

Mark Scheme (Results)

Summer 2014

IAL Chemistry (WCH01/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code IA038347* All the material in this publication is copyright © Pearson Education Ltd 2014

PEARSON

ALWAYS LEARNING

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to

complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

1

Section A

D

2

Question Number	Correct Answer	Mark
1	C	1
Question Number	Correct Answer	Mark

Question Number	Correct Answer	Mark
3	В	1

Question Number	Correct Answer	Mark
4	С	1

Question Number	Correct Answer	Mark
5	D	1

Question Number	Correct Answer	Mark
6	С	1

Question Number	Correct Answer	Mark
7	В	1

Question Number	Correct Answer	Mark
8	С	1

Question Number	Correct Answer	Mark
9	D	1

Question	Correct Answer	Mark
Number		
10	С	1

Question Number	Correct Answer	Mark
11	В	1

Question Number	Correct Answer	Mark
12	Α	1

Question	Correct Answer	Mark
Number		
13	A	1
Question	Correct Answer	Mark

Number		Mark
14	С	1

Question Number	Correct Answer	Mark
15	В	1

Question Number	Correct Answer	Mark
16	A	1

Question Number	Correct Answer	Mark
17	В	1

Question Number	Correct Answer	Mark
18	D	1

Question Number	Correct Answer	Mark
19	A	1

Question Number	Correct Answer	Mark
20	D	1

SECTION A = 20 marks

Section B			
Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	Penalise use of chlorine once only in Q21(a)(i), (ii) and (iii) IGNORE lone pairs of electrons, even if incorrect in Q21(a)(i), (ii) and (iii) ALLOW one slip in the formula of the element if it is correctly given elsewhere in the answer e.g B for Br $Br_2 \rightarrow Br \bullet + Br \bullet / Br_2 \rightarrow 2Br \bullet$ Ignore position of dot Ignore state symbols and curly arrows even if incorrect	Br	1

Question Number	Acceptable Answers	Reject	Mark
21 (a)(ii)	$Br_2 \rightarrow Br^+ + Br^-$	δ^+ / δ^- for the + or –	1
	Ignore state symbols and curly arrows even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
21 (a)(iii)	(free radical) Br•	Br	2
	NOTE:		
	No TE, except Cl•		
	(1)		
	Penalise omission of the dot only once in (a)(i) and (a)(ii)		
	(electrophile) Br ⁺		
	NOTE:		
	No TE, except Cl ⁺ (1)		

Question Number	Acceptab	le Ans	swers	5			Reject	Mark
21 (b)(i)	HC Br	H H	H 	H H	H 	H H H	Any branched-chain isomers	3
	н	Ĥ	H	H	Ĥ	(1) H		
	н—-с		 _ç_	_ç_	_ç_	_сн		
	H H	 Br	 H	 H	 H	 H		
	н	Н	Н	Н	Н	(1) H		
	 н—_с—	 	 _C	 	 	 —С——Н		
	 H	 H	 Br	 H	 H	 H		
						(1)		
	Isomers	can b	e in a	iny or	der			
	ALLOW							
	skeletal	or stru	ictura	al forr	nulae	1		

Question Number	Acceptable Answers	Reject	Mark
21 (b)(ii)	Corrosive / toxic / poisonous Allow correct symbols for corrosive or toxic / poisonous	Flammable / `naked flames'	1
	IGNORE harmful / dangerous / irritant / acidic / volatile / any references to state of HBr IGNORE Any precautions taken, EXCEPT those related to flammability		

Question Number	Acceptable Answers	Reject	Mark
21 (b)(iii)	First mark Calculation of the $C_6H_{13}Br M_r$ value and the total of the product Mr		2
	EXPECTED 164.9 AND 245.8		
	ALLOW		
	165 AND 246 (1)		
	Second mark		
	EXPECTED		
	<u>164.9</u> (x 100%) 245.8		
	= 67.08706265(%)		
	= 67.1(%) to 3 s.f.		
	ALLOW		
	<u>165</u> (x 100%) 246		
	= 67.07317073 (%)		
	= 67.1(%) to 3 s.f.		
	ALLOW TE from any incorrect M _r value(s) provided answer is not greater than 100%		
	(1)		
	Answer MUST be rounded correctly to 3 s.f. for the second mark		
	Correct answer with no working (2)		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	$CH_4 + F_2 \rightarrow CH_3F + HF$ IGNORE state symbols, even if	Cl ₂	1
	incorrect	"FI" if used more than once	

