Past Paper This resource was created and owned by Pearson Edexcel | Λ | // | ΛF | ΞC | 1 | |---|------|----|----|-----| | v | , ,, | | | , , | | /rite your name here Surname | С | other names | |--|---------------|------------------------------------| | Pearson Edexcel | Centre Number | Candidate Number | | Mechanic | c M1 | | | | | | | Advanced/Advance | | y | | | d Subsidiar | Paper Reference WME01/01 | | Advanced/Advance Monday 25 January 2016 – | d Subsidiar | Paper Reference WME01/0' Total Mar | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures. - When a calculator is used, the answer should be given to an appropriate degree of accuracy. ## Information - The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ ■ Past Paper Leave ank DO NOT WRITE IN THIS AREA | T
or
fo | truck of mass 2400 kg is pulling a trailer of mass M kg along a straight horizontal he tow bar, connecting the truck to the trailer, is horizontal and parallel to the direction. The tow bar is modelled as being light and inextensible. The residences acting on the truck and the trailer are constant and of magnitude 400 N and espectively. The acceleration of the truck is $0.5 \mathrm{ms^{-2}}$ and the tension in the tow $00 \mathrm{N}$. | ection
stance
200 N | |---------------|---|---------------------------| | (2 | a) Find the magnitude of the driving force of the truck. | (3) | | (ł | Find the value of M . | (3) | | (0 | e) Explain how you have used the fact that the tow bar is inextensible in your calculate. | ations. | nter 2016
Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathema | |--------------------|---|---------| | | | | | Question 1 continu | ied | (Total 7 marks) 3 # **Mathematics M1** **www.mystudybro.com**This resource was created and owned by Pearson Edexcel ■ Past Paper WME01 Leave blank | 2. | Two particles P and Q are moving in opposite directions along the same horizontal st line. Particle P is moving due east and particle Q is moving due west. Particle mass $2m$ and particle Q has mass $3m$. The particles collide directly. Immediately the collision, the speed of P is $4u$ and the speed of Q is u . The magnitude of the infinite collision is $\frac{33}{5}mu$. (a) Find the speed and direction of motion of P immediately after the collision. | P has pefore | |----|---|--------------| | | (b) Find the speed and direction of motion of Q immediately after the collision. | (4) | inter 2016
st Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathemati | |------------------------|---|-----------| | | | | | Question 2 continu | ıed | | | Question 2 contint | icu | (Total 8 marks) blank 3. Figure 1 A boy is pulling a sledge of mass 8 kg in a straight line at a constant speed across rough horizontal ground by means of a rope. The rope is inclined at 30° to the ground, as shown in Figure 1. The coefficient of friction between the sledge and the ground is By modelling the sledge as a particle and the rope as a light inextensible string, find the tension in the rope | tension in the rope. | | |----------------------|-----| | | (8) | inter 2016
st Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathematic W | |------------------------|---|--------------| | | | | | Question 3 conti | nued | (Total 8 marks) ■ Past Paper WME01 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA Leave blank | 4. | A small stone is projected vertically upwards from the point O and moves freely under gravity. The point A is 3.6 m vertically above O . When the stone first reaches A , the stone is moving upwards with speed 11.2 m s ⁻¹ . The stone is modelled as a particle. | | | | | |----|--|------------------|--|--|--| | | (a) Find the maximum height above O reached by the stone. | 4) | | | | | | (b) Find the total time between the instant when the stone was projected from <i>O</i> and the instant when it returns to <i>O</i> . | ne
