $\cos\theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$                                                                                                                                                                                              |
|        | Note | Using $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos\theta = \frac{24 + 18 + 6}{\sqrt{216} \cdot \sqrt{14}} = \frac{48}{12\sqrt{21}} = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$                                                                                 |
|        | Note | $\sqrt{216.\sqrt{14}}  12\sqrt{21}  \underline{\sqrt{21}}  \underline{21}$ Using $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos\theta = \frac{4+3+1}{\sqrt{6}.\sqrt{14}} = \frac{8}{2\sqrt{21}} = \frac{4}{\underline{\sqrt{21}}}$ or $\frac{4}{\underline{21}}\sqrt{21}$ |
|        | Note | Give M1M1A0 for finding $\theta = \text{awrt } 29.2$ without reference to $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$                                                                                                                                                                                  |
|        | Note | Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks                                                                                                                                                                                                                                   |
|        | Note | Vectors the wrong way round                                                                                                                                                                                                                                                                                               |
|        |      | • E.g. taking the dot product between $\overrightarrow{PA}$ and $\overrightarrow{AB}$ to give $\cos\theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$                                                                                                                                                             |
|        |      | with no other working is final A0 $\longrightarrow$ $\longrightarrow$ $4$ $4$ $-$                                                                                                                                                                                                                                         |
|        |      | • E.g. taking the dot product between $\overrightarrow{PA}$ and $\overrightarrow{AB}$ to give $\cos\theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$                                                                                                                                                             |
|        |      | <b>followed by</b> $\cos\theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ is final A1                                                                                                                                                      |
|        | Note | In part (b), give M0dM0 for finding and using $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$                                                                                                                                                               |
| (c)    | Note | Give 1 <sup>st</sup> M0 for $\sin \theta = \sin \left( \cos^{-1} \left( \frac{4\sqrt{21}}{21} \right) \right)$ or $\sin \theta = 1 - \left( \frac{4}{21}\sqrt{21} \right)^2$ unless recovered                                                                                                                             |
|        | M1   | Give 2 <sup>nd</sup> M1 for either                                                                                                                                                                                                                                                                                        |
|        |      | • $\frac{1}{2}$ (their length AP)(their length AB)(their attempt at $\sin \theta$ )                                                                                                                                                                                                                                       |
|        |      | • $\frac{1}{2}$ (their length <i>AP</i> )(their length <i>AB</i> )sin(their 29.2° from part (b))                                                                                                                                                                                                                          |
|        |      | • $\frac{1}{2}$ (their length AP)(their length AB)sin $\theta$ ; where $\cos\theta =$ in part (b)                                                                                                                                                                                                                         |
|        | Note | $\frac{1}{2}(\sqrt{216})(\sqrt{56})\sin(\text{awrt } 29.2^{\circ} \text{ or awrt } 150.8^{\circ}) \{= \text{awrt } 26.8\}$ without reference to finding $\sin\theta$                                                                                                                                                      |
|        |      | as an exact value if M0 M1 A0                                                                                                                                                                                                                                                                                             |
|        | Note | Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0                                                                                                                                                                                                                     |
|        | Note | Anything that rounds to 26.8 without reference to $12\sqrt{5}$ is A0                                                                                                                                                                                                                                                      |
|        | Note | If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ in part (b), then this can be followed through in part (c)                                                                                                                                      |
|        |      | for the 2 <sup>nd</sup> M mark as e.g. $\frac{1}{2}(\sqrt{110})(\sqrt{56})\sin\theta$                                                                                                                                                                                                                                     |
|        | Note | Finding $12\sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact                                                                                                                                                                                                                 |
|        |      | value for $\sin \theta$ . So $\frac{1}{2} (\sqrt{216}) (\sqrt{56}) \sin(29.2^\circ) = 12\sqrt{5}$ is M1 dM1 A1                                                                                                                                                                                                            |
