This resource	was created	and owned I	by Pearson Edexcel

Surname		Other names	
Pearson Edexcel International Advanced Level	Centre Number		Candidate Number
Advanced Subsidiar Unit 1: The Core Prin	r y	Chemis	try
	ry nciples of (try Paper Reference WCH01/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

P46937A

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box a cross ⊠ and then mark your new answer with a cross ⊠.

1 Which row in the table shows the number of protons, neutrons and electrons in a fluoride ion, F⁻?

Use the Periodic Table as a source of data.

	Protons	Neutrons	Electrons
A 🛛	8	9	9
B	9	9	10
🖾 C	9	10	9
D	9	10	10

(Total for Question 1 = 1 mark)

2 A sample of oxygen contains the isotopes ¹⁶O, ¹⁷O, ¹⁸O.

How many peaks would there be for the O_2^+ ions in the mass spectrum of this sample of oxygen?

- A 3
- **B** 5
- 🛛 С б
- 🖸 **D** 9

(Total for Question 2 = 1 mark)

3 2000 g of a solution contains 0.015 g of solute.

In the solution, the concentration of the solute in parts per million (ppm) is

- 🖾 **A** 3.0
- **B** 7.5
- **C** 30
- 🖸 **D** 75

(Total for Question 3 = 1 mark)

Progress of reaction

Which row in the table shows the correct terms for ${\bf X}$ and ${\bf Y}$ and the enthalpy change for this reaction?

	X	Y	Enthalpy change
A 🖾	products	reactants	endothermic
B	products	reactants	exothermic
⊠ C	reactants	products	endothermic
⊠ D	reactants	products	exothermic

(Total for Question 5 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

	/lea	n hond				Br—Br	C—Br	C—H
Vh			enthalpy / kJ mol ⁻¹	347	612	193	290	413
VII	at i	s the ap	proximate enthalpy cl	hange, in kJ	mol ⁻¹ , for t	he reaction :	shown?	
			H C=C	∕H + Br—	$-Br \rightarrow H-$	H H -CCH Br Br		
	A	-225						
	B	-122						
	С	+122						
	D	+225						
					()	Total for Qu	estion 6 =	1 mark)
	A	2						
	C	4						
	D	5						
					()	Total for Qu	estion 7 =	1 mark)
U	set	this spa	ce for rough working	g. Anything	g you write	in this spa	ce will gaiı	n no credi
	3 The n v 3	B C D The fir A B C D	The first six ion n which group A 2 B 3 C 4 D 5	 A -225 B -122 C +122 D +225 The first six ionization energies, in k. 1086, 2353, 4 an which group of the Periodic Tables A 2 B 3 C 4 D 5 	 A -225 B -122 C +122 D +225 The first six ionization energies, in kJ mol ⁻¹ , of an 1086, 2353, 4621, 6223, 1086, 2353, 1086, 2356, 1086	 A -225 B -122 C +122 D +225 (1) the first six ionization energies, in kJ mol⁻¹, of an element a 1086, 2353, 4621, 6223, 37832, 4727 n which group of the Periodic Table is this element? A 2 B 3 C 4 D 5 	 A -225 B -122 C +122 D +225 (Total for Que the first six ionization energies, in kJ mol⁻¹, of an element are 1086, 2353, 4621, 6223, 37832, 47278 n which group of the Periodic Table is this element? A 2 B 3 C 4 D 5 	 A -225 B -122 C +122 D +225 (Total for Question 6 = 1086, 2353, 4621, 6223, 37832, 47278 n which group of the Periodic Table is this element? A 2 B 3 C 4

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Some energy changes involved in a Born-Haber cycle are 9 **A** electron affinity **B** lattice energy **C** standard enthalpy change of atomization **D** standard enthalpy change of formation (a) Which enthalpy or energy change is represented by **p**? $\Delta H^{\ominus} = \mathbf{p}$ $K(s) \rightarrow K(g)$ (1) B **C** 🖾 D (b) Which enthalpy or energy change is represented by **q**? $\Delta H^{\ominus} = \mathbf{q}$ $K(s) + \frac{1}{2}CI_2(q) \rightarrow KCI(s)$ (1) A B **C** 🖾 D (c) Which enthalpy or energy change is represented by r? $\Delta H^{\ominus} = \mathbf{r}$ $\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$ (1) 🖾 B **C** D (Total for Question 9 = 3 marks)

10 The diagram, which is not drawn to scale, shows the Born-Haber cycle for potassium chloride. The energy changes given are in kJ mol⁻¹.

What is the value for \mathbf{W} , in kJ mol⁻¹?

- **A** -956
- **B** −82
- **C** +82

(Total for Question 10 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

11 Which row in the table shows the lattice energies, in kJ mol⁻¹, of calcium fluoride, potassium fluoride and potassium iodide?

	Calcium fluoride	Potassium fluoride	Potassium iodide
A	-2630	-817	-651
B	-2630	-651	-817
🖾 C	-651	-817	-2630
D	-817	-2630	-651

(Total for Question 11 = 1 mark)

12 The experimental value for the lattice energy of beryllium iodide is −2800 kJ mol⁻¹ and the theoretical value is −2653 kJ mol⁻¹.

The best explanation for the difference is that the

- A beryllium ion is large and polarizes the iodide ion.
- **B** beryllium ion is small and polarizes the iodide ion.
- C iodide ion is large and polarizes the beryllium ion.
- **D** iodide ion is small and polarizes the beryllium ion.

(Total for Question 12 = 1 mark)

13 Carbon (diamond) and oxygen both form covalent bonds between their atoms in the element.

What is the **best** reason for the fact that diamond has a much higher melting temperature than oxygen?

- A Diamond is a solid but oxygen is a gas at room temperature.
- **B** Diamond has a giant atomic structure but oxygen has a simple molecular structure.
- C The covalent bonds between carbon atoms in diamond are stronger than those between oxygen atoms.
- D There is a single covalent bond between carbon atoms in diamond but a double covalent bond between oxygen atoms.

(Total for Question 13 = 1 mark)

DO NOT WRITE IN THIS AREA

	er 2 aper		6 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Chemistry	U V
17	٨١٢		as react with hydrogon gas in the presence of a nickel catalyst		
17			es react with hydrogen gas in the presence of a nickel catalyst.		
			ol of an alkene reacted completely with 19.2 dm ³ of hydrogen gas at room erature and pressure.		
	Но	w n	nany C—C bonds are there in a molecule of this alkene?		
	[Th	ne n	nolar volume of a gas is 24.0 dm ³ mol ⁻¹ at room temperature and pressure]		
	\mathbf{X}	A	4		
	\mathbf{X}	В	3		
	\mathbf{X}	C	2		
	\mathbf{X}	D	1		
			(Total for Question 17 =	= 1 mark)	
_		_	TOTAL FOR SECTION A = 20	MARKS	-

Answer ALL the questions. Write your answers in the spaces provided.

18 (a) The relative atomic masses of elements can be determined using a mass spectrometer.

(i) Define the term **relative atomic mass**.

(3)

(ii) Describe fully how positive ions are formed from gaseous atoms in a mass spectrometer.

11

(iii) The following data were obtained from the mass spectrum of a sample of strontium.

Mass / charge ratio	% abundance
84.0	0.56
86.0	9.86
87.0	7.02
88.0	82.56

Calculate the relative atomic mass of strontium in this sample.

Give your answer to **three** significant figures.

(2)

(b) In which block of the Periodic Table is strontium found?

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Draw the dot and cross diagram for strontium chloride.

Show **outer** electrons only.

(2)

(d) A solution of strontium nitrate was prepared from strontium oxide and dilute nitric acid. Write the equation for this reaction, including state symbols.

(2)

(e) A compound of strontium contains 49.9% strontium, 13.7% carbon and 36.4% oxygen, by mass.

6 9 3 7 A 0 1 3

Calculate the empirical formula for this compound.

[Use relative atomic masses: Sr = 87.6, C = 12.0, O = 16.0]

(3)

(Total for Question 18 = 15 marks)

1s

phosphorus.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

19 The first ionization energies for the elements in Period 3 of the Periodic Table are

Element	Na	Mg	AI	Si	Р	S	Cl	Ar
First ionization energy / kJ mol ⁻¹	496	738	578	789	1012	1000	1251	1521

(a) (i) Complete the electronic configuration of phosphorus, using the electrons-in-boxes notation.

Write the symbols for the sub-shells on the dotted lines.

$\uparrow\downarrow$							

*(ii) The first ionization energies generally increase from left to right across the period.

Explain why the first ionization energy of sulfur is **lower** than that of phosphorus.

(iii) Write an equation, with state symbols, to show the **third** ionization energy of

(2)

(2)

Winter 2016 **Chemistry Unit 1** www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper WCH01 *(b) (i) Explain why the first ionization energy of nitrogen is greater than the first ionization energy of phosphorus. (3) (ii) Draw a dot and cross diagram to show the bonding in a molecule of nitrogen. Show outer electrons only. (2) (c) Solid white phosphorus exists as P_4 molecules. Calculate the number of molecules in 24.8 g of white phosphorus. [The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$] (2) (Total for Question 19 = 13 marks) 15

6 9 3 7 A 0 1 5

DO NOT WRITE IN THIS AREA

This resource was created and owned by Pearson Edexcel Past Paper **20** Compound **X** has the molecular formula C_5H_{12} . (a) Draw the **displayed** formulae of the **three** structural isomers of C_5H_{12} . (2) (b) C_5H_{12} reacts with chlorine to form a mixture of products. (i) Classify the type and mechanism of this reaction. (2) (ii) Write the equations for the two propagation steps for this mechanism. Use the molecular formula, C₅H₁₂, in your first equation. Curly arrows are not required. (2) (iii) Write the equation for **one** termination step for this mechanism. Curly arrows are not required. (1)

P 4 6 9 3 7 A 0 1 6 2 4

DO NOT WRITE IN THIS AREA

	1 Turn ov
enthalpy change of combustion =	
(iii) Calculate the enthalpy change of combustion of compound X . Include a sign and units in your answer.	(2)
moles of \mathbf{X} =	
energy transferred =	(1)
Use the equation heat energy produced (J) = mass of water \times 4.18 \times temperature change	(1)
(i) Calculate the energy transferred, in kJ , in this experiment.	
The temperature rise of the water was 14.5 °C.	
100.0 g of water was heated by burning 0.144 g of compound X .	
of compound X , C_5H_{12} .	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

6 9 3 7 A 0 1

*(d) Complete the Hess cycle and use it to calculate the enthalpy change of combustion of C_5H_{12} from the following data.

Show all of your working.

Standard enthalpy change of formation of $C_5H_{12}(I)$	–173.2 kJ mol ⁻¹
Standard enthalpy change of combustion of $H_2(g)$	–285.8 kJ mol ⁻¹
Standard enthalpy change of combustion of carbon(s, graphite)	–393.5 kJ mol ⁻¹

(4)

Turn over 🕨

DO NOT WRITE IN THIS AREA

Past Pape		This resource was created and owned by Pearson Edexcel	WCH
'HIS AREA	(ii) Iden	tify, by name or formula, the organic product A formed in Reaction 2 .	(1)
DO NOT WRITE IN THIS AREA		e the colour change that you would see when Reaction 2 is carried out.	(1)
DO NOT WRITE IN THIS AREA	(iv) Give	to the mechanism for Reaction 3 . Use curly arrows and show any relevant bles and lone pairs.	(4)
DO NOT WRITE IN THIS AREA			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 Turn over

(c) But-2-ene polymerizes to form poly(but-2-ene).

Draw a section of this polymer, showing **two** repeat units.

(1)

DO NOT WRITE IN THIS AREA

(d) Cyclohexanol forms cyclohexene in the following reaction.

- (i) Calculate the percentage atom economy by mass for the production of cyclohexene.
- (1)
- (ii) Calculate the percentage yield if 10.20 g of cyclohexanol produced 6.15 g of cyclohexene.

(2)

(Total for Question 21 = 14 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

Winter 2016

Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Chemistry Unit 1 WCH01

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

		1 1				r i		
0 (8) (18) 4.0 He	helium 2 20.2 20.2 Ne neon 10	39.9 Ar argon 18	83.8 Krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	ted		
~	(17) 19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	oeen repor	175 Lu lutetium 71	[257] Lr lawrencium 103
Q	(16) 16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have t	173 Yb ytterbium 70	[254] No nobelium 102
ۍ	(15) 14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thutium 69	[256] Md mendelevium 101
4	(14) 12.0 C carbon 6	28.1 Si silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	vith a	167 Er erbium 68	[253] Fm fermium 100
ñ	(13) 10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81		165 Ho holmium 67	[251] [254] Cf Es californium 98 99
		(12)	65.4 Zn _{Zinc} 30	112.4 Cd cadmium 48	200.6 Hg mercury 80		163 Dy dysprosium 66	[251] Cf californium 98
		(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium 111	159 Tb terbium 65	[245] BK berketum 97
(10)			58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] Ds damstadtium 110	157 Gd gadolinium 64	[247] Cm aunum 96
		(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium 95
1.0 H	1 1	(8)	55.8 Fe iron 26	101.1 Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[237] [242] Np Pu neptumium plutonium 93 94
		(2)	54.9 Mn manganese 25	[98] TC 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] Np neptunium 93
	mass ool umber	(9)	52.0 Cr chromium 24	95.9 Mo molybdenum 42	183.8 V tungsten 74	[266] Sg seaborgium 106	141 144 Pr Nd praceodymium 59 60	238 U ^{uranium} 92
	Key relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 ND niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 Pr 59	[231] Pa protactinium 91
	relati ato l atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce 58	232 Th thorium 90
		(3)	45.0 Sc scandium 21	88.9 Y 39	138.9 La* lanthanum 57	[227] Ac* actinium 89	es	
7	(2) 9.0 Beryllium 4	24.3 Mg nagnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
~	(1) 6.9 Li 1 itthium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lantl * Actin	

The Periodic Table of Elements