5) | | | | | | (c) Sketch a velocity-time graph to represent the motion of the stone from the instar when it passes through A moving upwards to the instant when it returns to O. Show on the axes, the coordinates of the points where your graph meets the axes. | | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | | | _ | | | | | Paper | This resource was created and owned by Pearson Edexcel | WMI | |---------------------------|--|-----| | | | Lea | | 0 | 1 | bla | | Question 4 continu | ea | _ | | | | | | | | | | | | _ | | | | | www.mystudybro.com **Mathematics M1** | Past | Dα | nar | |------|----|-----| | | | | | | _ | • | | | |-------------------|-------------|----------|---------|---------| | This resource was | created and | owned by | Pearson | Edexcel | | WME01 | |---| | * | | nestion 4 continued | | |---------------------|--| nter 2016
Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathematic
V | |---------------------|---|-----------------| | | | | | Question 4 continue | ed | (Total 13 marks) DO NOT WRITE IN THIS AREA Figure 2 A non-uniform rod AB has length 4 m and weight 120 N. The centre of mass of the rod is at the point G where AG = 2.2 m. The rod is suspended in a horizontal position by two vertical light inextensible strings, one at each end, as shown in Figure 2. A particle of weight 40 N is placed on the rod at the point P, where AP = x metres. The rod remains horizontal and in equilibrium. - (a) Find, in terms of x, - (i) the tension in the string at A, - (ii) the tension in the string at B. **(6)** Either string will break if the tension in it exceeds 84 N. (b) Find the range of possible values of x. **(4)** | inter 2016 | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathematics M | |---------------------|---|---------------| | st Paper | This resource was created and owned by Pearson Edexcel | WME | | | | Leav | | Overtion 5 continue | J | blank | | Question 5 continue | u | athematics M1 | winter 2016 | www.mystudybro.com | Mathematics M i | |-------------|--|-----------------| | Past Paper | This resource was created and owned by Pearson Edexcel | WME01 | | | | Leave | | | blank | |----------------------|-------| | Question 5 continued | | | Zuossion e constitue | nter 2016
t Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathemati | |-----------------------------|---|-----------| | | · | | | Question 5 continu | ned | (Total 10 marks) ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel WME01 Leave blank | 6. | [In this question i and j are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin.] | |----|---| | | At 2 pm, the position vector of ship P is $(5\mathbf{i} - 3\mathbf{j})$ km and the position vector of ship Q is $(7\mathbf{i} + 5\mathbf{j})$ km. | | | (a) Find the distance between P and Q at 2 pm. (3) | | | Ship P is moving with constant velocity $(2\mathbf{i} + 5\mathbf{j}) \operatorname{km} h^{-1}$ and ship Q is moving with constant velocity $(-3\mathbf{i} - 15\mathbf{j}) \operatorname{km} h^{-1}$. | | | (b) Find the position vector of P at time t hours after 2 pm. (2) | | | (c) Find the position vector of Q at time t hours after 2 pm. (1) | | | (d) Show that Q will meet P and find the time at which they meet. (5) | | | (e) Find the position vector of the point at which they meet. (2) | Z. | | | ٩ | ٠ | | |---------------|----|----------------|----|---|--| | | | | | | | | V | | | | | | | 1 | | | ٦ | ٦, | | | | | | | | × | | | 0.00 | | ٦ | | | | | - 24 | μ | Р | P | | | | × | ú | ь | ċ | × | | | F. | £ | 7 | 3 | | | | - III. | | | ľ | | | | . = | ۰ | ۰ | ш | | | | 100 | b | à | Ħ | | | | - 10- | | - | | | | | . 