|        |      |                                                                                                                                                                                                                                                                                                                           |

|                    |                                                                                                                                                                                                                                                                            | Questi                                                                                                                                                                                                                                        | on 7 Notes Continu                                                                                                  | ued                                                                          |                                                       |              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|--------------|
| <b>7.</b> (d)      | Note                                                                                                                                                                                                                                                                       | Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or $l = \dots$ or $l$                                                                                                                                                                           |                                                                                                                     |                                                                              | 1 mark                                                |              |
|                    | A1                                                                                                                                                                                                                                                                         | Writing $\mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} e^{-2}\\2 \end{pmatrix}$                                                                           | $\begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1 \end{pmatrix} \text{ or } \mathbf{r}$         | $= \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \mathbf{d},$                  |                                                       |              |
|                    | Note                                                                                                                                                                                                                                                                       | where $\mathbf{d} = a$ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$<br>Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or $l = \dots$ or $l$                                                                                            |                                                                                                                     |                                                                              |                                                       |              |
|                    | Note                                                                                                                                                                                                                                                                       | Other valid $\mathbf{p} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}$ are e.g. $\mathbf{p} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$                                                                                                               | $ \begin{array}{c} 3\\5\\0 \end{array} \right) \text{ or } \mathbf{p} = \begin{pmatrix} 5\\7\\6 \end{pmatrix}. $ So | $\mathbf{p} \ \mathbf{r} = \begin{pmatrix} 13\\ -5\\ 10 \end{pmatrix} + \mu$ | $\begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$ is M1 A1 |              |
|                    | Note                                                                                                                                                                                                                                                                       | Give A0 for writing $l_2 : \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$                                                                                                                        | $ \begin{cases} 4\\ 5\\ 2 \end{cases} \text{ or ans} = \begin{pmatrix} 9\\ 1\\ 8 \end{pmatrix} + $                  | $-\mu\begin{pmatrix}4\\-6\\2\end{pmatrix}$ unless                            | recovered                                             |              |
|                    | Note                                                                                                                                                                                                                                                                       | Using scalar parameter $\lambda$ or other scalar                                                                                                                                                                                              | alar parameters (e.g                                                                                                | $\mu \text{ or } s \text{ or } t) \text{ is } f$                             | ine for M1 and/                                       | or A1        |
| (e)                | ddM1                                                                                                                                                                                                                                                                       | Substitutes their value of $\mu$ into $\overrightarrow{OQ}$                                                                                                                                                                                   | , where $\overrightarrow{OQ} = $ the                                                                                | ir equation for $l_2$                                                        | 2                                                     |              |
|                    | Note                                                                                                                                                                                                                                                                       | If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j})$<br>for the 2 <sup>nd</sup> M mark and the 3 <sup>rd</sup> M mar                                                                   | -                                                                                                                   | en this can be fo                                                            | ollowed through                                       | in part (e)  |
|                    | Note                                                                                                                                                                                                                                                                       | You imply the final M mark in part (a from their $\mu$                                                                                                                                                                                        |                                                                                                                     | ectly followed th                                                            | nrough compone                                        | ents for $Q$ |
| Question<br>Number |                                                                                                                                                                                                                                                                            | Scheme                                                                                                                                                                                                                                        |                                                                                                                     | Notes                                                                        |                                                       | Marks        |
| <b>7.</b> (c)      |                                                                                                                                                                                                                                                                            | <b>Cross Product:</b> Use this scheme if a                                                                                                                                                                                                    | ,                                                                                                                   | t method is being                                                            | g applied                                             |              |
| Alt 1              | $\overrightarrow{AP} \times \overrightarrow{A}$                                                                                                                                                                                                                            | $\vec{B} = \underbrace{\begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix}}_{\times} \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{vmatrix} = 24$ | $4\mathbf{i} + 0\mathbf{j} - 48\mathbf{k}$                                                                          |                                                                              |                                                       |              |
|                    |                                                                                                                                                                                                                                                                            | Uses a vector product and $\sqrt{("24")^2 + ("0")^2 + ("-48")^2}$                                                                                                                                                                             |                                                                                                                     |                                                                              | M1                                                    |              |
|                    | Area P                                                                                                                                                                                                                                                                     | $AB = \frac{1}{2}\sqrt{(24)^2 + (-48)^2}$ Uses a v                                                                                                                                                                                            | Uses a vector product and $\frac{1}{2}\sqrt{("24")^2 + ("0")^2 + ("-48")^2}$                                        |                                                                              |                                                       | M1           |
|                    | $=12\sqrt{5}$                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                              | 12√5                                                  | A1 cao       |
|                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                              |                                                       | [3]          |
| 7. (c)<br>Alt 2    | Note: c                                                                                                                                                                                                                                                                    | Note: $\cos APB = \frac{5}{\sqrt{30}}$ or $\frac{1}{6}\sqrt{30}$ Note: $\left \overline{PA}\right  = \sqrt{216}$ and $\left \overline{PB}\right  = \sqrt{80}$                                                                                 |                                                                                                                     |                                                                              |                                                       |              |
|                    | $\sin \theta = \frac{\sqrt{30 - 25}}{\sqrt{30}} = \frac{\sqrt{5}}{\sqrt{30}} = \frac{\sqrt{6}}{6}$ A correct method for converting an exact value for sin <i>q</i> value for cos <i>q</i> to an exact value for sin <i>q</i>                                               |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                              | -                                                     | M1           |
|                    | Area $PAB = \frac{1}{2} \left( \sqrt{216} \right) \left( \sqrt{80} \right) \left( \frac{\sqrt{5}}{\sqrt{30}} \right) \left\{ = 12\sqrt{30} \left( \frac{\sqrt{5}}{\sqrt{30}} \right) \right\} = 12\sqrt{5}$ $\frac{1}{2}$ (their <i>PA</i> )(their <i>PB</i> )sin <i>B</i> |                                                                                                                                                                                                                                               |                                                                                                                     | their $PB$ )sin $\theta$                                                     | M1                                                    |              |
|                    | $2(\sqrt{30})\left(\sqrt{30}\right)\left(\sqrt{30}\right)\left(\sqrt{30}\right) = \sqrt{12}$                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                              | 12√5                                                  | A1 cao       |
|                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                     |                                                                              |                                                       | [3]          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes                                                                                                                                                                                                                                                   | Marks    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>8.</b> (a)      | $\left\{ \int x \cos 4x  dx \right\}$ $= \frac{1}{4} x \sin 4x - \int \frac{1}{4} \sin 4x  \{dx\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\pm \alpha x \sin 4x \pm \beta \int \sin 4x \{ dx \}, \text{ with or without} \\ dx; \alpha, \beta \neq 0$                                                                                                                                             | M1       |
