

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA041102* All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate $% \left({{\left[{{{\left[{{{\left[{{{c_{1}}} \right]}} \right]}_{i}}} \right]_{i}}} \right)$

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	D	1
_		
Question	Correct Answer	Mark
Number		i idik
2	В	1
-	6	*
Question	Correct Answer	Mark
Number		Thank .
3	С	1
5		<u> </u>
Question	Correct Answer	Mark
Number	Correct Answer	Mark
4	D	1
Questien	Correct Answer	Mode
Question	Correct Answer	Mark
Number		
5	D	1
Question	Correct Answer	Mark
Number		
6	D	1
Question	Correct Answer	Mark
Number		
7	С	1
Question	Correct Answer	Mark
Number		
8	D	1
Question	Correct Answer	Mark
Number		
9	D	1
_	-	
Question	Correct Answer	Mark
Number		
10	В	1
Question	Correct Answer	Mark
Number		
11	Α	1
Question	Correct Answer	Mark
Number		
12	A	1

Question Number	Correct Answer Mark	
13	C	1
Question	Correct Answer	Mark
Number		
14	A	1
Question	Correct Answer	Mark
Number		
15	В	1
Question	Correct Answer	Mark
Number		
16	С	1
Question	Correct Answer	Mark
Number		
17	С	1
Question	Correct Answer	Mark
Number		
18	С	1
Question	Correct Answer	Mark
Number		
19	A	1
Question	Correct Answer	Mark
Number		
20	A	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	Alkane(s) IGNORE Any references to 'branched' / 'aliphatic' / 'hydrocarbons'		1

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	2,3- di methyloctane		1
	IGNORE		
	Incorrect or missing punctuation		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	1st mark: (Isomers) A and C(1)		3
	NOTE If no isomers or isomers other than A & C have been chosen, then award one mark max providing both 2^{nd} and 3^{rd} marking points are evident.	'Different chemical formulae'	
	2nd mark: (They/A and C) have the same molecular formula / C ₁₀ H ₂₂ / same number of C and H (atoms) (1)		
	3rd mark: (They/A and C) have different structural formulae/displayed formulae / skeletal formulae / different structures/different arrangement of atoms IGNORE Any references to 'in space' / 'spatial' Any references to names Any references to general formulae (1)		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	$C_{12}H_{24}$		2
	1st mark: C ₁₂ (1)		
	2nd mark: H ₂₄ (1))	

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	A OR B ALLOW lower case letters IGNORE any names or formulae		1

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	C OR		1
	D ALLOW lower case letters		
	IGNORE any names or formulae		

Question Number	Acceptable Answers	Reject	Mark
-	Any one of: (It improves engine performance by) Promoting efficient combustion OR Allowing smoother burning OR Increasing octane number OR Reduces knocking / prevents knocking OR Pre-ignition being less likely OR Being (more) efficient (fuels) OR Better burning / fuels easier to burn OR Combusting more easily OR Improving combustion / complete combustion OR	Reject	Mark 1
	Burns more cleanly OR More miles per gallon IGNORE any references to energy density / boiling temperature / volatility		

-					
Question	Acceptable An	swers		Reject	Mark
Number					
21(d)		[FIRST, check the answer on the			3
	answer line				
	IF answer $= 43$	8000 (kJ kg⁻	⁻¹) award		
	(3) marks]				
	1 st two marks	5			
	1000 (1)	× 000C	(1)		
	<u>1000</u> (1) 170	x 8086	(1)		
	170				
	OR				
	<u>8086</u> (1)	v 1000	(1)		
	170	× 1000	(1)		
	170				
	NOTE: second	mark in hot	h cases		
	dependent on				
	minor transcri				
	e.g. use of 110				
	e.g. use of 110		1170		
	3 rd mark				
	= 47564.7058	8			
	= 48000	0	(1)		
	- 40000		(1)		
	Answer must t	na to 2 sf			
	Ignore signs		correct		
	units at any s	-			
		stage			
	48 scores (2)				
	47.56 scores (2)	1)			
	1374.6 scores		rounded to		
	2SF				

(Total for Question 21 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	ΔH_2 ALLOW $\Delta H_2 = \dots$		1

Number	Acceptable Answers	Reject	Mark
22(a)(ii)	ΔH_5 ALLOW ΔH_5 =	<u>ΔH</u> ₅ 2	1

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	$\frac{\Delta H_6}{2}$ OR ΔH_6 / 2 OR $\Delta H_6 \div$ 2 OR 0.5 ΔH_6	ΔH_6	1