7 | 7 | ₹ | 2 | | | | Yes | ρ | Р | ۹ | ٠ | | | | ė | 6 | | | | | | | | 7 | | | | . 7 | | | | | | | 0 | | 7 | h | | | | /= | 7 | Ч | ŗ | | | | | | | Ė | | | | - | ú | - | á | 4 | | | 1. | | | | | | | | | | п | | | | ille: | | | | | | | ж | | ۰ | Щ, | | | | | | | | | | | - | _ | ۷. | | | | | \sim | 2 | ₽ | ĸ | | | | AND PRINCIPLE | | | ı | | | | C. | = | \overline{z} | | | | | 7 | 7 | 7 | ۰ | | | | | | | ٥ | | | | Lite | | | ı | | | | - | ۰ | - | ш | | | | . Ile | 7 | _ | - | | | | М | 7 | - | ۳, | | | | = | | _ | | | | | . 3 | 7 | ↸ | 2 | | | | ж | | ۳ | ٩, | ٠ | | | - 80 | | | П | 4 | | | 96 | ď | | | | | | 2 | ä | | ₽ | | | | -49 | ij | à | ú | N | | | G | ø | × | ď | | | | . 1 | | | ٩ | | | | | | | | | | | Question 6 continue | d | Lea blar | |---------------------|---|----------| | Question 6 continue | u | _ | _ | | |------|----|-----| | Past | Pa | per | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | 62/62 | |---| | | | | | | | | | V (V) | | | | 1 | | | | () (| | | | | | | | 7.5 | | | | | | | | | | | | 1.4 | | 1 1 1 1 1 | | () X | | X T | | | | | | | | $-\infty\infty$ | | | | - X-2 | | | | - X - X - | | | | X - X - X - X - X | | (-XL) | | - X = = | | | | - X (X) | | (0.00) | | X 100 | | 0.00 | | - X = 10 | | () Yell | | | | (V. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18 | | 1 | | | | - X · X · | | L (0.X0) | | - X · X · | | L (0)(0) | | 7 7. | | (0.70.) | | - 7 7. | | (0.70.) | | 1.7.7. | | (-//-) | | 1.5 | | (0/07 | | 1. | | (0/0) | | - 77. | | (5/5) | | -7.7. | | (3/3) | | 1 - 1/- 1/- | | L 63/3 | | | | $I = G \times S$ | | | | | | $\times \overline{} \times \times \times$ | |---| | | | | | | | | | | | | | | | XXXXXX | | 25 - 273 | XXX | | $\sim \sim \sim \sim$ | | | | \sim | $\times \times \times \times \times \times$ | | | | | | | | | | | | | | 2 | | | | Z | | \$ | | 2
7
7 | | \$ | | | | \$ | | | | | | | | | | | | | | A SIHIT | | A SIHIT | | VTHIS AR | | A SIHIT | | THIS AR | | VTHIS AR | | THIS ARE | | THIS AR | | THIS ARE | | VTHIS AREA | | S | | | | | | |--|---|---|---|---------------|---| S | | | | | | | | | | | | | | 5 | S | 5 | | | | | | | | | | | | | | S | d | | | | | | | | | | | | | > | | | | | | | | | | | | | | S | | | | | | | | | | | | | | > | | | | | | | | | | | | | | 5 | 2 | ∠ | 2 | s | 1 | | Ś | à | 4 | ì | ś | | | > | à | ź | Ì | ž | | | > | à | | ì | Š | | | > | ŝ | 2 | | | | | > | Š | 2 | | | | | | à | | | | | | | 3 | | | | | | > | 3 | 2 | | | | | > | 3 | | | | | | | 3 | | | | | | > | 3 | | | | | | > | 3 | | | | | | > | | | | | | | > | | | | | | | > | | | | | | | > | | | | | | | > | | | | | | | > | | | | | | | >>>>> | | | | | | | > | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | >>>>> | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | >
>
>
>
> | | | | | | | ·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | | | | | | | >
>
>
>
> | | | | | | | >
>
>
>
> | | | | くさくくし ゴークくしてく | | | >>>>>>> | | | | | | | >
>
>
>
> | | | | | | | | Leave
blank | |----------------------|----------------| | Question 6 continued | Olalik | nter 2016