|                    | $-\frac{1}{4}x\sin4x - \int \frac{1}{4}\sin4x \left\{ \frac{1}{4}x \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \{dx\}, \text{ with or without } dx$                                                                                                                                                                     | A1       |
|                    | $=\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \{+c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Can be simplified or un-simplified<br>$\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \text{ o.e. with or without } +c$ Can be simplified or un simplified                                                                                                   | A1       |
|                    | <b>Note:</b> You can ignore subs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Can be simplified or un-simplified<br>equent working following on from a correct solution                                                                                                                                                               | [3]      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         | [2]      |
| (b)<br>Way 1       | $\{V = \} \pi \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x\right)^{2} \{dx\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\pi \int \left(\sqrt{x} \sin 2x\right)^2 \{ dx \}$<br>Ignore limits and dx. Can be implied                                                                                                                                                             | B1       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | For writing down a correct equation linking                                                                                                                                                                                                             |          |
|                    | $\left\{ x\sin^2 2x dx = \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sin^2 2x$ and $\cos 4x$ (e.g. $\cos 4x = 1 - 2\sin^2 2x$ )                                                                                                                                                                                            |          |
|                    | $\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd some attempt at applying this equation (or a manipulation<br>of this equation which can be incorrect) to their integral<br>Can be implied.                                                                                                           | M1       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Simplifies $\int x \sin^2 2x \{ dx \}$ to $\int x \left( \frac{1 - \cos 4x}{2} \right) \{ dx \}$                                                                                                                                                        | A1       |
|                    | $\left\{ \int \left(\frac{1}{2}x - \frac{1}{2}x\cos 4x\right) dx \right\}$<br>= $\frac{1}{4}x^2 - \frac{1}{2}\left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right)$                                                                                                                                                                                                                                                                                                                                                                                    | $\{+c\}$ Integrates to give $\pm Ax^2 \pm Bx \sin 4x \pm C \cos 4x; A, B, C \neq 0$ which can be simplified or un-simplified. <b>Note:</b> Allow one transcription error (on sin 4x or cos 4x) in the copying of their answer from part (a) to part (b) | M1       |
|                    | $\left\{ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{x} \sin 2x \right)^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx = \left[ \frac{1}{4} x^{2} - \frac{1}{8} x \sin 2x \right]^{2} dx$ | $ \inf 4x - \frac{1}{32}\cos 4x \Big]_{0}^{\frac{\pi}{4}} \Big\} $                                                                                                                                                                                      |          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2}\cos\left(4\left(\frac{\pi}{4}\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right) \qquad \begin{array}{c} \text{dependent on the} \\ \text{previous M mark} \\ \text{see notes} \end{array}$                                           | dM1      |
|                    | $= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         |          |
|                    | So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right)$ or $\frac{1}{64}\pi^3 + \frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{6}\pi$ or $\frac{\pi}{2}\left(\frac{\pi^2}{32} + \frac{1}{8}\right)$ o.e. two term exact answer                                                                                                                                               | A1 o.e.  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         | [6]<br>9 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Question 8 Notes                                                                                                                                                                                                                                        | 7        |
|                    | SC Special Case for the 2 <sup>nd</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M and 3 <sup>rd</sup> M mark for those who use their answer from pa                                                                                                                                                                                     | art (a)  |
|                    | You can apply the 2 <sup>nd</sup> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and 3 <sup>rd</sup> M marks for integration of the form                                                                                                                                                                                                 |          |
|                    | $\pm Ax^2 \pm$ (their answer to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         |          |
|                    | where their answer to par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         |          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s px to give $\pm Ax^2 \pm Bx \sin kx \pm C \cos px$                                                                                                                                                                                                    |          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $h px$ to give $\pm Ax^2 \pm Bx \sin kx \pm C \sin px$                                                                                                                                                                                                  |          |
|                    | • $\pm Bx\cos kx \pm C\sin kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $h px$ to give $\pm Ax^2 \pm Bx \cos kx \pm C \sin px$                                                                                                                                                                                                  |          |
|                    | • $\pm Bx\cos kx \pm C\cos kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s $px$ to give $\pm Ax^2 \pm Bx \cos kx \pm C \cos px$                                                                                                                                                                                                  |          |
|                    | $k, p \neq 0, k, p \text{ can be } 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |          |

| Question<br>Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scheme                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | N                                                                                                                      | Notes                                                                            |                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|
| 8. (b)<br>Way 2    | $\{V=\}\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\{V = \} \pi \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x\right)^{2} \{dx\}$                                                                                                                                                                    |                                                                                                                                                                                                                                     | $\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$<br>Ignore limits and dx. Can be implied                                       |                                                                                  | B1                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\int x \left(\frac{1-\cos 4x}{2}\right) \{dx\}$                                                                                                                                                                                                    | $dx = \begin{cases} For writing down a correct equation linking  sin2 2x and cos 4x (e.g. cos 4x = 1 - 2sin2 2x)  and some attempt at applying this equation (or a  manipulation of this equation which can be incorrect) to their$ |                                                                                                                        |                                                                                  | M1                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     | $u = x$ and $\frac{\mathrm{d}v}{\mathrm{d}x}$                                                                                                                                                                                       | if if is $\int x \sin^2 2x \{dx\}$ to<br><b>Note:</b> This mark can<br>$= \frac{1 - \cos 4x}{2}$ or $u = \frac{1}{2}x$ | $\int x \left(\frac{1 - \cos 4x}{2}\right) \{dx\}$<br>in the implied for stating | A1                    |
|                    | $=x\left(\frac{1}{2}x\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(x - \frac{1}{8}\sin 4x\right) - \int \left(\frac{1}{2}x - \frac{1}{8}\sin 4x\right) dx$                                                                                                                                                      | $\left(\frac{1}{3}\sin 4x\right) dx$                                                                                                                                                                                                |                                                                                                                        |                                                                                  |                       |
|                    | $=x\left(\frac{1}{2}x\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(x - \frac{1}{8}\sin 4x\right) - \left(\frac{1}{4}x^2 + \frac{1}{32}\right)$                                                                                                                                                                  | $\left(\frac{1}{4}x^{2} + \frac{1}{32}\cos 4x\right)\{+c\}$ Integrates to give<br>$\pm Ax^{2} \pm Bx\sin 4x \pm C\cos 4x; A, B, C \neq 0$<br>or an expression that can be simplified<br>to this form                                |                                                                                                                        |                                                                                  | M1<br>(B1 on<br>ePEN) |
|                    | $\left\{ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\right.} \right)^{\frac{\pi}{4}} \left( \sqrt{\left. \int_{0}^{\frac{\pi}{4}} \left( \left. \int_{$ | $\int x \sin 2x \Big)^2 dx = \left[\frac{1}{4}x^2 - \frac{1}{8}x^2\right]$                                                                                                                                                                          | $\frac{1}{32}x\sin 4x - \frac{1}{32}\cos 4x$                                                                                                                                                                                        | $4x \bigg]_{0}^{\frac{\pi}{4}} \bigg\}$                                                                                |                                                                                  |                       |
|                    | $= \left  \frac{1}{4} \left  \frac{\pi}{4} \right  - \frac{1}{8} \left  \frac{\pi}{4} \right  \sin \left  4 \left  \frac{\pi}{4} \right  \right  - \frac{1}{32} \cos \left  4 \left  \frac{\pi}{4} \right  \right  \right  - \left  0 - 0 - \frac{1}{32} \cos 0 \right  $ previous M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     | dependent on the<br>previous M mark<br>see notes                                                                       | dM1                                                                              |                       |
|                    | $=\left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    | So, <i>V</i> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right)$ or $\frac{1}{64}\pi^3 + \frac{1}{16}\pi$ or $\frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8}\right)$ o.e.                                                                             |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  | A1 o.e.               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  | [6]                   |
| <b>8.</b> (a)      | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Question 8 Notes ContinuedSCGive Special Case M1A0A0 for writing down the correct "by parts" formula and using $u = x, \frac{dv}{dx} = \cos 4x$ , but making only one error in the application of the correct formula                               |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  | [                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
| (b)                | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>J</b>                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te If the form $\cos 4x = \cos^2 2x - \sin^2 2x$ or $\cos 4x = 2\cos^2 2x - 1$ is used, the 1 <sup>st</sup> M cannot be<br>gained<br>until $\cos^2 2x$ has been replaced by $\cos^2 2x = 1 - \sin^2 2x$ and the result is applied to their integral |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Condone $\cos 4\theta = 1 - 2\sin^2 2\theta$ , $\sin^2 2\theta = \frac{1 - \cos 4\theta}{2}$ or $\lambda \sin^2 2\theta = \lambda \left(\frac{1 - \cos 4\theta}{2}\right)$                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    | Final<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathbf{U}$ omplete method of applying limits of $-$ and $\mathbf{U}$ to all terms of an expression of the form                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  | rm                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                  |                       |
