This resource was create Vrite your name here Surname	ed and owned by F	Pearson Ede		WCH
Pearson Edexcel nternational Advanced Level	Centre Number		Candidate Number	
Chemistry Advanced Subsidiary Unit 1: The Core Prin	1	Chemis	try	
Thursday 9 January 2014 – Time: 1 hour 30 minutes	Morning		Paper Reference	

Candidates may use a calculator.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each guestion.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

©2014 Pearson Education Ltd. 6/6/6/6/2/2/

P42986A

SECTION A

	er 201 Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Chemistry (Unit 1 WCH01
3	ln a m	ass spectrometer, positive ions are accelerated by		
	A 🖂	bombarding them with fast-moving electrons.		
	B	bombarding them with fast-moving protons.		
	🛛 C	passing them between charged plates.		
	D 🛛	passing them through a magnetic field.		
_		(Total for Question	3 = 1 mark)	
4	The nu	mber of unpaired electrons in a nitrogen atom in its ground state is		
	A 🖾	0		
	B	1		
	🖾 C	2		
	D 🛛	3		
		(Total for Question	4 = 1 mark)	

5	Fou	ır sequ	iences	of ioni	zation	energi	es of elements, in kJ mol⁻¹, are shown below.	
	А	590	1145	4912	6474	8144		
	В	520	496	419	403	376		
	С	1000	1251	1521	419	590		
	D	631	658	650	653	717		
	(a)			ce givir Perioo			nization energies of elements going down a	(1)
	\times	Α						(-)
	\times	В						
	\times	с						
	\times	D						
	(b)	The se	equend	ce show	wing th	ne first f	five ionization energies of calcium is	(1)
	\times	Α						
	\times	В						
	\times	C						
	\times	D						
	(c)						ionization energy of successive elements, in which e each time, starting with an element in Group 6 is	(1)
	\times	Α						
	\times	В						
	\times	C						
	\times	D						
							(Total for Question 5 = 3 mai	ʻks)

6	Which	of the following ions has the smallest ionic radius?
	Δ Α	Ca ²⁺
	B	K+
	🛛 C	S ²⁻
	D 🛛	CI-
		(Total for Question 6 = 1 mark)
7		d, which conducts electricity, continues to conduct when it is cooled and ed. Which of the following could it be?
	🖾 A	Mercury
	B	Bromine
	🖾 C	Molten sodium chloride
	⊠ D	Tetrachloromethane
		(Total for Question 7 = 1 mark)
8	Calcul	ate the number of atoms in one mole of hydrogen peroxide, H_2O_2 .
	[The A	vogadro constant, $L = 6.0 \times 10^{23} \text{ mol}^{-1}$]
	Α 🛛	$1.5 imes 10^{23}$
	B	$6.0 imes 10^{23}$
	🖾 C	1.2×10^{24}
	D 🛛	$2.4 imes 10^{24}$
		(Total for Question 8 = 1 mark)
9		0.1 mol of atoms of an element reacts with chlorine, there is an increase in of 7.1 g.
	The el	ement could be
	🖾 A	carbon.
	B	sodium.
	🖂 C	magnesium.
	⊠ C ⊠ D	aluminium.

10 M	lagn	esium n	nitrate is decomposed by heat in the following reaction.
			$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$
VC	olum		nent, 0.10 mol of magnesium nitrate was heated. What is the maximum s, measured in dm ³ at room temperature and pressure, which could be
[N	/lola	r volum	e of a gas = 24 dm ³ mol ⁻¹ at room temperature and pressure]
\mathbf{X}	Α	0.24	
\times	В	2.4	
X	C	4.8	
\times	D	6.0	
			(Total for Question 10 = 1 mark)
11 Aı	mm	onia gas	s decomposes when heated.
			$2NH_3(g) \to N_2(g) + 3H_2(g)$
In	an	experim	nent, a sample of 500 cm ³ of ammonia was heated and 20% decomposed.
Tł	ne to	otal volu	ume of gas present at the end of the experiment, in cm ³ , was
\times	Α	200	
\times	B	400	
\times	C	600	
\times	D	1000	
			(Total for Question 11 = 1 mark)
		•	
Us	se th	iis spac	e for any rough working. Anything you write in this space will gain no credit.

asir	aper			and Owned by Fearson Edexcer	WCIN					
12			nthalpy change for the formation C ₂ H _a , is –84.7 kJ mol ⁻¹ .	on of ethene, C₂H₄, is +52.2 kJ mol⁻	¹ and					
		Calculate the standard enthalpy change for the reaction below, in kJ mol ⁻¹ .								
	culcul			$_{2}(g) \rightarrow C_{2}H_{6}(g)$						
		-32.5	$C_2 \Gamma_4(g) + \Gamma_1$	$_{2}(g) \neq C_{2} \cap_{6}(g)$						
	B	-136.9								
	C	+136.9								
	⊂		nnot be calculated using only th	ne data above.						
					- 1 maaule)					
				(Total for Question 12 =	= 1 mark)					
13			ollowing equations represents a tandard enthalpy change of for	reaction for which the enthalpy rmation of water, $\Delta H^{\oplus}_{f_{298}}$?						
	A 🖾	H+(aq) -	$+ OH^{-}(aq) \rightarrow H_{2}O(I)$							
	B	H ₂ (g) +	$1/_2O_2(g) \rightarrow H_2O(I)$							
	🛛 C	H ₂ O(g)	$\rightarrow H_2O(I)$							
	🛛 D	H ₂ O(s) -	$\rightarrow H_2O(I)$							
				(Total for Question 13 =	= 1 mark)					
14	Consid	der the fo	bllowing bond enthalpy values.							
			Bond	Bond enthalpy / kJ mol ⁻¹						
			CO in carbon monoxide	+1077						
			0=0	+498						
			C=O in carbon dioxide	+805						
	The er	nthalpy c	hange for the reaction							
			-	$O_{2}(g) \rightarrow CO_{2}(g)$						
	in units of kJ mol ⁻¹ is									
	■ A -284									
	B	+35								
		+521								
		+770								
		T770			1					
				(Total for Question 14 =	: i mařk)					

	r	This resource was created and owned by Pearson Edexcel	V
15 (a)		hich of the following represents the equation for the reaction between ethane d chlorine in the presence of UV radiation?	(1)
\times	A	$C_2H_6 + Cl_2 \rightarrow C_2H_4Cl_2 + H_2$	
\times	В	$C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$	
\times	С	$C_2H_6 + Cl_2 \rightarrow 2CH_3Cl$	
\mathbf{X}	D	$C_2H_6 + 2CI_2 \rightarrow 2CH_3CI + 2HCI$	
(b)) Th	e UV radiation initially causes the formation of	
\boxtimes	Α	Cl⁻ ions.	(1)
\times	В	Cl ⁺ ions.	
$\left \right $	C	Cl• free radicals.	
\mathbf{X}	D	$C_2H_5^{\bullet}$ free radicals.	
(c)	On	nce it has started, the reaction can proceed for a time without UV light because	
\times	Α	a chain reaction is occurring.	(1)
\times	В	initiation is occurring.	
\times	С	a substitution reaction is occurring.	
\times	D	termination steps cannot occur without UV light.	
		(Total for Question 15 = 3 ma	rks)
16 W	hich	of the following is the systematic name for the hydrocarbon shown below?	
16 WI		of the following is the systematic name for the hydrocarbon shown below?	
	A B	5-ethyl-4-methylhexane	
	A B C	5-ethyl-4-methylhexane 2-ethyl-3-methylhexane	
	A B C	5-ethyl-4-methylhexane 2-ethyl-3-methylhexane 4,5-dimethylheptane	ark)

st Paper	This resource was created and owned by Pearson Edexcel	WC
	SECTION B	
	Answer ALL the questions. Write your answers in the spaces prov	vided.
7 This que	estion is about some of the elements in Period 3 of the Periodic Table.	
t	An atom of silicon has mass number 29. Complete the table below show the numbers of sub-atomic particles in this atom of silicon. Use the Peri Table as a source of data.	odic
	Sub-atomic particles present in one atom of ²⁹ Si	(1)
	protons	
	electrons	
	neutrons	
(ii) (s ²	Complete the electronic configuration of silicon.	(1)
	ain the following, referring to differences in structure and bonding. Silicon has a higher melting temperature than phosphorus.	(3)
(ii) /	Magnesium has a higher melting temperature than sodium.	(2)
		s Turn ov
	P 4 2 9 8 6 A 0 9 2 4	14111 01

	Suggest why the atomic radius decreases going across the Periodic Table from sodium to silicon.	(2)
(d)	At room temperature, silicon tetrachloride, SiCl ₄ , is a liquid that does not conduct electricity.	
	Draw a dot and cross diagram illustrating the bonding in silicon chloride. Show only the outer electron shells of the atoms. Use crosses to represent the electrons from silicon and dots to represent the electrons from chlorine.	(2)

ast Paper	This resource was created and owned by Pearson Edexcel	WCH02
	n chloride can be made by reacting solid barium carbonate with dilute chloric acid in the following reaction.	
	$BaCO_3(s) + 2HCI(aq) \rightarrow BaCI_2(aq) + CO_2(g) + H_2O(I)$	
(a) (i)	Write the ionic equation for the reaction of solid barium carbonate with hydrogen ions from the hydrochloric acid. State symbols are not required.	(1)
(ii)) State two observations you would make while the reaction is taking place. No change of colour occurs.	(2)
Observati	ion 1	
Observati	ion 2	
VO	an experiment to prepare crystals of hydrated barium chloride, BaCl ₂ .2H ₂ O, a plume of 25.0 cm ³ of 2.00 mol dm ⁻³ hydrochloric acid, HCl, was transferred to a eaker and solid barium carbonate, BaCO ₃ , was added until it was in excess.	
(i)	How many moles of acid were used in the reaction?	(1)
(ii)) What mass of barium carbonate, in grams, reacts with this amount of acid? The molar mass of barium carbonate is 197.3 g mol ⁻¹ .	(1)
(iii	i) Why was an excess of barium carbonate used in the experiment?	(1)

(iv) How would you separate the barium chloride solution from the reaction mixture in part (iii)?	(1)
(v) The barium chloride solution was left to crystallize. The crystals were separated and dried carefully. A sample of 5.35 g of hydrated crystals, BaCl ₂ ·2H ₂ O, which has molar mass 244 g mol ⁻¹ , was obtained. Calculate the percentage yield of this reaction.	(2)
(vi) Give one reason why the yield of crystals is less than 100%, even when the reactants contain no impurities.	(1)

(i) Using the letters **A** to **F**, complete the table below by matching each letter to its corresponding energy change.

(3)

(ii) The energy change **X** is -697.6 kJ mol⁻¹.

In the table, add the name of the enthalpy change which is occurring in this stage of the cycle.

(1)

Energy change	Letter	Δ H / kJ mol ⁻¹
Lattice energy of barium chloride		
Enthalpy change of atomization of barium		180.0
Enthalpy change of atomization of $Cl_2(g)$ to $2Cl(g)$		243.4
First ionization energy of barium		503
Second ionization energy of barium		965
	X	2 × (-348.8) = -697.6
Enthalpy change of formation of barium chloride		-858.6

ast Paper	r This resource was created and owned by Pearson Edexcel	WCH01
	(iii) Use the data to calculate the lattice energy of barium chloride.	
	· · · · · · · · · · · · · · · · · · ·	(2)
		(=)
	Answer =	kJ mol ⁻¹
	*(iv) Lattice energies can be calculated from electrostatic theory (theoretical	
	values) as well as by Born-Haber cycles (experimental values).	
	values) as well as by both-flaber cycles (experimental values).	
	What can you deduce from the fact that the experimental and theoretical	
	values for the lattice energy of barium chloride are very close?	
		(2)
	(Tatal far Overtian 10, 10 m	vulca)
	(Total for Question 18 = 18 ma	arks)