t Paper | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathematic | |-----------------------------|---|------------| | | | | | Question 6 contin | ued | | | Question o contin | ucu | (Total 13 marks) DO NOT WRITE IN THIS AREA 7. P(2 kg) d metres Q(5 kg) Figure 3 A particle P of mass 2 kg is attached to one end of a light inextensible string. A particle Q of mass 5 kg is attached to the other end of the string. The string passes over a small smooth light pulley. The pulley is fixed at a point on the intersection of a rough horizontal table and a fixed smooth inclined plane. The string lies along the table and also lies in a vertical plane which contains a line of greatest slope of the inclined plane. This plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$. Particle P is at rest on the table, a distance d metres from the pulley. Particle Q is on the inclined plane with the string taut, as shown in Figure 3. The coefficient of friction between P and the table is $\frac{1}{4}$. The system is released from rest and *P* slides along the table towards the pulley. Assuming that *P* has not reached the pulley and that *Q* remains on the inclined plane, (a) write down an equation of motion for P, **(2)** (b) write down an equation of motion for Q, (2) - (c) (i) find the acceleration of P, - (ii) find the tension in the string. **(5)** When *P* has moved a distance 0.5 m from its initial position, the string breaks. Given that *P* comes to rest just as it reaches the pulley, (d) find the value of d. **(7)** | | | | j | | | |---|---|----------|---|---|---| ø | > | ζ | 2 | ς | > | ζ | 2 | | > | ì | S | Ś | á | Ŕ | | > | ì | á | è | á | Ď | | > | į | á | į | ĺ | Ę | | | į | 3 | > | Š | Ş | | > | i | <u> </u> | 2 | | | | | ĺ | 2 | | | | | > | į | 2 | | | | | | | 2 | | | | | > | | 2 | | | | | > | | 2 | | | | | > | | | | | | | > | | 2 | | | | | > | | | | | | | V-22/- | |---| | | | V-12-V- | | | | //- | | ITE IN THIS AREA | | V = V - | | N THIS AREA | | V- V-V- V- | | | | / Z | | | | 6.7 7.5 | | | | 1000 | | X VXIX | | (. X . X . , | | X | | () () () () () () | | 77 | | COMME | | X 100 X | | CARINGA | | | | | | 10/01 | | | | 1:1:1: | | V (V) | | 1:1:1: | | | | THIS AREA | | | | 1.7.7. | | X:X:X | | | | X : X : X | | C.X.X. | | 1.1.1.1 | | 06.62 | | 1.7.7.7. | | 67676 | | //./ | | | | X/X/X/ | | $Z \times Z \times Z \times$ | | \.'\\\\ | | '/\'/X/X | | マンソン | | 77/7/ | | \bigvee | | | | CC - | | | | | | | | 88887 X | | | | | | $\times = \times \times$ | | | | . ō. | | ō | | ğ | | O | | V.LOF | | NO NO | | W.LON | | NOT WR | | NOT WR | | NOT WIRE | | NOT WRIT | | NOT WART | | NOT WRITE | | NOT WRITE | | NOT WRITE! | | NOT WRITE II | | NOT WRITE IN | | OT WRITE IN | | NOT WRITE IN T | | NOT WRITE IN T | | NOT WRITE IN TH | | NOT WRITE IN TH | | NOT WRITE IN THE | | OT WRITE IN THIS | | VOT WRITE IN THIS | | VOT WRITE IN THIS / | | VOT WRITE IN THIS A | | VOT WRITE IN THIS AI | | NOT WRITE IN THIS AR | | NOT WRITE IN THIS ARI | | VOT WRITE IN THIS ARE | | NOT WRITE IN THIS AREA | | VOT WRITE IN THIS AREA | | VOT WRITE IN THIS AREA | | NOT WRITE IN THIS AREA | | NOT WRITE IN THIS AREA | | TE IN THIS AREA DO NOT WRITE IN THIS AREA | | 5 | | | | | | |---|---|---|--------|---|---| à | í | 3 | Z | | | Ś | à | í | ě | Ę | | | > | è | 2 | Š | á | į | | > | Š | Ź | Š | Ž | į | | > | å | 2 | | Ž | | | > | å | | į | | | | > | Š | | | | | | > | 3 | | \
\ | | | | > | 3 | 5 | < | | | | > | 3 | | | | | | > | 3 | | | | ĺ | | > | 3 | | | | | | > | | | | | | | estion 7 continued | | | |--------------------|--|--| 22 | Question 7 continued | Leave | |----------------------|-------| | Question 7 continued | ۱A | /: | tor | $\gamma \alpha$ | 46 | |----|------|-----|-----------------|-------| | w | , in | тыг | -/1 | ''I N | ## www.mystudybro.com Mathematics M1 | st Paper | This resource was created and owned by Pearson Edexcel | WME0 | |---------------------|--|-------| | | | Leave | | Question 7 continue | od | blank | | Question / continue | vu — | Q7 | | | | | | | (Total 16 ma | rks) | | | TOTAL FOR PAPER: 75 MA | |