|                    | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | For the final M1 mark<br>copying of their answe                                                                                                                                                                                                     | -                                                                                                                                                                                                                                   | -                                                                                                                      | on $\sin 4x$ or $\cos 4x$ ) in                                                   | the                   |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | copying of their allswe                                                                                                                                                                                                                             | a nom part (a) to                                                                                                                                                                                                                   | part (0)                                                                                                               |                                                                                  |                       |

www.mystudybro.com This resource was created and owned by Pearson Edexcel

|               |      | Question 8 Notes Continued                                                                                                                                                                                                                                         |  |  |  |  |
|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>8.</b> (b) | Note | Evidence of a proper consideration of the limit of 0 on $\cos 4x$ where applicable is needed for                                                                                                                                                                   |  |  |  |  |
|               |      | the<br>final M mark                                                                                                                                                                                                                                                |  |  |  |  |
|               |      | E.g. $\left[\frac{1}{4}x^2 - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_0^{\frac{\pi}{4}} =$                                                                                                                                                                 |  |  |  |  |
|               |      | • = $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) + \frac{1}{32}$ is final M1                               |  |  |  |  |
|               |      | • $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) = 0$ is final M0                                            |  |  |  |  |
|               |      | • $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \frac{1}{32}$ is final M0 (adding)                        |  |  |  |  |
|               |      | • $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(\frac{1}{32}\right)$ is final M1 (condone)          |  |  |  |  |
|               |      | • $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - (0+0+0)$ is final M0                                      |  |  |  |  |
| <b>8.</b> (b) | Note | Alternative Method:                                                                                                                                                                                                                                                |  |  |  |  |
|               |      | $u = \sin^2 2x$ $\frac{dv}{dt} = x$ $u = x^2$ $\frac{dv}{dt} = \sin 4x$                                                                                                                                                                                            |  |  |  |  |
|               |      | $\begin{cases} u = \sin^2 2x & \frac{dv}{dx} = x \\ \frac{du}{dx} = 2\sin 4x & v = \frac{1}{2}x^2 \end{cases},  \begin{cases} u = x^2 & \frac{dv}{dx} = \sin 4x \\ \frac{du}{dx} = 2x & v = -\frac{1}{4}\cos 4x \end{cases}$                                       |  |  |  |  |
|               |      | $\int x \sin^2 2x  \mathrm{d}x$                                                                                                                                                                                                                                    |  |  |  |  |
|               |      | $=\frac{1}{2}x^{2}\sin^{2}2x - \int \frac{1}{2}x^{2}(2\sin 4x)dx$                                                                                                                                                                                                  |  |  |  |  |
|               |      | $=\frac{1}{2}x^{2}\sin^{2}2x - \int x^{2}\sin 4x  dx$                                                                                                                                                                                                              |  |  |  |  |
|               |      | $= \frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x - \int 2x \cdot \left(-\frac{1}{4}\cos 4x\right) dx\right)$                                                                                                                                         |  |  |  |  |
|               |      | $=\frac{1}{2}x^{2}\sin^{2}2x - \left(-\frac{1}{4}x^{2}\cos 4x + \frac{1}{2}\int x\cos 4x  dx\right)$                                                                                                                                                               |  |  |  |  |
|               |      | $=\frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\int x\cos 4x  dx$                                                                                                                                                                             |  |  |  |  |
|               |      | $= \frac{1}{2}x^{2}\sin^{2} 2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right)\{+c\}$                                                                                                                                |  |  |  |  |
|               |      | $=\frac{1}{2}x^{2}\sin^{2}2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x \ \{+c\}$                                                                                                                                                       |  |  |  |  |
|               |      | $V = \pi \int_{0}^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^{2} dx = \pi \left(\frac{\pi^{2}}{64} + \frac{1}{16}\right) \text{ or } \frac{1}{64}\pi^{3} + \frac{1}{16}\pi \text{ or } \frac{\pi}{2} \left(\frac{\pi^{2}}{32} + \frac{1}{8}\right) \text{ o.e.}$ |  |  |  |  |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom