

Mark Scheme (Results) January 2010

GCE

Mechanics M1 (6677)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA023034 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6677 Mechanics M1 Mark Scheme

Scheme	Marks	
(a) $I = 2 \times 12 - 2 \times 3 = 18 \text{ (N s)}$	M1 A1	(2)
(b) LM $2 \times 12 - 8m = 2 \times 3 + 4m$ Solving to $m = 1.5$	M1 A1 DM1 A1	(4) [6]
Alternative to (b) I = m(4-(-8)) = 18 Solving to $m = 1.5$	M1 A1 DM1 A1	(4)
(a) s First two line segments Third line segment 8, 75 8 0 75 t	B1 B1 B1	(3)
(b) $\frac{1}{2} \times 8 \times (T+75) = 500$	M1 A2 (1,0)	
Solving to $T = 50$	DM1 A1	(5) [8]
	(a) $I = 2 \times 12 - 2 \times 3 = 18$ (N s) (b) LM $2 \times 12 - 8m = 2 \times 3 + 4m$ Solving to $m = 1.5$ Alternative to (b) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (a) First two line segments Third line segment $8, 75$ (b) $\frac{1}{2} \times 8 \times (T + 75) = 500$	(a) $I = 2 \times 12 - 2 \times 3 = 18$ (N s) (b) LM $2 \times 12 - 8m = 2 \times 3 + 4m$ Solving to $m = 1.5$ Alternative to (b) I = m(4 - (-8)) = 18 Solving to $m = 1.5$ (a) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (a) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (b) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (c) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (b) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$ (c) $I = m(4 - (-8)) = 18$ (c) $I = m(4 $

Question Number	Scheme	Marks
Q3.	$\begin{array}{c c} A & 30^{\circ} & 60^{\circ} & B \\ \hline 20 & T & T \\ C & mg \\ \end{array}$	
	(a) $R(\rightarrow)$ $20\cos 30^\circ = T\cos 60^\circ$ $T = 20\sqrt{3}, 34.6, 34.64,$	M1 A2 (1,0) A1 (4)
	(b) $R(\uparrow) \qquad mg = 20\sin 30^\circ + T\sin 60^\circ$ $m = \frac{40}{g} (\approx 4.1), 4.08$	M1 A2 (1,0) A1 (4) [8]
Q4.	(a) X A 1.8 m 1.5 m $W1.5 m$ 20	
	M (A) $W \times 1.5 + 20 \times 3 = Y \times 1.8$ $Y = \frac{5}{6}W + \frac{100}{3}$ * cso	M1 A2 (1, 0) A1 (4)
	(b) \uparrow $X + Y = W + 20$ or equivalent $X = \frac{1}{6}W - \frac{40}{3}$	M1 A1 A1 (3)
	(c) $\frac{5}{6}W + \frac{100}{3} = 8\left(\frac{1}{6}W - \frac{40}{3}\right)$ $W = 280$	M1 A1 ft A1 (3)
	Alternative to (b) M(C) $X \times 1.8 + 20 \times 1.2 = W \times 0.3$ $X = \frac{1}{6}W - \frac{40}{3}$	[10] M1 A1 A1

Question Number	Scheme	Marks
Q5.	(a) $s = ut + \frac{1}{2}at^{2} \implies 2.7 = \frac{1}{2}a \times 9$ $a = 0.6 (m s^{-2})$	M1 A1 A1 (3)
	(b)	
	$R = 0.8g \cos 30^{\circ} (\approx 6.79)$ Use of $F = \mu R$ $0.8g \sin 30^{\circ} - \mu R = 0.8 \times a$ $(0.8g \sin 30^{\circ} - \mu 0.8g \cos 30^{\circ} = 0.8 \times 0.6)$	B1 B1 M1 A1
	$\mu \approx 0.51$ accept 0.507	A1 (5)
	(c) $X = 0.8g$ 30°	
	$\uparrow \qquad R\cos 30^\circ = \mu R\cos 60^\circ + 0.8g$ $(R \approx 12.8)$	M1 A2 (1,0)
	$ \rightarrow X = R \sin 30^\circ + \mu R \sin 60^\circ $ Solving for X, X \approx 12 accept 12.0	M1 A1 DM1 A1 (7) [15]
	Alternative to (c)	
	$ℝ = X \sin 30^\circ + 0.8 \times 9.8 \sin 60^\circ$ $μR + 0.8g \cos 60^\circ = X \cos 30^\circ$	M1 A2 (1,0) M1 A1
	$X = \frac{\mu 0.8g \sin 60^\circ + 0.8g \cos 60^\circ}{\cos 30^\circ - \mu \sin 30^\circ}$ Solving for X, $X \approx 12$ accept 12.0	DM1 A1 (7)