Question Number	Acceptable Answers	Reject	Mark
22(a)(iv)	ΔH_1 ALLOW $\Delta H_1 = \dots$	ΔH ₇	1

a			
Question	Acceptable Answers	Reject	Mark
Number			
22(b)(i)	(The energy change / enthalpy change that accompanies / energy released / enthalpy released) the formation of one mole of a(n ionic) compound (1)	<pre>`Energy / enthalpy required' / `used' `molecule' no 1st mark</pre>	2
	ALLOW as alternative for compound: lattice /crystal / substance / solid / product		
	from its gaseous ions (1)	`gaseous atoms' no 2nd mark	
	<i>NOTE</i> 'one mole of gaseous ions' scores max (1) (ie 2nd mark only available)		
	<i>IGNORE</i> References to `constituent elements' References to `standard conditions'		
	ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:-		
	energy change / enthalpy change per mole (1)		
	$Sr^{2+}(g) + 2Cl^{-}(g) \rightarrow SrCl_2(s)$ ALLOW Any correct `generic` equation with state symbols included (1)		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	[FIRST, check the answer on the answer line IF answer = -2153 (kJ mol ⁻¹) then award (2) marks, with or without working] 1st Mark: $\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7$ OR $\Delta H_7 = \Delta H_1 - [\Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6]$ OR $\Delta H_7 = -829 - [164 + 550 + 1064 + (122 \times 2) + (2 \times -349)]$ (1)		2
	2nd Mark:		
	$\Delta H_7 = -2153 (\text{kJ mol}^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working +2153 (kJ mol ⁻¹) -2031 (kJ mol ⁻¹) -2502 (kJ mol ⁻¹) -2380 (kJ mol ⁻¹) NO OTHER TEs are allowed on an incorrect expression involving ΔH_7		

Question Number	Acceptable Answers	Reject	Mark
22*(c)	(Lattice energy of MgF ₂ more exothermic than that of NaF because) 1st mark:	No 1 st	3
	Mg ²⁺ is smaller (than Na ⁺) ALLOW "Magnesium / Mg is smaller (than sodium /	mark if only mention Mg atom or atomic	
	Na)" (1)	radius	
	2nd mark:		
	Mg ²⁺ higher charge / higher charge density (than Na ⁺)	"Mg ²⁺ higher nuclear	
	ALLOW Any reference to Mg ²⁺ and Na ⁺ in answer for the 2 nd mark, unless nuclear charge mentioned	charge"	
	(1)		
	3rd mark: (So electrostatic forces of) attraction between ions stronge r in MgF ₂ (than in NaF)		
	ALLOW Stronger ionic bonds in MgF ₂ / stronger ionic bonding in MgF ₂ (1)		
	OR reverse arguments		

(Total for Question 22 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)	C _n H _{2n} ALLOW Letters other than n		1

ALLOW: (partially) displayed or skeletal formulae throughout **Q23(b)**

IGNORE: additional incorrect non-organic products

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	CH ₃ CH ₃	C ₂ H ₆	1

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	$C_2H_4CI_2$	1

ONLY PENALISE <u>ONCE ONLY</u> in (b)(iii) & (b)(iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a C to H covalent bond has been drawn

Question Number	Acceptable Answers	Reject	Mark
23(b)(iii)	HOCH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	$C_2H_6O_2$ /	1
		OHCH ₂ CH ₂ OH	

Question Number	Acceptable Answers	Reject	Mark
23(b)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	$BrCH_2CH_2Br / C_2H_5OBr / C_2H_4Br_2$	1

PENALISE USE OF Br instead of Cl once only in parts (c)(i) & (c)(ii) PENALISE missing H atoms from displayed formulae once only in parts (c)(i) & (c)(ii)

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	$H = C = C = C = H$ $H = H = H$ $(Major product) \qquad (1)$ $H = H = H$ $H = H = H$ $H = H = H$ $(Minor product) \qquad (1)$ $H = H = H$ $(Minor product) \qquad (1)$ $Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1)$ $PENALISE$ $CH_3 not fully displayed ONCE only So CH_3CH(CI)CH_3 and CH_3CH_2CH_2CI scores (1)$		2
	$H = C = C = C = CI$ $H = H = H$ $(Minor product) \qquad (1)$ Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1) $PENALISE$ $CH_3 not fully displayed ONCE only So CH_3CH(CI)CH_3 and CH_3CH_2CH_2CI$		

Number Hard Hard Hard Hard Hard Hard Hard Hard
3rd mark: Curly arrow from anywhere on the chloride ion (including the minus sign) towards the C+ on the carbocationthe C+ carbon NOTE: The chloride ion must have a full negative charge, but the lone pair of electrons on the Cl ⁻ need not be shownδ- on chloride ion instead of Cl ⁻ ALLOW: TE on major product given in (c)(i)Skeletal formulae can be used Mark the three points independently Image: Close of the carbon

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	$\mathbf{n}C_{3}H_{6} \rightarrow \overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{n}{\overset{h}}$ TWO 'n' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation (1) One correct repeating unit, with the methyl branch shown (1)		3
	ALLOW		
	CH_3 fully displayed or just as CH_3		
	BOTH continuation bonds (with or without bracket shown) (1)		
	If C=C bond left in polymer on right- hand side, then max (1)		
	Mark the three points independently		

