	5
resource was created an	nd owned by Pearson Edexcel

Write your name here Surname	Other	names
Pearson Edexcel	Centre Number	Candidate Number
Chemistry		
Advanced Subsidiar Unit 1: The Core Prin	ry	mistry
Advanced Subsidiar	ry nciples of Chei	mistry Paper Reference WCH01/01

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.

This

• Answer the questions in the spaces provided – there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P48367A ©2017 Pearson Education Ltd. 6/5/6/6/

	this	see	SECTION A LL the questions in this section. You should aim to spend no more than 20 minutes on ction. For each question, select one answer from A to D and put a cross in the box ⊠. hange your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.
1	Th	e Av	vogadro constant is equal to the number of
-			atoms in one mole of any element.
	X	В	atoms in one mole of any monatomic element.
	X		atoms in one mole of any compound.
	X		ions in one mole of an ionic compound.
			(Total for Question 1 = 1 mark)
2			ethane reacts with chlorine, a mixture of products forms. Which product is the vidence for a free radical mechanism?
	×	Α	HCl
	X	В	C ₄ H ₁₀
	X	С	C ₂ H ₅ Cl
	\times	D	C ₂ H ₄ Cl ₂
			(Total for Question 2 = 1 mark)
3	Wł	nati	s the systematic name for the compound shown below?
	×	Α	<i>E</i> -3-methylpent-2-ene
	×	В	<i>E</i> -3-methylpent-3-ene
	X	С	Z-3-methylpent-2-ene
	\times	D	Z-3-methylpent-3-ene
			(Total for Question 3 = 1 mark)
	Us	e th	is space for any rough working. Anything you write in this space will gain no credit.

ŀ	How many s	traight chain isomers have the molecular formula C_3H_5Cl ?	
	■ A 3		
	B 4		
	C 5		
	D 6		
		(Total for Question 4 = 1 mark)	
5	100 cm ³ of m	nethane, CH ₄ , is completely burned in 400 cm ³ of oxygen.	
		inal volume of the gas mixture, in cm ³ , when all volumes are measured at rature and pressure?	
	🖾 A 100		
	B 200		
	C 300		
	D 400		
		(Total for Question 5 = 1 mark)	
6	In the United	d Kingdom, the limit for gaseous hydrocarbons in vehicle exhaust gases is	
Ū	200 ppm.		
		naximum volume of gaseous hydrocarbons allowed in 10 mol of exhaust m temperature and pressure?	
	[Molar volun	$ne = 24 \text{ dm}^3 \text{ mol}^{-1}$	
	🖾 A 24 cn	n ³	
	🖾 B 48 cn	n ³	
	🛛 C 96 cn	n ³	
	■ D 480 c	m ³	

DO NOT WRITE IN THIS AREA

7			of these statements is the best evidence for the existence of ions in m chloride?
	A Solid sodium chloride conducts electricity.		
	B When an electric current is passed through a solution of sodium chloride, the movement of the coloured ions is observed.		
	C Sodium chloride crystals have a regular shape.		
	\mathbf{X}	D	There is good agreement between theoretical and experimental lattice energies for sodium chloride.
_			(Total for Question 7 = 1 mark)
8	W/ł	hich	ion has the smallest ionic radius?
ľ			Cl-
	X		Ca ²⁺
		c	K ⁺
		-	S ²⁻
		D	
-			(Total for Question 8 = 1 mark)
9	Wł	nich	quantity is exothermic?
	\times	Α	Enthalpy change of atomisation of sulfur.
	\mathbf{X}	В	First ionisation energy of sulfur.
	\mathbf{X}	С	First electron affinity of sulfur.
	X	D	Second electron affinity of sulfur.
			(Total for Question 9 = 1 mark)
	Us	e th	nis space for any rough working. Anything you write in this space will gain no credit.

Winter 2017

Past Paper

5

(Total for Question 10 = 1 mark)

11 Which equation represents the lattice energy of magnesium nitride, Mg_3N_2 ?

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

(Total for Question 11 = 1 mark)

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

13 The following statements give information about the thermodynamic stability of magnesium chlorides. MgCl is stable with respect to chlorine and magnesium. MgCl is unstable with respect to $MgCl_2$ and Mg. $MgCl_3$ is unstable with respect to chlorine and magnesium. Which signs of the standard enthalpy changes of formation of MgCl and MgCl₃ are correct? $\Delta H_{\rm f}^{\oplus}$ [MgCl(s)] $\Delta H_{\rm f}^{\oplus}$ [MgCl₃(s)] Α negative negative В \times positive negative С \times negative positive D positive positive (Total for Question 13 = 1 mark) 14 In the electrolysis of copper(II) chromate(VI) solution, the colour that develops around the positive electrode (anode) is **A** orange. B yellow. Κ C green. **D** blue. (Total for Question 14 = 1 mark) **15** When 10 cm³ of a nitric acid solution reacts with 20 cm³ of a sodium hydroxide solution, the temperature rise is ΔT . Repeating the reaction with 15 cm³ of the same nitric acid solution and 30 cm³ of the same sodium hydroxide solution would give a temperature rise of \blacksquare **A** 0.5 ΔT $0.67 \Delta T$ \mathbf{X} В **C** ΔT \square **D** 1.5 ΔT (Total for Question 15 = 1 mark)

16 How many moles of ions are present in 30 cm³ of 0.025 mol dm⁻³ barium hydroxide solution, $Ba(OH)_2(aq)$? DO NOT WRITE IN THIS AREA ▲ A 0.00075 **B** 0.00150 **C** 0.00225 **D** 0.00450 (Total for Question 16 = 1 mark) 17 When 1.270 g of copper ($A_r = 63.5$) is added to excess silver nitrate solution, 4.316 g of silver ($A_r = 107.9$) forms. The ionic equation for the reaction is: \square **A** Cu(s) + 2Ag⁺(aq) \rightarrow Cu²⁺(aq) + 2Ag(s) \square **B** 2Cu(s) + Ag²⁺(aq) \rightarrow 2Cu⁺(aq) + Ag(s) NOT WRITE IN THIS AREA \square C Cu(s) + Ag²⁺(aq) \rightarrow Cu²⁺(aq) + Ag(s) \square **D** Cu(s) + Aq⁺(aq) \rightarrow Cu⁺(aq) + Aq(s) (Total for Question 17 = 1 mark) **18** The process with the highest atom economy is the production of \square A propene by cracking eicosane, C₂₀H₄₂. **B** 1-chloropropane from propane and chlorine. **C** cyclohexene by reforming hexane. **D** poly(propene) by polymerising propene. (Total for Question 18 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit. DO NOT WRITE IN THIS AREA 7

8 3 6 7 A 0

P 4 8 3 6 7 A 0 8 2 4

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

Past P	aper	This resource was created and owned by Pearson Edexcel	WCH02
		SECTION B	
		Answer ALL the questions. Write your answers in the spaces provided.	
21	This qu	uestion is about cyclohexene which can be used to show the reactions of the alkenes.	
		Cyclohexene	
	Data:	Boiling temperature = $83 \degree C$ Density = 0.81 g cm ⁻³	
	(a) (i)	1 cm ³ of bromine water is shaken with 2 cm ³ of cyclohexene in a test tube and the mixture allowed to stand.	
		Describe what you would see before and after shaking. (3)	
	(ii)	Draw the skeletal formula of the major organic product of this reaction. (1)	

DO NOT WRITE IN THIS AREA

st Paper	This resource was created and owned by Pearson Edexcel	WCH
(b)	Draw the skeletal formula and give the name of the organic product formed when cyclohexene reacts with potassium manganate(VII) mixed with dilute sulfuric acid.	(2)
	Skeletal formula	
	Name	
(c)	Suggest the skeletal formula of the polymer that would be formed if cyclohexene polymerised. Show two repeat units.	(2)
	(Total for Question 21 = 8 mar	ks)
		11
	P 4 8 3 6 7 A 0 1 1 2 4	Turn over

DO NOT WRITE IN THIS AREA

(1)

(c) (i) The formula of the hydrated zinc sulfate crystals is $ZnSO_4.7H_2O$.

Calculate the molar mass of ZnSO₄.7H₂O.

(ii) Calculate the number of moles of sulfuric acid in 20.0 cm³ of a 1.0 mol dm⁻³ solution.

(1)

(iii) 4.00 g of hydrated zinc sulfate crystals form.

Calculate the percentage yield of hydrated zinc sulfate.

Give your answer to **two** significant figures.

(2)

(Total for Question 22 = 12 marks)

23

.....

.....

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

This	s qu	lestion is about the gases propane, C_3H_8 , and butane, C_4H_{10} .		
(a) (i)		Propane and butane are both alkanes. Alkanes are said to belong to the same 'homologous series'.		
		Give two characteristics associated with homologous series.	(2)	
	(ii)	Butane has a structural isomer but propane does not.		
		State what is meant by a structural isomer and explain why butane has a structural isomer but propane does not.	(2)	
		Structural isomer	(2)	
		Explanation		
		ttled propane is used as the fuel for the burners in hot air balloons. A hot air loon carries 80 kg of liquefied propane.		
	(i)	Write the equation for the complete combustion of propane in air under standard conditions. State symbols are not required.		
			(2)	

(ii) Calculate the number of moles of propane in 80 kg. (iii) The standard enthalpy change of combustion of propane, $\Delta H_{c298}^{\ominus} = -2220$ kJ mol⁻¹. Calculate the heat energy, in joules, given out when 80 kg of propane burns completely.

(1)

(iv) The burners have a maximum power rating of 4800 W. (1 W = 1 J s^{-1})

Calculate the maximum time, in **hours**, that the balloon's fuel would last if the burners are used continuously on full power with 80 kg of fuel.

(1)

(v) A student suggests that butane would be a better fuel for hot air balloons than propane because it has a more negative enthalpy change of combustion, $\Delta H_{c,298}^{\ominus} = -2880 \text{ kJ mol}^{-1}$.

Suggest two reasons why butane is **not** a better fuel than propane for hot air balloons.

(2)

DO NOT WRITE IN THIS AREA

Reason one

Reason two

(1)

- (c) The standard enthalpy changes of atomisation of propane and butane can be calculated. The calculation requires their standard enthalpy changes of formation and the standard enthalpy changes of atomisation of carbon and hydrogen.
 - (i) Complete the Hess cycle for the calculation of the standard enthalpy change of atomisation of propane.

(ii) Calculate the standard enthalpy change of atomisation of propane, $\Delta H^{\oplus}_{at,298}$ [C₃H₈(g)]

Use the data below.

 $\Delta H^{\ominus}_{f,298}[C_3H_8(g)] = -104.5 \text{ kJ mol}^{-1}$

 $\Delta H^{\ominus}_{at,298}[1/_{2}H_{2}(g)] = +218 \text{ kJ mol}^{-1}$

 $\Delta H^{\ominus}_{at,298}$ [C(s, graphite)] = +716.7 kJ mol⁻¹

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iii) The standard enthalpy change of atomisation of butane can be calculated using the same method as for propane. This value, together with the carbon-hydrogen bond energy, can be used to calculate the carbon-carbon bond energy $\Delta H_{at,298}[C_4H_{10}(g)] = +5173.3 \text{ kJ mol}^{-1}.$ $E(C-H) = +412.3 \text{ kJ mol}^{-1}$ Calculate the carbon-carbon bond energy. (2) (iv) Suggest why your answer differs from the mean bond energy for the carbon-carbon bond given in data books. (1) (Total for Question 23 = 19 marks)

- 24 This question is about the alkali metal potassium and the salt potassium chloride.
 - (a) (i) A sample of potassium is known to consist of isotopes with mass numbers 39 and 41.

For each isotope, complete the table below to show the numbers of protons, neutrons and electrons.

(2)

lsotope mass number	Number of protons	Number of neutrons	Number of electrons
39			
41			

(ii) Explain the meaning of the term isotope, using the information from the table in (a)(i).

(1)

(iii) The relative atomic mass of this sample of potassium is 39.1.

Calculate the percentage abundance of each isotope.

(2)

P 4 8 3 6 7 A 0 2 0 2 4

Winter 2 Past Paper		www.mystudybro.com Che This resource was created and owned by Pearson Edexcel	mistry	Unit 1 WCH01
		Write the equation for the first ionisation energy of potassium.	(2)	
DO NOT WRITE IN THIS AREA		Explain why there is a general rise in the value of the successive ionisation energies.	(2)	
DO NOT WRITE IN THIS AREA	Y	Explain each of the three sharp rises in the graph. You should include details of the subshell from which the electron is removed at each sharp rise.	i (3)	
IS AREA				
DO NOT WRITE IN THIS AREA				
Q				21

DO NOT WRITE IN THIS AREA

ast Paper	This resource was created and owned by Pearson Edexcel	nemistry	WCH0
(c) (i)	Draw a dot and cross diagram for potassium chloride.		
	Only show the electrons in the outer shell of both ions.	(2)	
(ii)	Compare the electrical conductivity of potassium metal and potassium chlo	oride. (2)	
	Describe two similarities in the structure and bonding of potassium metal a potassium chloride.	and (2)	
	Give one difference between the structures of potassium metal and potassium chloride.	(1)	
	(Total for Question 24 = 21	marks)	
	TOTAL FOR SECTION B = 60 I TOTAL FOR PAPER = 80 I		
22	P 4 8 3 6 7 A 0 2 2 2 4		

Past Paper

DO NOT WRITE IN THIS AREA

BLANK PAGE

Winter	2017
Past Pape	ər

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Chemistry Unit 1 WCH01

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

0 (8)	(18) 4.0 hetium	20.2 Ne 10	39.9 Ar argon 18	83.8	Krypton 36	131.3	Xenon 54	[222]	Rn	86	ted						
7	1217	19.0 F fluorine 9	35.5 CI chlorine 17	79.9	Br bromine 35	126.9	I iodine 53	[210]	At	85	been repor	175	Ľ	lutetium 71	[257]	Lr lawrencium 103	201
9	(14)	16.0 0 oxygen 8	32.1 S sulfur 16	79.0	Se selenium 34	127.6	Te tellurium 52	[209]	Po	84	116 have t	173	٨Þ	ytterbium 70	[254]	No nobelium 102	104
5	(15)	14.0 N nitrogen 7	31.0 Phosphorus 15	74.9	As arsenic 33	121.8	Sb antimony 51	209.0	Bi	83	tomic numbers 112-116 haw but not fully authenticated	169	Ta	thullum 69	[256]	Md mendelevium 101	
4	(14)	12.0 C carbon 6	28.1 Si stlicon	72.6	Ge germanium 32	118.7	50 E N	207.2	Peed Peed	82	Etements with atomic numbers 112-116 have been reported but not fully authenticated	167	Ъ	erblum 68	[253]	Fremium 100	221
Э	(21)	10.8 boron 5	27.0 Al aluminium 13	69.7	Ga gallium 31	114.8	In tindium 49	204.4	H allen	81		165		holmium 67	[254]	Es einsteinium 99	
			(12)	65.4	Zinc 30	112.4	Cd cadmium 48	200.6	Hg	80	Elerr	163	Dy	dysprosium 66	[251]	Cf Es californium einsteinium 98 99	2
			(11)	63.5	Cu copper 29	107.9	Ag silver 47	197.0	Au	79	[272] Rg 111	159		65	[245]	BK berketium 97	
5	(10)			58.7	Ni nicket 28	106.4	Pd pailadium 46	195.1	Pt	78	[271] DS damstadtum 110	157	Pg	gadotinium 64	[247]	en alle se	2
5	(6)				Co cobalt 27	102.9	Rh thodium 45	192.2	Ir Indian	17	[268] Mt 109	152	Eu	europium 63	[243]	Am americium 95	
	1.0 Hydrogen		(8)			101.1	Ru ruthenium 44	190.2	Os	76	[277] HS hassium 108	150	Sm	62	[242]	Pu plutonium 94	
) - -		ι.	54.9	Mn manganese 25	[98]	Tc technetium 43	186.2	Re	75	E g	[147]	Рш	promethium 61	[237]	Np neptunium 93	2	
		mass pol umber	(9)	52.0	chromium manganese 24 25	95.9	Mo Tc molybdenum technetium 42 43	183.8	V	74	[266] Sg seaborgium 106	144	PN	60 60	238	U uranium 92	
	Kev	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9	41 41	180.9	Ta	73	[262] Db dubnium 105	141	Pr	59 60 61 61 61	[231]	Pa protactinium 91	
		relati ato	(4)	47.9	Ti titanium 22	91.2	Zr zirconium 40	178.5	Hf	72	[261] Rf nutherfordium 104	140	e.	58 58	232	thorium 90	~
			(3)	45.0	Sc scandium 21	88.9	Y yttrium 39	138.9	La*	57	[227] Ac* actinium 89		X1				
2	6	9.0 Be beryllium	24.3 Mg nagnesium 12	40.1	calcium 20	87.6	Sr strontium 38	137.3	Ba	56	[226] Ra radium 88	 Lanthanide series Actinide series 					
-	(1)	6.9 Li 1tthium	23.0 Na sodium 11	39.1	K potassium 19	85.5	Rb rubidium 37	132.9	Constim	55	[223] Fr francium 87	• Lanth		· Actin			

P 4 8 3 6 7 A 0 2 4 2 4