BLANK PAGE

Wint Past P	-	-	4 www.mystudybro.com Cl This resource was created and owned by Pearson Edexcel	nemistry	Unit 1 WCH01
10	Th:		vertion is shout the flow makes liquid, mathematical CLI OLI		
19		Me	uestion is about the flammable liquid, methanol, CH ₃ OH. Athanol starts to have toxic effects when it is present in blood at levels of abo D mg in 1000 g.	ve	
			press this concentration in parts per million.	(1)	
	(b)	bu of t	e enthalpy change of combustion of methanol was measured using a spirit rner to heat a known mass of water in a calorimeter. The temperature increa the water in the calorimeter was measured when a known mass of methanol s burned.		
		(i)	Write an equation for the complete combustion of methanol, CH ₃ OH, under standard conditions. Include state symbols in the equation.	r (2)	
		(ii)	Identify two other products that could form if the combustion was incomplete .		
1			incomplete.	(1)	
2					

(c) The results of the experiment are summarised in the table below.

Mass of water in the calorimeter	150.0 g
Mass of spirit burner + contents (initial)	52.24 g
Mass of spirit burner + contents (final)	51.60 g
Temperature of water (initial)	21.4°C
Temperature of water (final)	37.2°C

(i) Calculate the heat energy produced in this experiment using the equation

Heat energy produced (J) = mass of water \times 4.18 \times temperature change

(1)

(ii) Calculate the number of moles of methanol burned in this experiment.

(1)

(iii) Calculate the enthalpy change of combustion of methanol in kJ mol⁻¹. Give your answer to **three** significant figures.

(2)

 (iv) The experimental result differs from the true value for the enthalpy change of combustion of methanol. State one factor in the experimental method, other than heat losses or incomplete combustion, which causes the result to differ from the true value. Explain the effect this factor has on the magnitude of the experimental value compared to the true value. 	(2)
Factor	
Explanation	
 (d) The value of the enthalpy change for the combustion of methanol can be calculated from the mean bond enthalpies of the substances in the reaction. Give two reasons why this value differs from the value obtained in the experiment, even after corrections are made for experimental error. 	(2)
Reason 1	
Reason 2	
(Total for Question 19 = 12 ma	rks)

20 This question is about the chemistry of alkenes, which are unsaturated hydrocarbons. (a) State what is meant by the term **unsaturated** as applied to a hydrocarbon. (1) (b) An organic compound, **X**, is an unsaturated hydrocarbon with molecular formula C_4H_8 . (i) Draw the displayed formulae and give the names of **two** unbranched molecules with molecular formula C_4H_8 which are E/Z isomers. (3) Isomer 1 Isomer 2 Name: Name: (ii) Both isomers react with a solution of acidified aqueous potassium manganate(VII). State the colour change that you would observe when this reaction is carried out. (1) From to

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21 Turn over
and a saturated hydrocarbon as the only products.	(1)
(v) Write an equation to show the cracking of the hydrocarbon octane into C_4H_8	
fraction obtained from crude oil.	(1)
(iv) Compounds such as C₄H ₈ are formed when fractions of crude oil are cracked. State what is meant by the term cracking when applied to processing a	
	(1)
(iii) Draw the structure of the organic product of this reaction with either one of these isomers.	

(c) Another alkene is propene, C₃H₆.
Describe the mechanism for the addition reaction of propene with bromine, Br_{2'} to form C₃H₆Br₂.
In your answer you should include:

the name for the type of addition which occurs
the name of the product
the mechanism using curly arrows to show the movement of electron pairs.

(5)
Type of addition

ast Paper	This resource was created and owned by Pearson Edexcel	WCH01
(d)	Propene can polymerize to form poly(propene).	
	(i) State, with a reason, the atom economy for this reaction.	(1)
	(ii) Draw a section of this polymer, showing two repeat units.	(1)
	(iii) Poly(propene) is used to make synthetic fibres which are extremely light and act as good insulators.	
	Comment on the sustainability of this use of poly(propene).	(1)
	(Total for Question 20 = 16 ma	rks)
-	TOTAL FOR SECTION B = 60 MA TOTAL FOR PAPER = 80 MA	
		23

P 4 2 9 8 6 A 0 2 3 2 4

Winter 2014 Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Chemistry Unit 1 WCH01

				-																					
0 (8)	(18) 4.0 hetium 2	20.2 Ne	10 10	39.9	Ar argon 18	83.8	K	krypton 36	131.3	Xe	54 54	[222]	Rn	radon 86	-	ted									
7	(17)	19.0 F	riuorine 9	35.5	CI chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]	At	astatine 85		been repor		175	Lu Iutetium 71		[257]	law	22		
9	(16)	16.0 O	oxygen 8	32.1	Sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polonium 84		116 have l Iticated		173	ytterbium	2	[254]	No nobelium 102	1		
2	(15)	14.0 N	nitrogen 7	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112- ully auther		169	Tm thulium		[256]	mendelevium 101			
4	(14)	12.0 C	carbon 6	28.1	c	72.6	Ge	germanium 32	118.7	Sn	20 tị	207.2	Pb	lead 82		atomic nur but not fi		167	Er erbium	8	[253]	E	~~~		
e	(13)	10.8 B	boron 5	27.0	Al aluminium 13	69.7	Ga	gallium 31	114.8	Ē	indium 49	204.4	F	thallium 81		ients with		165	- of		[254]	ES einsteinium 99	:		
		U.			(12)	65.4	Zn	zinc 30	112.4	g	cadmium 48	200.6	Hg	mercury 80		Elerr		163	Dy dysprosium	B	[251]	Cf californium 98	ž		
					(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg roentgenium	111	159	E	3	[245]	E			
					(10)	58.7	ïz	nickel 28	106.4	РД	palladium 46	195.1	Ł	platinum 78	[271]	DS damstadtium	110	157	Gd gadolinium	5	[247]	% anim	į		
					(6)	58.9	ა	cobalt 27				192.2	<u> </u>	iridium 77	[268]	Mt meitnerium	109	152	E	3	[243]	Am americium 95	2		
	1.0 hydrogen 1				(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	S	osmium 76	[277]		108	150	Sm samarium	3	[242]	Pu plutonium 94	;		
					(2)	54.9	Mn	manganese 25	[98]	Ъ	technetium 43	186.2	Re	rhenium 75			107	[147]	Pm promethium 61	5	[237]	Np neptunium 93	, ,		
				mass	umber	č.	(9)	52.0	ե	chromium 24	95.9	Wo	molybdenum 42	183.8	≥	tungsten 74	[366]	Sg seaborgium	106	144	neodymium	3		E	
		Key	ve atomic mic syml	name (proton) n		(5)	50.9	>	vanadium 23	92.9			180.9	Ta	tantalum 73	_	E	105	141	Pr praseodymium 5.0	;	[231]	Pa protactinium 91	;	
		relati ato	atomic		(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ηf	hafnium 72	[261]	Rf rutherfordium	104	140	Cerium cerium	R	232	thorium 90	ž		
					(3)	45.0	S	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	-	89		S						
2	(2)	9.0 Be	beryllium 4	24.3	Mg magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3			[226]	Ra radium	88		anide serit de series						
-	(1)	6.9 Li	urtnium 3	23.0	sodium 11	39.1	¥	potassium 19	85.5	ď	rubidium 37	132.9	S	caesium 55	[223]	Fr francium	87		* Lanth * Actini						
	3 4 5 6 7	2 3 4 5 6 7 Hydrogen (2) Key (13) (14) (15) (16) (17)	2 3 4 5 6 7 1.0 H hydrogen 1.0 1.0 H hydrogen 2.0 14.0 16.0 19.0 B 2.0 14.0 16.0 19.0 B 2.0 F 1.0 19.0 F B 2.0 F 1.0 19.0 F 1.0 19.0 F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3 4 5 6 7 1.0 H hydrogen 1.0 H hydrogen 24. 5 6 7 10.0 11.0 H hydrogen 13.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 16.0 17.0 19.0 B B atomic symbol atomic (proton) number 5 6 7 8 27.0 28.1 31.0 32.1 35.5 13.5 13.0 14.0 10.8 12.0 14.0 14.0 17.0 19.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 3 5 6 7 (2) Key 10 10 11 10 11 10		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

P 4 2 9 8 6 A 0 2 4 2 4