Question	Acceptable Answers	Reject	Mark
Number 21 (c)(ii)	NOTE Allow reverse argument throughout		2
	1 st Mark		
	Fluorine / F (atom is) smaller (than a Cl atom)	F ₂ / `fluorine molecule '	
	(1)		
	2 nd Mark		
	Any ONE of:-		
	(so expect) F—F bond to be shorter (than the CI—CI bond)	Mention of `Intermolecular forces' (no 2nd mark)	
	OR F—F bonding electrons / bond pair / / shared pair closer to (both) nuclei		
	OR (so) attraction between nuclei and bonding electrons / bond pair / shared pair expected to be stronger (1)		
	IGNORE Any references to the strengths of the F-F and/or CI-CI bonds		
	Any references to the `repulsion between nuclei'		
	Any references to 'shielding' / 'Charge density' / 'Electronegativity' / outer electrons		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iii)			2
	Shared pair of electrons shown (1)		
	The remaining six electrons on each F atom		
	(1)		
	NOTE Can be dots or crosses – only total number of electrons matters		
	Circles not required		
	IGNORE Two inner-shell electrons		
	ALLOW `FI' or F symbol missing		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iv)	 'Repulsion between electrons' scores (1) BUT 'Repulsion between lone pairs (of electrons)' scores (2) ALLOW 'Non-bonding electrons' for lone pairs 	Just repulsion between bonding / shared electrons	2

Question Number	Acceptable Answers	Reject	Mark
21 (c)(v)	UV (light) / (sun) light / heat / energy required to break CI—CI bond		1
	OR UV (light) / (sun) light / heat / energy required to form Cl•		
	OR F—F requires less energy to break OR F—F requires less energy to form F•		
	IGNORE Just F_2 more reactive (than Cl_2)		
	Just F—F bond is weaker (than CI—CI)		
	Just F—F bond energy is lower (than CI—CI)		

Question Number	Acceptable Answers	Reject	Mark
21 (d)	Mark independently $H_{5C_{2}} \xrightarrow{H} C_{2} \xrightarrow{H_{5}} H_{5C_{2}} \xrightarrow{H} H_{5C_{2}$		3
	First mark:		
	For both arrows in initial step	Half-arrow(s)	
	Allow upper arrow as in diagram or directly to Br atom (1)	Incorrect polarities Full -charges on Br ₂	
	Second mark:		
	Carbocation intermediate (1)		
	Third mark:	Half-arrow(s)	
	Arrow from anywhere on the bromide ion to the C or to the + sign on the intermediate (1)	δ [−] instead of the full – sign on the Br [−]	
	Lone pair(s) on Br ⁻ not required		

Question Number	Acceptable Answers	Reject	Mark
21(e)(i)	$H \xrightarrow{C_2H_5} H$ OR $C_2H_5 \xrightarrow{C_2H_5} H$ $C_2H_5 \xrightarrow{C_2H_5} H$ Diagram clearly shows that H atoms are diagonal to each other in the <i>E</i> -isomer/correct relative positions of hydrogen atoms and ethyl groups ALLOW Skeletal or displayed formula		1

Question Number	Acceptable Answers	Reject	Mark
21(e)(ii)	EITHER		1
	Rotation around C–C bond (in product molecule)		
	OR Double bond is broken so rotation (is now possible)		
	ALLOW Same carbocation / intermediate formed (so product is the same)		
	IGNORE Comments about optical isomerism		

(Total for Question 21 = 23 marks)

Question Number	Acceptable Answers	Reject	Mar k
22(a)	(The energy / enthalpy change / released that accompanies the formation of)	<pre>`energy required' / `energy needed' / `energy it takes'</pre>	2
	one mole of a(n ionic) compound (1)		
	ALLOW as alternative for compound: lattice /crystal / substance / solid / product / salt		
	from (its) gaseous ions (1)	`from one mole of gaseous ions ' (no 2nd mark)	
		Just `from gaseous elements ' (no 2nd mark)	
	IGNORE References to 'standard conditions' or any incorrect standard conditions		
	ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:-		
	energy change per mole / enthalpy change per mole (1)		
	$Li^{+}(g) + F^{-}(g) → LiF(s)$ (1)		
	NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'		

Question Number	Acceptable Answers	Reject	Mar k
22(b)(i)	$:^{+}(x) + \Gamma(x) + x^{-}$		4
	Box 4 $Li^+(g) + F(g) + e^-$		
	Box 3 $(Li^+(g) + 1/2E_{2}(g) + (Li^+(g) + F^-(g)))$	+	
	Box 3 $Li^+(g) + \frac{1}{2}F_2(g) + Box 5$		
	Box 2 $Li(g) + \frac{1}{2}F_2(g)$		
	Box 1 $Li(s) + \frac{1}{2}F_2(g)$		
	Box 6 (LiF(s))		
	└ <u>───</u> ┘₩ ₩	÷	
	IGNORE missing electrons / e^-		
	First mark (Box 1):		
	$Li(s) + \frac{1}{2}F_2(g)$ (1)		
	Second mark (Box 4):		
	$Li^{+}(g) + F(g) (+e^{-})$ (1)		
	Third and Fourth marks (if box 1 is correct):		
	'Box 2' as above i.e. $Li(g) + \frac{1}{2}F_2(g)$ as above		
	(1)		
	'Box 3' as above i.e. $Li^+(g) + \frac{1}{2}F_2(g) (+ e^-)$ as above (1)		
	OR (1)		
	'Box 2' $Li(s) + F(g)$ (1)		
	'Box 3' Li(g) + F(g) (1)		
	OR		
	'Box 2' Li(g) + $\frac{1}{2}F_2(g)$ (1)		
	'Box 3' Li(g) + F(g) (1)		

Penalise use of 'Fl' instead of 'F' once only	
If Box 1 is INCORRECT max (2) for correct transitions e.g if use $F(g)$ or $F_2(g)$ instead of $\frac{1}{2}F_2(g)$, then 2 marks available for two correct transitions involving lithium.	

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	FIRST, CHECK THE FINAL ANSWER IF answer = -1046 (kJ mol ⁻¹) then award (2) marks, with or without working		2
	Otherwise look for		
	$-616 = (+159) + (+520) + (+79) + (-328) + \Delta H_{LE}$ OR $\Delta H_{LE} = -616 - [(+159) + (+520) + (+79) + (-328)]$ = -616 - 430 = - 1046 (kJ mol ⁻¹) (1)		
	NOTE ALLOW for 1 mark : (+)1046 (wrong sign) -186 (+430 instead of -430) (+)186 (+616 instead of -616) -1006.5 (+79 halved to +39.5) -1702 (wrong sign for 328)		

Question Number	Acceptable Answers	Reject	Mark
*22(c)(i)	ALLOW reverse argument where appropriate		2
	(NaF more negative than NaCl because)		
	First mark F^- smaller (than Cl ⁻)	" NaF is smaller than NaCl ″	
	ALLOW 'fluorine ion is smaller (than a chlorine ion ')	F ⁻ has a smaller atomic radius than Cl ⁻	
	OR F ⁻ larger charge density (than Cl ⁻) (1)		
	Second mark:		
	F ⁻ (forms) stronger (electrostatic) attractions (than Cl ⁻)		
	IGNORE just 'stronger (ionic) bonds' (1)		
	Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of the word 'atom(s)' or 'molecule(s)'/ use of just formulae such as 'Mg', 'Na', 'F', 'F ₂ ', 'Cl', 'Cl ₂ ', etc.		
	OR Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of words such as just 'magnesium' (instead of magnesium ions/Mg ²⁺) and/or just 'fluorine' (instead of fluoride ions/F ⁻) /and or just 'chlorine' (instead of chloride ions/Cl ⁻)		
	IGNORE Any comments about polarization of the anion (by the cation) / covalent character		

Question Number	Acceptable Answers	Reject	Mark
*22(c)(ii)	ALLOW reverse argument where appropriate (NaF less negative than MgF ₂ because)		2
	First mark - size:	"MgF ₂ is smaller than NaF"	
	Mg ²⁺ smaller (than Na ⁺)	Mg ²⁺ has a smaller	
	OR	atomic radius than Na ⁺	
	'Magnesium ion' is smaller (than Na ⁺) (1)		
	Second mark - charge:		
	Mg^{2+} has a greater charge (density) (than Na ⁺)		
	OR 'Magnesium ion' has a greater charge (density) (than Na ⁺)		
	(1)		
	[NOTE: It follows that the statement that "Mg ²⁺ ions are smaller than Na ⁺ ions" would score BOTH marks]		
	IGNORE Any comments about polarization of the anion (by the cation) / covalent character	an 22 - 12 marks)	

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)	(Enthalpy/energy change when) one mole of a compound / one mole of a substance		3
	IGNORE Statements such as "energy released" or "energy required" here (1)		
	is formed from its elements (in their standard states, under standard conditions) (1)	'is formed from its gaseous elements'	
	(Standard temperature is) 298 K / 25°C		
	ALLOW `°K′		
	IGNORE References to room temperature		
	(Standard pressure is) 1 atm / 101 kPa / 100 kPa (1)		

Question Number	Acceptable Answers	Reject	Mark
23(b)	$6C(s, graphite) + 7H_2(g) \rightarrow C_6H_{14}(I)$		2
	ALLOW		
	6C(s) / 6C(graphite)		
	Species and balancing correct (1)		
	State symbols correct (1)		
	State symbols mark is dependent on correct species but allow this mark if 14H used instead of 7H ₂		
	ΝΟΤΕ		
	$C_6H_{14}(I) \rightarrow 6C(s, graphite) + 7H_2(g)$		
	scores (1)		

Question Number	Acceptable Answers	Reject	Mark
23(c)	$\begin{array}{c} \hline C(s) + 2H_2(g) & \rightarrow & CH_4(g) \\ \hline (+2O_2(g)) & & (+2O_2(g)) \\ \hline CO_2(g) + 2H_2O(I) \\ \hline \end{array}$ First mark: Both arrows point downwards (1)		3
	Second mark: $CO_2(g) + 2H_2O(I)$ (1) Third mark: $((1 \times -394) + (2 \times -286) - (1 \times -890) =)$ $-76 (kJ mol^{-1})$ No TE from cycle arrows (1)	2 H ₂ O(\mathbf{g}) If incorrect units with a final answer, no 3 rd mark	

Question	Acceptable Answers	Reject	Mark
Number			
23(d)(i)	(+1652÷4 =) (+) 413 (kJ mol ⁻¹)	-413	1

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	First mark: (+2825 — 6 x answer to (d)(i)) ALLOW TE only from a positive value given as answer to (d)(i) (1)		2
	Second mark: = (+)347 (kJ mol ⁻¹) Second mark is CQ on first mark		
	Correct answer with or without working scores(2)NOTE -347 (kJ mol ⁻¹)scores (1)		

(Total for Question 23 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
24(a)	s-orbital p-orbital (s-orbital) Circle drawn ALLOW Concentric circles drawn		2
	(p-orbital)		
	Figure of `8' / `dumb-bell' drawn		
	NOTE: p-orbital can be drawn along any axis (axis does not have to be shown) (1) ALLOW If one, two or three p-orbitals of correct shapes are shown If overlapping orbitals are shown of correct shape in both cases, award (1) mark		

Question Number	Acceptable Answ	ers	Reject	Mark
24(b)	(region)	(no. of electrons)		3
	(a d-orbital)	2		
	(a p sub-shell)	6 (1)		
	(the third shell)	18 (1)		

Question Number	Acceptable Answers	Reject	Mark
24(c)	First mark: BOTH 2s and 2p labelled ALLOW 2s ² and 2p ⁴ (1) Second mark: ALL eight e ⁻ shown correctly (1) 2p + † † (1s) +	2p ⁶	2
	ALLOW Half-arrows or full arrows for each electron Paired arrows in any one of the 2p orbitals NOTE Single arrows must be orientated in same direction Paired arrows must have opposite spins		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark:		3
	Makes mention of energy/enthalpy/(heat) energy/heat (change/required)	"Energy given out " for first mark	
	AND		
	to remove an electron (1)		
	Second mark:		
	one mole/1 mol (1)		
	Third mark:		
	Makes mention of gaseous atom(s) (1)	Just `gaseous element'/ `gaseous substance'	
	ALTERNATIVE ANSWER		
	Energy change per mole / kJ mol ⁻¹ for (1)		
	$X(g) \to X^{+}(g) + e^{(-)}$ (2)		
	One mark for species One mark for correct state symbols		
	Mark independently		
	IGNORE any references to standard conditions		

Question Number	Acceptable Answers		Reject	Mark
24(d)(ii)	$O^{2+}(g) - e^- \rightarrow O^{3+}(g)$ OR		Reverse equation scores (0) overall	2
	$O^{2+}(g) \rightarrow O^{3+}(g) + e^{-}$			
	All species and balancing correct	(1)		
	State symbols correct	(1)		
	2 nd mark is dependent on 1 st mark	ζ.		
	ALLOW			
	`e' for `e ⁻ '			
	IGNORE			
	(g) on the e^-			

Question Number	Acceptable Answers	Reject	Mark
24(d)(iii)	First mark:		2
	Big 'jump' / large increase		
	(1)		
	Second mark:		
	between 6th and 7th (IE)	Any other ionization jumps mentioned	
	OR after the 6th		
	OR to the 7th		
	OR from 13327 to 71337		
	OR of 58010		
	IGNORE		
	Additional jump identified between 4th and 5th (IE) if justified in terms of a change of sub-shell		
	OR		
	Additional jump identified between 4th and 5th (IE) if justified in terms of NOT being a change of shell		
	(1) (Total for	r Question 24 = 14 marks)	

SECTION B = 60 marks TOTAL FOR PAPER = 80 marks

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE