Past Paper (Mark Scheme)

Mark Scheme (Results)

January 2012

GCE Mechanics M1 (6677) Paper 1

This resource was created and owned by Pearson Edexcel

6677

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030770
All the material in this publication is copyright
© Pearson Education Ltd 2012

6677

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- · Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$P \stackrel{15 \text{ m s}^{-1}}{\longrightarrow} Q \stackrel{3000 \text{ kg}}{\longrightarrow}$	
(b)	For Q $I = 3000 \times 9 = 27000 \text{ (N s)}$ Conservation of linear momentum $15m = -3m + 3000 \times 9$ Leading to $m = 1500$	M1 A1 (2) M1 A1 A1 (3) 5
	Alternative to (b) For P $27\ 000 = m(15 - (-3))$ Leading to $m = 1500$	M1 A1 A1 (3)

Question Number	Scheme	Marks
2 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	For the whole system $R(\rightarrow) \qquad 3200 - 800 - R = 1750 \times 0.88$ Leading to $R = 860 $	M1 A1 A1
(b)	For the caravan $R(\rightarrow)$ $T-860 = 750 \times 0.88$ Leading to $T = 1520 \text{ (N)}$	(3) M1 A1 A1 (3) 6
	Alternative for (b) For the car $R(\rightarrow)$ $3200-800-T=1000\times0.88$ Leading to $T=1520 (N)$	M1 A1 A1 (3)

6677

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

Question Number	Scheme	Marks	
3 (a)	7 + 5 + p = 0 or $-9 + 6 + q = 0p = -12q = 3$	M1 A1 A1	(3)
(b)	$\mathbf{R} = 12\mathbf{i} - 3\mathbf{j}$ $ \mathbf{R} = \sqrt{(12^2 + (-3)^2)} = \sqrt{153} \text{ or } 3\sqrt{17} \text{ or } 12.4 \text{ or better } (N)$	M1 A1	(2)
(c)	$\tan \theta = \frac{3}{12}$ $\theta = 14.03^{\circ}$ Angle with j is 104°, to the nearest degree cao	M1 A1 A1	(3)
			8

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
4 (a)	$A \xrightarrow{\longleftarrow} G \qquad \qquad A \xrightarrow{\longleftarrow} B \qquad \qquad \Delta $	
	$M(D) mg \times GD = \frac{5}{2} mg \times d$ $GD = \frac{5}{2} d *$	M1 A1 DM1 A1 (4)
(b)	$A \xrightarrow{\longleftarrow} G \xrightarrow{Y \xrightarrow{\longleftarrow} G} B$ $C \xrightarrow{\longleftarrow} mg \xrightarrow{\searrow} \frac{5}{2}mg \xrightarrow{D}$	
	M(C) $mg \times \frac{d}{2} + \frac{5}{2}mg \times \frac{3}{2}d = Y \times 3d$ Leading to $Y = \frac{17}{12}mg$	M1 A2(1, 0) DM1 A1
		(5) 9

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme) Question

Question Number	Scheme	Marks	
	25		
5 (a)	$v = u + at(\uparrow) \Longrightarrow 0 = u - g(\frac{25}{14})$	M1 M(A)	1
	$u=17 \frac{1}{2}$	A1	(2)
(b)	$v^2 = u^2 + 2as(\uparrow) \Rightarrow 0^2 = 17.5^2 - 2gs$	M1	(3)
	s = 15.6 (m) or 16 (m)	A1	
			(2)
(c)	$s = ut + \frac{1}{2}at^{2}(\uparrow) \Longrightarrow 6.6 = 17.5t - \frac{1}{2}gt^{2}$	M1	
	$4.9t^2 - 17.5t + 6.6 = 0$	A1	
	$t = \frac{17.5 \pm \sqrt{(17.5^2 - 129.36)}}{9.8} = \frac{17.5 \pm 13.3}{9.8}$	DM1	
	9.8 9.8 $t = 3.142(22/7)$ or $0.428(3/7)$	A1	
	$T = t_2 - t_1 = 2.71 (2.7)$	DM1 A1	(6)
	OR		
	$v^2 = u^2 + 2as(\uparrow) \Longrightarrow v^2 = 17.5^2 - 2gx6.6$		
	$v = \pm 13.3$		
	$v = u + at(\uparrow) \Longrightarrow \pm 13.3 = 17.5 - gt$	M1A1	
	$t = \frac{17.5 \pm 13.3}{9.8}$	DM1	
	9.8 = 3.14 (22/7) or 0.428(3/7)	A1	
	T = 3.14 0.428 = 2.71 or 2.7	DM1 A1	(6)
			(0)
	OR		
	$v^2 = u^2 + 2as(\uparrow) \Rightarrow v^2 = 17.5^2 - 2gx6.6$ or $0^2 = u^2 - 2gx(15.625 - 6.6)$		
	v = 13.3 $u = 13.3$		
	$v = u + at(\uparrow) \Longrightarrow 0 = 13.3 - gt$	M1 A1	
	$t = \frac{13.3}{g}$	DM1 A1	
	$T = 2 \times \frac{13.3}{2} = 2.7 \text{ or } 2.71$	DM1 A1	(6)
	g		
			11

Question Number	Scheme		Marks	
6 (a)	$v = u + at \implies 0 = 15 - 2.5t$ $t = 6 (s)$		M1 A1	
(b)				(2)
(0)	$v(m s^{-1})$			
	15	Shape 15, <i>T</i>	B1 B1	(2)
	$O = \frac{1}{3}T \longrightarrow T \longrightarrow 6 \longrightarrow t(s)$			
(c)	$\frac{1}{2}15\left(\frac{4}{3}T + 6 + T\right) = 885$	ft their 6	M1 A1ft	
	$\frac{7}{3}T = 118 - 6$			
	$T = 112 \times \frac{3}{7} = 48$		M1 A1	
	,			(4)
(d)	$a = \frac{15}{\frac{1}{3}T} = \frac{15}{16}, 0.9375, 0.938, 0.94$		M1 A1	
(e)	$a(m e^{-2}) \blacktriangle$			(2)
	$a(m s^{-2}) \uparrow$	3 horizontal lines	B1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ed;no cts vert line -2.5 , ft their $\frac{15}{15}$	B1 B1	
	16 t(s)	16		(3)
1			1	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6677

Question Number	Scheme	Marks	
7 (a)	$\sqrt{\left(\left(-4\right)^2+8^2\right)} = \sqrt{80}$ (km h ⁻¹) accept exact equivalents or 8.9 or better	M1 A1	
(b)	$\sqrt{\left(\left(-4\right)^{2}+8^{2}\right)} = \sqrt{80} \left(\text{km h}^{-1}\right) \text{accept exact equivalents or } 8.9 \text{ or better}$ $\mathbf{p} = \left(2\mathbf{i} - 8\mathbf{j}\right) + t\left(-4\mathbf{i} + 8\mathbf{j}\right)$	B1	(2)
(c)	Equating j components		(1)
	$-8 + 8t = 12 - 8t$ $t = \frac{5}{4} \text{ oe}$	M1 A1 A1	(2)
(d)	Using their t from (c) to find the i -cpts of p and q and subtract them	M1	(3)
	$10\frac{1}{2} - (-3) = 13\frac{1}{2}$ (km)	A1 ft A1	
	-		(3) 9

Question Number	Scheme	Marks
8 (a)	R 30° $4g$	
	$R + 36\sin 30^\circ = 4g\cos 30^\circ$ $R \approx 15.9, 16$	M1 A1 M1 A1
(b)	Use of $F_r = \mu R$	(4) B1
	$36\cos 30^\circ = F + 4g\sin 30^\circ$	M1 A1
	$\mu = \frac{36\cos 30^{\circ} - 4g\sin 30^{\circ}}{R} \approx 0.726$ 0.73	M1 A1
		(5)
(c)	After force is removed $R = 4g \cos 30^{\circ}$	B1
	$-\mu 4g\cos 30^\circ - 4g\sin 30^\circ = 4a$	M1 A1
	$a = (-)11.06 \dots$	
	$v^2 = u^2 + 2as \implies 0^2 = 16^2 - 2 \times 11.06 \dots \times s$	M1
	$s = \frac{16^2}{2 \times 11.06 \dots} \approx 11.6 \text{ (m)}$	A1
	12	(5) 14

Winter 2012

Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics M1

6677

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA030770 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

