www.mystudybro.com

Chemistry Unit 1

Past Paper

This resource was created and owned by Pearson Edexcel

Pearson Edexcel International Idvanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiary Unit 1: The Core Pri	ý	mistry
Wednesday 7 January 201:	5 – Morning	Paper Reference WCH01/01

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, but a line through the box ∞ and then mark your new answer with

·	. , .	.	a cross ⊠.
1	A solution contains 33 ppm of solute. The mass of solute dissolved in 1 kg of this solution is		
	X	A	33 g
	×	В	0.33 g
	X	C	0.033 g
	×	D	0.000033 g
			(Total for Question 1 = 1 mark)
2	Th	e Av	ogadro constant is equal to the number of
	X	A	grams of an element which contains 6.02×10^{23} atoms of that element.
	X	В	atoms contained in one mole of any element.
	X	C	atoms contained in one mole of any monatomic element.
	×	D	particles (atoms, ions or molecules) required to make one gram of a substance.
			(Total for Question 2 = 1 mark)
3	A hydrocarbon contains, by mass, 82.7% carbon and 17.3% hydrogen.		
	Th	e m	olecular formula of the hydrocarbon is
	X	A	CH ₃
	×	В	C_2H_6
	X	C	C_2H_5
	X	D	C_4H_{10}
			(Total for Question 3 = 1 mark)

In which block of the Periodic Table would element **X** be found?

- A s
- **区** d
- D f

(Total for Question 4 = 1 mark)

5 Consider the following data:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H^{\oplus} = -394 \text{ kJ mol}^{-1}$$

$$Pb(s) + \frac{1}{2}O_2(g) \rightarrow PbO(s)$$

$$\Delta H^{\oplus} = -217 \text{ kJ mol}^{-1}$$

$$PbO(s) + CO(g) \rightarrow Pb(s) + CO_2(g)$$

$$\Delta H^{\odot} = -66 \text{ kJ mol}^{-1}$$

Calculate the value of the enthalpy change, in kJ mol⁻¹, for the following reaction.

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A -243
- B −111
- **◯ C** +111
- **■ D** +243

(Total for Question 5 = 1 mark)

6 Which of the following enthalpy changes cannot be measured **directly** by experiment?

The enthalpy change of

- **A** formation of methane.
- **B** combustion of hydrogen.
- **C** formation of carbon dioxide.
- **D** combustion of carbon monoxide.

(Total for Question 6 = 1 mark)

- **7** Which of the following equations represents a step that is **not** involved in the Born-Haber cycle for lithium iodide, LiI?
 - \square A Li(s) + $\frac{1}{2}I_2(s) \rightarrow LiI(s)$
 - \square **B** $\frac{1}{2}I_2(s) \rightarrow I(q)$
 - \square C Li(s) \rightarrow Li(g)
 - \square **D** $I(g) \rightarrow I^+(g) + e^-$

(Total for Question 7 = 1 mark)

- 8 Which of the following results in the most polarizing cation?
 - ⊠ A
 - ⊠ B
 - ⊠ C
 - \times D
- Cation radius

 Small

 Small

 Iarge

 Iarge

 Iarge

 Iarge

 Iarge

(Total for Question 8 = 1 mark)

9 Calcium carbonate reacts with dilute nitric acid as follows:

$$CaCO_3(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq) + H_2O(l) + CO_2(q)$$

0.05 mol of calcium carbonate was added to a solution containing 0.08 mol of nitric acid.

Which of the following statements is true?

- A 0.05 mol of carbon dioxide is produced.
- B 0.08 mol of calcium nitrate is produced.
- ☐ C Calcium carbonate is in excess by 0.01 mol.
- **D** Nitric acid is in excess by 0.03 mol.

(Total for Question 9 = 1 mark)

10 In which of the following pairs does each gas occupy the same volume?

All volumes are measured at the same temperature and pressure.

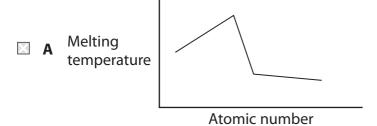
- ☑ A 2 g of hydrogen and 14 g of nitrogen.
- **B** 32 g of methane and 88 g of carbon dioxide.
- ☑ C 7 g of carbon monoxide and 16 g of oxygen.
- **D** 10 g of hydrogen chloride and 10 g of sulfur dioxide.

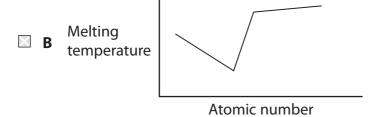
(Total for Question 10 = 1 mark)

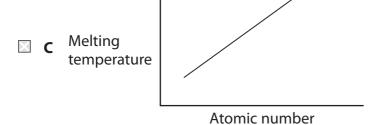
11 Consider the reaction below.

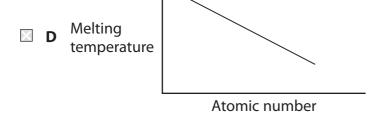
$$2NO(g) \ + \ O_2(g) \ \rightarrow \ 2NO_2(g)$$

What is the maximum volume, in dm³, of nitrogen dioxide that could be obtained in the reaction occurring when 1 dm³ of nitrogen monoxide is mixed with 2 dm³ of oxygen, under suitable conditions?


All measurements are made at the same temperature and pressure.


- **⋈ A** 1
- **B** 2
- **C** 3
- □ D 4


(Total for Question 11 = 1 mark)


Use this space for any rough working. Anything you write in this space will gain no credit.

12 Which of the following graphs, not drawn to scale, best represents the trend in the melting temperatures of the elements across Period 3, from sodium to argon?

(Total for Question 12 = 1 mark)

13 In an experiment, 3.425 g of lead oxide was reduced to form 3.105 g of lead.

The empirical formula of the lead oxide is

- A PbO
- \square **B** Pb₃O₂
- \square **C** Pb₃O₄
- \square **D** Pb₄O₃

(Total for Question 13 = 1 mark)

- **14** Which one of the following ions has the smallest radius?
 - A F
 - B Mg²⁺
 - C Na⁺
 - \square **D** O^{2-}

(Total for Question 14 = 1 mark)

15 Phenol, C_6H_5OH , is converted into trichlorophenol (known as TCP), $C_6H_2Cl_3OH$, according to the equation below.

 $C_6H_5OH + 3Cl_2 \rightarrow C_6H_2Cl_3OH + 3HCl$

If 50.0 g of phenol produces 97.6 g of TCP, what is the percentage yield of the TCP?

[Molar masses: phenol = 94 g mol^{-1} ; TCP = 197.5 g mol^{-1}]

- **A** 47.6%
- **B** 49.4%
- **◯ C** 51.2%
- **■ D** 92.9%

(Total for Question 15 = 1 mark)

- **16** Which of the following contains a dative covalent bond?
 - \square A N_2
 - \square **B** NH₃
 - \square C NH₂
 - \square **D** NH₄⁺

(Total for Question 16 = 1 mark)

www.mystudybro.com

Chemistry Unit 1

■ Past Paper

This resource was created and owned by Pearson Edexcel

WCH01

17	If the price of one tonne (1000 kg) of sulfur, S, is £160, what is the cost (to the nearest
	pound) of the sulfur needed to make one tonne of sulfuric acid, H ₂ SO ₄ ?

■ B £98

☑ D £490

(Total for Question 17 = 1 mark)

18 Potassium combines with iodine to form potassium iodide.

Which of the following describes the bonding in the three substances?

⊠ A

⊠ B

⊠ C

 \boxtimes D

Potassium	lodine	Potassium iodide
ionic	covalent	ionic
metallic	ionic	covalent
covalent	covalent	ionic
metallic	covalent	ionic

(Total for Question 18 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

19 Which of the following does **not** represent the structure of the compound 2-methylpent-2-ene?

$$\begin{tabular}{lll} CH_3 & CH_3 \\ & & | & | & | \\ \hline D & $CH_2-CH=C$ \\ & & | \\ & & | \\ & & & | \\ & | \\ & & | \\ &$$

(Total for Question 19 = 1 mark)

20 Ions with the same electronic configuration are said to be **isoelectronic**.

Which of the following compounds is made up of isoelectronic ions?

- A CaO
- ☑ B CaBr₂
- ☑ D LiF

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.		
21 Crude oil is a source of alkanes.		
(a) Name the process by which the hydrocarbons in crude oil are separated	d. (1)	
(b) The alkane ${\bf X}$ is composed of straight-chain molecules, each with nine ${\bf c}$	carbon atoms.	
(i) Give the molecular formula of X .	(1)	
(ii) Y is a branched-chain isomer of X . Y has eight carbon atoms in a straight-chain with one methyl group	p as a side-chain.	
Draw the skeletal formula of one possible structure for Y .		
Give the name of the structure that you have drawn.	(2)	
keletal formula:	(-/	
lame:		

This resource was created and owned by Pearson Edexcel

11/	\sim L	1 01
٧v	СΓ	וטד

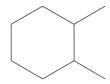
(c)	A reaction called cracking occurs when the alkane pentadecane, $C_{15}H_{32}$, is heated
	in the presence of a catalyst.

(i) Give an equation to show the cracking of one molecule of $C_{15}H_{32}$ to form one molecule of ethene and a molecule of **one** other product. State symbols are not required.

(1)

(ii) In practice, cracking pentadecane forms a large number of products.

Suggest why this is so.


(1)

(d) In the petroleum industry, some straight-chain alkanes are processed to form cyclic hydrocarbons.

When octane is processed, each molecule of octane produces one molecule of a cyclic hydrocarbon, C_8H_{12} , and three molecules of hydrogen as the only products.

(i) Complete the **skeletal** formula of one of the possible cyclic hydrocarbons.

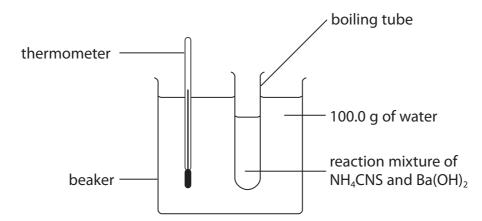
(1)

(ii) Suggest why the petroleum industry processes straight-chain alkanes to form cyclic hydrocarbons.

(1)

(Total for Question 21 = 8 marks)

22 For some reactions, the enthalpy change can be determined by experiment.


(a) Define the term **enthalpy change of reaction**.

(2)

(b) An equation for the reaction between the two solids ammonium thiocyanate, NH_4CNS , and barium hydroxide, $Ba(OH)_2$, is shown below.

$$2NH_4CNS(s) + Ba(OH)_2(s) \rightarrow Ba(CNS)_2(s) + 2H_2O(l) + 2NH_3(g)$$

The following apparatus was set up in order to determine the enthalpy change for the reaction.

In the experiment, 15.22 g of NH₄CNS was reacted with an excess of Ba(OH) $_2$. The reaction absorbed heat energy from the surroundings. The temperature of the 100.0 g of water fell from 22.0 °C to 16.5 °C.

This resource was created and owned by Pearson Edexcel

WCH01

(i) Calculate the heat energy absorbed, in joules, during the reaction.

Use the equation

Heat energy absorbed (J) = mass of water \times 4.2 \times temperature change

(1)

(ii) Calculate the number of moles of NH₄CNS used in the experiment.

(1)

(iii) Calculate the enthalpy change of the reaction, in kJ mol⁻¹, to **two** significant figures. Include a sign in your answer.

$$2NH_4CNS(s) + Ba(OH)_2(s) \rightarrow Ba(CNS)_2(s) + 2H_2O(l) + 2NH_3(g)$$

(3)

Chemistry Unit 1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WCH01

(c) Standard enthalpy changes of reaction can also be calculated using mean bond enthalpies.		
(i) What is meant by the term mean bond enthalpy ?	(2)	
(ii) Describe the bonding in a C─C double bond in terms of the differer which the orbitals overlap.	nt ways in	
You may draw a diagram if you wish.	(2)	
Space for diagram:		

(iii) Suggest why the mean bond enthalpy of a C—C bond is less than twice the mean bond enthalpy of a C—C bond.

(1)

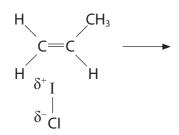
(iv) Use the mean bond enthalpy data in the table, and the equation given below, to calculate a value for the standard enthalpy change of combustion of propene.

(3)

Bond	Mean bond enthalpy / kJ mol ⁻¹
C=C	612
C—C	347
С—Н	413
0=0	498
C=O	805
O—H	464

Answer =kJ mol⁻¹

Chemistry Unit 1 WCH01


■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

*(v) The Data Booklet value for the standard propene is -2058 kJ mol ⁻¹ .	enthalpy change of combustion of
Explain why the value calculated in (c)(iv Booklet value.	r) is less exothermic than the Data (2)
	(Total for Question 22 = 17 marks)

- **23** Iodine monochloride, ICI, is an interhalogen compound. Molecules of iodine monochloride have a permanent dipole. Alkenes react with ICI, under suitable conditions, in a similar way to the reaction of alkenes with hydrogen chloride, HCI.
 - (a) Propene reacts with ICl to form two possible organic products. One of these products is 2-chloro-1-iodopropane.
 - (i) Complete the mechanism below, by adding curly arrows and the intermediate species.

(3)

(ii) Classify the type and mechanism for the reaction in (a)(i).

(2)

(iii) Draw the structure of the other possible organic product of the reaction of propene with ICl.

(1)

of t The chl	thane reacts with ICI, under suitable conditions, to form many products. Two these products are iodomethane and hydrogen chloride. e reaction between methane and ICI is similar to that between methane and orine, CI ₂ . Suggest the essential condition needed for this reaction.	(1)
*(ii)	The mechanism for the reaction between methane and ICI involves three stages. One of these is the third and final stage, called termination. Describe the mechanism of the reaction to form iodomethane and	
	hydrogen chloride.	
	In your answer, include:	
	 the type of reaction and mechanism the type of bond fission occurring 	
	 the type of bond hission occurring the name and equation for the first stage of the mechanism 	
	the name and equations for the second stage of the mechanism	
	 one equation for a termination step 	
	Curly (half-) arrows and state symbols are not required in your equations.	(7)
Type of rea	action and mechanism	
Type of bo	ond fission occurring	

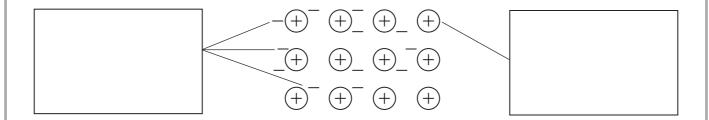
Winter 2015	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Chemistry Unit 1
Past Paper	This resource was created and owned by Pearson Edexcel	WCH01
	(Total for Question 23	= 14 marks)
	(Total for Question 25	_ 14 marks,

Chemistry Unit 1 WCH01

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

■ Past Paper

Complete the table below.		(3)
Sub-atomic particle	Relative mass	Relative charge
proton		
neutron		
electron		
r) The element rubidium exists as	•	mass spectrometer. (2)
(ii) In a sample of rubidium, th than that of ⁸⁷ Rb.	e isotope ⁸⁵ Rb has an abundar	nce 2.5 times greater
than that of ⁸⁷ Rb.	ic mass of rubidium in this san	
than that of ⁸⁷ Rb. Calculate the relative atomi	ic mass of rubidium in this san	


This resource was created and owned by Pearson Edexcel

WCH01

(d) The diagram below illustrates a model of the metallic bonding in rubidium.

Write appropriate labels in the two empty boxes in order to complete the diagram.

(2)

(Total for Question 24 = 12 marks)

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

5 Ionization energie	s provide evidence	for the arrangem	ent of electrons	in atoms.	
	quation, including st	tate symbols, to s	show the secon	d ionization	(2)
	easons why the seconstant ionization energy		ergy of magnes	sium is greater	(2)
(iii) Complete magnesiur	the table by suggest	ting a value for th	ne third ionizati	on energy of	(1)
lonization numbe	er First	Second	Third	Fourth	Fifth
lonization energy	738	1450		10 500	13 600

lonization number	First	Second	Third	Fourth	Fifth	
lonization energy / kJ mol ⁻¹	738	1450		10 500	13 600	

Chemistry Unit 1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper

WCH01

(b) (i)	Give the electronic configurations of phosphorus and of sulfur in s, p and d notation.	(2)
Phosphoru	us (atomic number 15)	
Sulfur (ato	mic number 16)	
(ii)	By reference to your answer in (b)(i), explain why the first ionization energy of sulfur is lower than that of phosphorus.	
		(2)
	(Total for Question 25 = 9 ma	rks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

mendelevium

fermium 100

einsteinium Es

66

californium 98

Bk berketium 97

6 Fig. 8

americium Am

94

93

Np Pu

uranium 92

protactinium Pa

232 **Th** thorium

91

90

101

68

67

4

63

62

9

59

Ce cerium 58

Tb terbium 65

to	3
חסר	5
P	֚֭֭֚֚֝֡֜֝֜֜֜֝֜֜֜֜֓֓֓֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֡֓֓֡֓֜֜֜֡֡֡֡֓֜֜֡
ш	J
of	5
0	J
Tahl	=
١	ر
ij	3
C)
Pari	5
The	۷
È	=

0 (8)	4.0 He hetium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Դ	krypton 36	131.3	Xe	xenon	24	[222]	Ru	radon 86		ted				
7	(71)	19.0	L	fluorine 9	35.5	บ	chlorine 17	6.62	В	bromine 35	126.9	_	iodine	53	[210]	Αt	astatine 85		oeen repor		175		lutetium 71
9	(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium	52	[506]	Ъ	polonium 84		116 have !	iticated	173	ΥÞ	ytterbium
2	(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony	51	209.0	Bi	bismuth 83		mbers 112.	but not fully authenticated	169	Tm	thulium
4	(14)	12.0	U	carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin	20	207.2	Ъ	lead 82		atomic nu	but not f	167	ᆸ	erbium
e	(13)	10.8	В	boron 5	27.0	A	aluminium 13	69.7	Ga	gallium 31	114.8	드	indium	46	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported		165	유	holmium
		, s					(12)	65.4	Zu	zinc 30	112.4	5	cadmium	48	200.6	Ηœ	mercury 80				163	ρ	dysprosium holmium
							(11)	63.5	J	copper 29	107.9	Ag	silver	47	197.0	PΠ	gold 79	[272]	Rg	roentgenium 111	159	Д	terbium
	(10)						58.7	ï	nickel 28	106.4	Pd	palladium	46	195.1	£	platinum 78	[271]	Ds	darmstadtium 110	157	PS	gadolinium	
							(6)	58.9	ပိ	cobalt 27	102.9	뫈	rhodium	45	192.2	<u>_</u>	iridium 77	[268]	Mt	meitnerium damstadtium	152	En	europium
	1.0 H hydrogen						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium	44	190.2	Os	osmium 76	[277]		hassium 108	150	Sm	samarium
							(2)	54.9	W	manganese 25	[86]	2	molybdenum technetium ruthenium	43	186.2	Re	rhenium 75	[264]	Bh	bohrium 107	[147]	Pm	praecodymium promethium samarium europium gadolinium
		mass	poq	umber			(9)	52.0	ъ	chromium manganese 24 25	95.9	Wo	molybdenum	42	183.8	>	tungsten 74	[596]	Sg	seaborgium 106	144	PN	neodymium
	Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	PP	niobium	41	180.9	Тa	tantalum 73	[262]		dubnium 105	141	P	praseodymium
		relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium	40	178.5	Ħ	hafnium 72	[261]	Rf	rutherfordium	140		cerium
							(3)	45.0	Sc	scandium 21	88.9	>	yttrium	39	138.9	La*	lanthanum 57	[227]	Ac*	actinium 89		SS	
2	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	97.8	Sr	strontium	38	137.3	Ва	barium 56	[526]	Ra	radium 88		* Lanthanide series	* Actinide series
-	(1)	6.9	ï	lithium 3	23.0		_	39.1	¥	potassium 19	85.5	&	rubidium	37	132.9	ర	caesium 55	[223]	Ŧ	francium 87		* Lanth	* Actini