Question Number	Scheme	Marks	
Q6.	(a) N2L A: $5mg - T = 5m \times \frac{1}{4}g$	M1 A1	
	$T = \frac{15}{4}mg \bigstar \qquad $	A1	(3)
	(b) N2L B: $T - kmg = km \times \frac{1}{4}g$	M1 A1	
	<i>k</i> = 3	A1	(3)
	(c) The tensions in the two parts of the string are the same	B1	(1)
	(d) Distance of A above ground $s_1 = \frac{1}{2} \times \frac{1}{4} g \times 1.2^2 = 0.18g (\approx 1.764)$	M1 A1	
	Speed on reaching ground $v = \frac{1}{4}g \times 1.2 = 0.3g (\approx 2.94)$	M1 A1	
	For <i>B</i> under gravity $(0.3g)^2 = 2gs_2 \implies s_2 = \frac{(0.3)^2}{2}g (\approx 0.441)$	M1 A1	
	$S = 2s_1 + s_2 = 3.969 \approx 4.0$ (m)	A1	(7) [14]

Scheme	Mark	S
(a) $\mathbf{v} = \frac{21\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{2\mathbf{i} + 4\mathbf{i}}$	M1 A1	
speed is $\sqrt{(3^2 + 4^2)} = 5 (\text{km h}^{-1})$	M1 A1	(4)
(b) $\tan \theta = \frac{3}{4} (\Rightarrow \theta \approx 36.9^{\circ})$	M1	
bearing is 37, 36.9, 36.87,	A1	(2)
(c) $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j} + t(3\mathbf{i} + 4\mathbf{j})$ = $(3t + 9)\mathbf{i} + (4t - 6)\mathbf{j} \mathbf{*}$ cso	M1 A1	(2)
(d) Position vector of S relative to L is $(3T+9)\mathbf{i} + (4T-6)\mathbf{j} - (18\mathbf{i}+6\mathbf{j}) = (3T-9)\mathbf{i} + (4T-12)\mathbf{j}$ $(3T-9)^2 + (4T-12)^2 = 100$ $25T^2 - 150T + 125 = 0$ or equivalent $(T^2 - 6T + 5 = 0)$ T = 1, 5	M1 A1 M1 DM1 A1 A1	(6) [14]
	(a) $\mathbf{v} = \frac{2\mathbf{l}\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{4} = 3\mathbf{i} + 4\mathbf{j}$ speed is $\sqrt{3^2 + 4^2} = 5$ (km h ⁻¹) (b) $\tan \theta = \frac{3}{4}$ ($\Rightarrow \theta \approx 36.9^\circ$) bearing is 37, 36.9, 36.87, (c) $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j} + t(3\mathbf{i} + 4\mathbf{j})$ $= (3t + 9)\mathbf{i} + (4t - 6)\mathbf{j}$ * cso (d) Position vector of <i>S</i> relative to <i>L</i> is $(3T + 9)\mathbf{i} + (4T - 6)\mathbf{j} - (18\mathbf{i} + 6\mathbf{j}) = (3T - 9)\mathbf{i} + (4T - 12)\mathbf{j}$ $(3T - 9)^2 + (4T - 12)^2 = 100$ $25T^2 - 150T + 125 = 0$ or equivalent $(T^2 - 6T + 5 = 0)$	(a) $\mathbf{v} = \frac{21\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{4} = 3\mathbf{i} + 4\mathbf{j}$ M1 A1 M1 A1 (b) $\tan \theta = \frac{3}{4} (\Rightarrow \theta \approx 36.9^{\circ})$ M1 (c) $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j} + t(3\mathbf{i} + 4\mathbf{j})$ $= (3t + 9)\mathbf{i} + (4t - 6)\mathbf{j} \\ (3T + 9)\mathbf{i} + (4T - 6)\mathbf{j} - (18\mathbf{i} + 6\mathbf{j}) = (3T - 9)\mathbf{i} + (4T - 12)\mathbf{j}$ M1 A1 (d) Position vector of S relative to L is $(3T + 9)\mathbf{i} + (4T - 6)\mathbf{j} - (18\mathbf{i} + 6\mathbf{j}) = (3T - 9)\mathbf{i} + (4T - 12)\mathbf{j}$ M1 A1 $(3T - 9)^{2} + (4T - 12)^{2} = 100$ $25T^{2} - 150T + 125 = 0$ or equivalent $(T^{2} - 6T + 5 = 0)$ M1 A1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023034 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH