Please check the examination details belo	w before entering your candidate information
Candidate surname	Other names
Pearson EdexcelCenInternational Advanced LevelC	tre Number Candidate Number
Wednesday 9 Ja	anuary 2019
Morning (Time: 1 hour 30 minutes)	Paper Reference WCH01/01
Chemistry Advanced Subsidiary Unit 1: The Core Principles	of Chemistry
Candidates must have: Scientific ca Ruler	Iculator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over 🕨

DO NOT WRITE IN THIS AREA

In units of parts per million (ppm) this is A 2.09×10^{-5} B 2.09×10^{-2} C 20.9 D 2.09×10^{4} (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm ³ . The concentration, in mol dm ⁻³ , of sodium ions in the plasma is A 1.35×10^{-1} B 2.82×10^{-1} C 1.35×10^{-4} D 2.82×10^{-4} (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox.	thi Ify 1 Th	is s ou	ec	tion. For each question, select one answer from A to D and put a cross in the box \boxtimes . hange your mind, put a line through the box \bigotimes and then mark your new answer with
In units of parts per million (ppm) this is A 2.09×10^{-5} B 2.09×10^{-2} C 20.9 D 2.09×10^4 (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm ³ . The concentration, in mol dm ⁻³ , of sodium ions in the plasma is A 1.35×10^{-1} B 2.82×10^{-1} C 1.35×10^{-4} D 2.82×10^{-4} (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox.				
□ B 2.09 × 10 ⁻² □ C 20.9 □ D 2.09 × 10 ⁴ (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm ³ . The concentration, in mol dm ⁻³ , of sodium ions in the plasma is □ A 1.35 × 10 ⁻¹ □ B 2.82 × 10 ⁻¹ □ C 1.35 × 10 ⁻⁴ □ D 2.82 × 10 ⁻⁴ (Total for Question 2 = 1 mark) Solute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is □ A displacement. □ B neutralisation. □ C precipitation. □ D redox.				
□ C 20.9 □ D 2.09 × 10 ⁴ (Total for Question 1 = 1 mark) (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm ³ . The concentration, in mol dm ⁻³ , of sodium ions in the plasma is 2 A 1.35 × 10 ⁻¹ 3 B 2.82 × 10 ⁻⁴ (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is □ A displacement. □ B neutralisation. □ C precipitation. □ C precipitation. □ D redox.	\mathbf{X}	•	4	2.09×10^{-5}
 □ D 2.09 × 10⁴ (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm³. The concentration, in mol dm⁻³, of sodium ions in the plasma is A 1.35 × 10⁻¹ B 2.82 × 10⁻¹ C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	\times] E	3	2.09×10^{-2}
 (Total for Question 1 = 1 mark) 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm³. The concentration, in mol dm⁻³, of sodium ions in the plasma is A 1.35 × 10⁻¹ B 2.82 × 10⁻¹ C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	×	(2	20.9
 2 A sample of blood plasma contains 3.10 mg of sodium ions in 1 cm³. The concentration, in mol dm⁻³, of sodium ions in the plasma is A 1.35 × 10⁻¹ B 2.82 × 10⁻¹ C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	\times)	2.09×10^{4}
 The concentration, in mol dm⁻³, of sodium ions in the plasma is A 1.35 × 10⁻¹ B 2.82 × 10⁻¹ C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 				(Total for Question 1 = 1 mark)
B 2.82×10^{-1} C 1.35×10^{-4} D 2.82×10^{-4} (Total for Question 2 = 1 mark) Solute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox.				
 C 1.35 × 10⁻⁴ D 2.82 × 10⁻⁴ (Total for Question 2 = 1 mark) (Total for Question	×	•	4	1.35×10^{-1}
 D 2.82 × 10⁻⁴ (Total for Question 2 = 1 mark) 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	×] E	3	2.82×10^{-1}
 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	\times	0	2	1.35×10^{-4}
 3 Dilute sulfuric acid is mixed with a solution of barium chloride. The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 	\times)	2.82×10^{-4}
 The reaction that occurs is A displacement. B neutralisation. C precipitation. D redox. 				(Total for Question 2 = 1 mark)
 B neutralisation. C precipitation. D redox. 				
 C precipitation. D redox. 	\times	 	ł	displacement.
D redox.	\times] E	3	neutralisation.
	\times	0	2	precipitation.
	\times)	redox.
(Total for Question 3 = 1 mark)				(Total for Question 3 = 1 mark)

DO NOT WRITE IN THIS AREA

		re (r.t.p.)?
		volume of gas at r.t.p. = $24000 \text{ cm}^3 \text{ mol}^{-1}$ Avogadro constant = $6.0 \times 10^{23} \text{ mol}^{-1}$]
	-	3.0×10^{21}
	-	1.2×10^{22}
	-	1.5×10^{22}
X] D	1.2×10^{25}
		(Total for Question 4 = 1 mark)
Th	e re	action of magnesium chloride with silver nitrate gives a precipitate of silver chloride.
		$MgCl_2(aq) + 2AgNO_3(aq) \rightarrow Mg(NO_3)_2(aq) + 2AgCl(s)$
		tion containing 0.001 mol of magnesium chloride reacts with excess silver nitrate. is the mass of the precipitate formed?
[M	lolar	$mass/gmol^{-1}$: AgCl = 143.4]
X	A	0.072 g
X	B	0.143 g
X] C	0.287 g
×] D	0.574 g
		(Total for Question 5 = 1 mark)
		0.127 g of copper is added to excess silver nitrate solution, the following on occurs.
		$Cu(s) + 2AgNO_{3}(aq) \rightarrow Cu(NO_{3})_{2}(aq) + 2Ag(s)$
W	hat r	mass of silver is formed?
[M	lolar	$r masses/g mol^{-1}$: Cu = 63.5 Ag = 107.9]
X	A	0.216g
X	B	0.254 g
\times] C	0.432 g
X	D	0.863 g
		(Total for Question 6 = 1 mark)

DO NOT WRITE IN THIS AREA

[Mo	olar	masses / g mol ⁻¹ : O = 16.0 P = 31.0]
×	A	28.6%
X	В	42.9%
X	C	43.7%
X	D	56.3%
		(Total for Question 7 = 1 mark)
Alu	ımiı	nium reacts with hydrochloric acid.
		$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g)$
		s the maximum volume of hydrogen at room temperature and pressure (r.t.p.) In be formed from 0.135 g of aluminium?
[Mo	olar	volume of gas at r.t.p. = $24000 \text{ cm}^3 \text{ mol}^{-1}$ Molar mass Al = 27.0 g mol^{-1}]
X	A	60 cm ³
X	В	80 cm ³
X	C	120 cm ³
X	D	180 cm ³
		(Total for Question 8 = 1 mark)
150)cn	n ³ of ethane is mixed with 700 cm ³ of oxygen. The equation for the reaction is
		$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$
		s the total volume of gas when the reaction is complete?
X	A	150 cm ³
X	В	300 cm ³
X	с	325 cm ³
X	D	475 cm ³
		(Total for Question 9 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	2Fe(s)	+	1½O ₂ (g)	\rightarrow	$Fe_2O_3(s)$	$\Delta H^{\ominus} = -824 \text{kJ} \text{mol}^{-1}$
	C(s)	+	½O ₂ (g)	\rightarrow	CO(g)	$\Delta H^{\ominus} = -110 \text{kJ} \text{mol}^{-1}$
For the rea	ction					
	$Fe_2O_3(s)$	+ 3	$C(s) \rightarrow 2$	Fe(s)	+ 3CO(g)	
the enthal	py change	is				
A −49	94 kJ mol ⁻¹					
B +49	94 kJ mol ⁻¹					
C −7	14 kJ mol ⁻¹					
D +7	14 kJ mol ⁻¹					
						(Total for Question 11 = 1 mark)
2 Which cha	nge would	have	a negati	ve Δh	√value?	
🖾 A Cl(g) + e⁻ →	Cl-	(g)			
B	$Cl_2(g) \rightarrow$	> 2Cl	(g)			
🛛 C	Na(s) 🔿	Na	(I)			
D	Na(g) →	Na ⁺	(g) + e ⁻			
						(Total for Question 12 = 1 mark)
Use this sp	oace for an	y rou	ıgh worki	ng.	Anything y	you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

Use th	is space for any	rough work	king. Any	thing	you write in	this space will gain	no credit.
					(Total f	or Question 14 = 1 n	nark)
C 🛛 C	Ne and Na ⁺ onl Ne, F ⁻ and Na ⁺	у					
B	Ne and F ⁻ only						
Α 🖾	Ne only						
4 Which	of the species, N	le, F⁻ and Na	⁺, have th	e elec	tronic structu	re 1s ² 2s ² 2p ⁶ ?	
	()				(Total f	or Question 13 = 1 n	nark)
	$(kJ mol^{-1})^2$						
⊠ C	$(kJ mol^{-1}) \times 2$						
⊠ A	$(kJ mol^{-1}) \div 2$						
	hits of ΔH for equilibrium kJ mol ⁻¹	lation (1) are	KJ MOI .	ine u	nits of ΔH for	equation (2) are	
	the of Allford one	2Mg(s) +	-	\rightarrow	2MgO(s)	(2)	
			¹ / ₂ O ₂ (g)	\rightarrow	MgO(s)	(1)	

Winter 2019 Past Paper

20 But-2-ene reacts with acidified potassium manganate(VII) at room temperature. The organic product of this reaction is

- A butane-1,2-diol.
- **B** butane-1,3-diol.
- C butane-1,4-diol.
- **D** butane-2,3-diol.

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Winter 2019 Past Paper

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iii) Explain why the sample needs to be ionised. (1) DO NOT WRITE IN THIS AREA (b) The tallest peak in a mass spectrum (called the base peak) is given a height of 100 and the heights of all the other peaks are given relative to the base peak. A sample of the element nickel is analysed in a mass spectrometer and found to have two significant peaks. Relative peak height m/e 58 100 60 39.8 (i) Calculate the relative atomic mass of nickel in this sample. Give your answer to one decimal place. DO NOT WRITE IN THIS AREA (2) DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Questio	on 21 = 12 marks)
(c) Mass spectrometry is also used to identify chemical compounds. State one application for this use of the technique.	(1)
(iii) The mass spectrum of this sample of nickel had a very small peal Identify the species responsible for this peak. Write an equation to show how it is formed. State symbols are not required.	k at m / e = 29. (2)
	(2)

DO NOT WRITE IN THIS AREA

(i) Calculate the energy transferred in the student's experiment.Use the expression	(1)
Energy transferred (J) = mass of water \times 4.18 \times temperature cha	ange
(ii) Calculate the enthalpy change of combustion of ethanol. Give a sign and units with your answer.	(3)
 (c) Most of the students obtained similar results for the enthalpy chancombustion of ethanol. The class mean was -840 kJ mol⁻¹ compare Data Book value of -1367 kJ mol⁻¹. (i) Calculate the percentage error in the mean value obtained by t compared to the Data Book value. 	ed with the

DO NOT WRITE IN THIS AREA

	Data Book value was due to the uncertainties in measuring the masses an explain why this suggestion is incorrect.	a temperatures.
Ν	lo calculation is required.	(2)
	suggest one factor that could have caused the difference between the tudents' values and the Data Book value. Justify your answer.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

) C	nlorine forms a covalent bond in its compound with hydrogen.	
(i)	Give the electronic configuration of chlorine using the s p d notation.	(1)
(ii)) Draw a dot-and-cross diagram of hydrogen chloride, showing outer electrons o	nly. (1)
(ii	i) Describe fully the formation of the covalent bond in hydrogen chloride in terms of orbital overlap.	(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Chlorine forms ionic bonds with metals such as sodium and silver. The lattice energies of ionic compounds provide information about their bonds. The table AREA below shows the experimental and calculated values for the lattice energy of sodium chloride and silver chloride. **DO NOT WRITE IN THIS** Lattice energy / kJ mol⁻¹ Compound Experimental Calculated sodium chloride -780-770silver chloride -905 -833 (i) Draw a dot-and-cross diagram of sodium chloride, showing outer electrons only. (1)DO NOT WRITE IN THIS AREA *(ii) Explain why the experimental and calculated values for the lattice energy of sodium chloride are similar whereas those for silver chloride differ significantly. (3) DO NOT WRITE IN THIS AREA (Total for Question 23 = 9 marks)

Winter 2019 Past Paper

Winter 2019 Past Paper

DO NOT WRITE IN THIS AREA

	(Total for Question 24 = 13	
	ing displayed formulae, write a balanced equation for process D . ite symbols are not required.	(2)
(ii)	Octane is converted into cyclooctane on a large scale. Explain why cyclooctane is added to petrol.	(2)
	State symbols are not required.	(1)

(a) The reaction of methane with chlorine is a free radical substitution.		DON	
$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ (i) State the essential condition for this reaction.	(1)	DO NOT WRITE IN THIS AREA	
(ii) The first stage in the mechanism of this reaction is the formation of the chlorine free radical.		N THIS ARE	
Cl → Cl → 2Cl•			
Explain fully what a curly half-arrow represents in this equation.	(2)		
		VRITE	
		DO NOT WRITE IN THIS	
(iii) Write the two equations of the propagation stage of the reaction. Curly half-arrows are not required.		AREA	
	(2)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		ON O	
		DO NOT WRITE IN THIS AREA	
		HTM	
		IS ARE	

DO NOT WRITE IN THIS AREA

TOTAL FOR SECTION B = 60 MA TOTAL FOR PAPER = 80 MA	
(Total for Question 25 = 10 m	arks
(ii) Draw the structure of the product of this reaction.	(1)
(i) State the type and mechanism of this reaction.	(1)
b) Bromine reacts with propene in normal laboratory conditions.	
(iv) Chloromethane is also formed in the termination stage of the reaction. Explain why the amount of chloromethane formed in the propagation stage i very much greater than the amount formed in the termination stage.	s (3)

# www.mystudybro.com This resource was created and owned by Pearson Edexcel

#### **Chemistry Unit 1** WCH01

0 (8)	(18)	He	2	20.2	Ne	10	39.9	Ar	18	83.8	Ŗ	krypton 36	131.3	Xe	54	[222]	R	86		ted							
7			(17)	19.0	F	6	35.5	CI	17	79.9	Br	bromine 35	126.9	I	53	[210]	At	astatime 85		seen repor		175	Lu	lutetium 71	[257]	5	103
9			(16)	16.0	0	8 8	32.1	S	16	79.0	Se	selenium 34	127.6	Te	52	[209]	Po	84		116 have t		173	ЧÞ	ytterbium 70	[254]	No	102
2			(15)	14.0	z	7	31.0	P	propriotos 15	74.9		arsenic 33	121.8	Sb	51	209.0	Bi	83		Elements with atomic numbers 112-116 have been reported but not fully surporticated	in the second second	169	Тa	thulium 69	[256]	PW	101
4			(14)	12.0	υ	6	28.1	Si	14	72.6	Ge	germanium 32	118.7	Sn	20	207.2	<b>P</b>	1edu 82		atomic nu		167	Ы	erbium 68	[253]	Ē	100
e			(13)	10.8	8	5	27.0	AI	atummum 13	69.7	Ga	galitum 31	114.8	5	49	204.4	F	81		nents with		165	Ч	holmium 67	[254]	Es	einsteinium 99
									(12)	65.4	Zn	30 zinc	112.4	8	48	200.6	Hg	80		Elen		163	Q	dysprosium 66	[251]	Cf Es	califormum 98
									(11)	63.5	ß	copper 29	107.9	Ag	47	197.0	Au	8000 79	[272]	Rg	111	159		terbium 65	[245]	BK	97
							(10)			58.7	ï	nickel 28	106.4	Pd	46	195.1	¥	78 78	[171]	Ds	110	157	Pg	gadolintum 64	[247]	ŝ	96
			(6)								ვ	cobalt 27	102.9	Rh	45	192.2	L.	77	[268]	Mt	109	152	Eu	europium 63	[243]	Am	amencum 95
	1.0	H hydrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	44	190.2	ŝ	76	-	Hs	108	150	Sm	samarium 62	[242]		
				(2)						54.9	Wn	manganese 25	[98]		43	186.2	Re	75	[264]	Bh	107	[147]	Pa	promethium 61	[237]	Np Pu	93
		Key	1	mass	atomic symbol	umber			(9)	52.0	ა	chromium 24	95.9	Wo	42	183.8	8	74	[366]	Sg	106	144	PN	neodymium 60			92
			Key	relative atomic mass		atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	q	41	180.9	Та	73		Db		141	Pr	praecolymum neodymium 59 60	[231]	Pa	protactinium 91
			1	relati		atomic			(4)	47.9	F	titanium 22	91.2	Zr	40	178.5	H	72	[261]	Rf	104	140	e	cerium 58	232	f	90
									(3)	45.0	S	scandium 21	88.9	7	39	138.9	La*	57	[227]	Ac*	_		SI.				
2			(2)	0.6	Be	4	24.3	Mg	magnesum 12	40.1	Ca	calcium 20	87.6	Sr	38	137.3	Ba	56	[326]	Ra	88		<ul> <li>Lanthanide series</li> </ul>	<ul> <li>Actinide series</li> </ul>			
-			(1)	6.9	ייי	m	23.0		11	39.1	¥	potassium 19	85.5	ß	-	132.9	S	55	[223]	Fr	87		Lantha				

P 5 4 4 5 7 A 0 2 4 2 4

24