Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6677/01)

June 2008 6677 Mechanics M1 Final Mark Scheme

Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) 7.5 0.4 $0.6v$ 5	
	LM $0.4 \times 7.5 = 0.4v + 0.6 \times 5$ $0 = 0.4v \implies v = 0$ * cso	M1 A1 A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7} (s)$	DM1 A1 (4)
	Alternatives for (b) $s = \left(\frac{u+v}{2}\right)T \Longrightarrow 10 = \left(\frac{17.5 + -10.5}{2}\right)T$ $\frac{20}{7} = T$	[7] M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$	M1 A1 f.t.
	Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$ Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	M1 A1 DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative <i>u</i> .	A1 (4)

Question Number	Scheme	Mark	S
3.	(a) $\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$	M1 A1	(2)
	(b) $\mathbf{F} = 0.4 (\mathbf{6i} + \mathbf{8j}) (= 2.4\mathbf{i} + 3.2\mathbf{j})$ $ \mathbf{F} = \sqrt{(2.4^2 + 3.2^2)} = 4$ The method marks can be gained in either order.	M1 M1 A1	(3)
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ = 39\mathbf{i} + 30\mathbf{j} (ms^{-1})	M1 A1 A1	(3) [8]
4.	(a) $v + 25$ shape 25, 10, 30, 90 0 30 90 t	B1 B1	(2)
	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$ 7.5t = 60 t = 8 (s) $a = \frac{25-10}{8} = 1.875$ (ms ⁻²) $1\frac{7}{8}$	M1 <u>A1</u> DM1 A1 M1 A1	A1 (7) [9]

Question Number	Scheme	Marks
5.	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	M1 A1 DM1 A1 (4) M1 A2 ft DM1 A1 (5) [9] M1 A1 (4) M1 A2 ft on <i>R</i> DM1 A1 (5)
	$X^{2} = R^{2} + 15^{2} - 2 \times 15 \times R \cos 100^{\circ}$ OR: cosine rule; any of $R^{2} = X^{2} + 15^{2} - 2 \times 15 \times X \cos 30^{\circ}$ $15^{2} = R^{2} + X^{2} - 2 \times X \times R \cos 50^{\circ}$	M1 A2 ft on <i>R</i>
	$X \approx 19.3 (N)$	DM1 A1 (5)

Question Number	Scheme	Marks
7.	(a) 45 N 50° $4g$ $4g$ 30°	
	$R = 45\cos 40^\circ + 4g\cos 30^\circ$ $R \approx 68$ accept 68.4	M1 A2 (1, 0) DM1 A1 (5)
	(b) Use of $F = \mu R$	M1
	$F + 4g\sin 30 = 45\cos 50^\circ$	M1 A2 (1, 0)
	Leading to $\mu \approx 0.14$ accept 0.136	DM1 A1 (6) [11]

Question Number	Scheme	Marks
8.	(a) $T \qquad T \qquad 30$	
	$s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} \text{ (ms}^{-2}\text{)}$	M1 A1 (2)
	(b) N2L for system $30 - \mu 5g = 5a$ ft their <i>a</i> , accept symbol	M1 A1ft
	$\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	DM1 A1 (4)
	(c) N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$	M1 A1 ft
	Leading to $T = 12 \text{ (N)}$ awrt 12	DM1 A1 (4)
	Alternatively N2L for Q $30 - T - \mu 3g = 3a$ Leading to $T = 12$ (N) awrt 12	M1 A1 DM1 A1
	(d) The acceleration of P and Q (or the whole of the system) is the same.	B1 (1)
	(e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$	B1 ft on <i>a</i>
	N2L (for system or either particle) $-5\mu g = 5a$ or equivalent $a = -\mu g$	M1
	$v = u + at \implies 0 = 4 - \mu gt$ Leading to $t = \frac{6}{2}$ (s) accept 0.86, 0.857	DM1 A1 (4)
		[15]