Question	Acceptable Answers	Reject	Mark
Number		Reject	TAIK
23(d)(ii)	Non-biodegradable		1
	IGNORE References to toxicity of poly(propene) / flammability		
	IGNORE Litter / pollution / waste of resources / costs		
	ALLOW People are reluctant to recycle OR Harmful to marine life / harmful to wildlife OR References to 'landfill' OR References to 'incineration' producing toxic fumes/toxic gases / CO ₂ / Greenhouse gases OR References to use of energy/fuel used in transport (of waste) OR		
	It takes a long time to degrade		

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	$3C(s) + 3H_2(g) \qquad \Delta H_f \qquad C_3H_6(g)$ $(+4^{1/2}O_2) \qquad (+4^{1/2}O_2)$ $3CO_2(g) \text{ and } 3H_2O(I)$		1
	Both arrows in the correct direction AND 3CO ₂ and 3H ₂ O in lowest box IGNORE state symbols, even if incorrect IGNORE extra O ₂ molecules in box or alongside arrows		

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	1st mark (-394 x 3) + (-286 x 3) OR = -2040 (kJ mol ⁻¹) (1)		2
	2nd mark: $\Delta H_{\rm f} = -2040 - (-2058)$ $= (+)18 (\rm kJ mol^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working -18 (kJ mol ⁻¹) (+)1378 (kJ mol ⁻¹) (+)806 (kJ mol ⁻¹) (+)590 (kJ mol ⁻¹) -4098 (kJ mol ⁻¹) IGNORE units even if incorrect		

(Total for Question 23 = 17 marks

Question Number	Acceptable Answers		Reject	Mark
24(a)	$F(g) \rightarrow F^{+}(g) + e^{(-)}$ OR $F(g) - e^{(-)} \rightarrow F^{+}(g)$ Species State symbols IGNORE Any state symbols on electrons	(1) (1)	Electron affinity equation (0) overall Equations with F ₂ (g) score (0) overall	2
	2nd mark is dependent on the fin NOTE: $F(g) + e^{(-)} \rightarrow F^+(g) + 2e^{(-)}$	st		
	Use of `Fl' max (1)			

Question Number	Acceptable Answers	Reject	Mark
24*(b)	1st mark: Number of protons increases / increasing nuclear charge / increasing effective nuclear charge IGNORE Just 'the atomic number increases' (1)		3
	2nd mark: Same shielding / same number of (occupied) shells / electron removed from the same shell / atomic radius decreases (1)	'Shielding increases' (0) for 2 nd mark	
	3rd mark: Greater (electrostatic) attraction between nucleus / protons and (outermost) electron (1)		

Question Number	Acceptable Answers	Reject	Mark
24(c)*(i)	For aluminium		2
	<pre>1st mark: (Electron lost from) (3)p-subshell / (3)p-orbital ALLOW Correct electron configuration for Al: 1s²2s²2p⁶3s²3p¹ or [Ne]3s²3p¹ or drawn as electrons-in- boxes (1)</pre>	Mention of 2 p, no 1 st mark	
	NOTE		
	NOTE First mark must refer to aluminium		
	2nd mark: at higher energy / further from the nucleus / (more) shielded (by 3s)		
	OR		
	Magnesium electron is at lower energy / closer to the nucleus / less shielded		
	(1)		
	IGNORE References to stability of 3s ² or full s- orbitals / full s sub-shell in Mg		

Question Number	Acceptable Answers	Reject	Mark
24(c)*(ii)	For sulfur		2
	1st mark: (Electron lost from a) pair of electrons / an orbital with electrons (spin-) paired / a full (p) orbital ALLOW Mention of (3)p ⁴ OR		
	Correct electron configuration for S:1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ or [Ne]3s ² 3p ⁴ or drawn as electrons-in- boxes (1)		
	2nd mark: (increase in) repulsion (allows e ⁻ to be removed more easily) (1)		
	If no correct reference to Sulfur, then allow one mark for P (atom) has half-filled p sub-shell / p ³ (arrangement) is stable.		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	(Al) (Si) (P) (S) high high low low Four correct (2) Three correct (1)		2

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	 (Na) (Al) (Si) (P) (S) giant (giant) giant giant molecular molecular ALLOW 'giant molecular' for Si ALLOW 'simple molecular' for P and/or S Five correct (2) Four correct (1) 		2

Question Number	Acceptable Answers	Reject	Mark
24(d)(iii)	 (Na) (Al) (Si) (P) (S) high (high) high X low low All four must be correct IGNORE Any word written over X in the Si box 		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	(<u>2.76</u>) = 0.12(0) (mol) 23.0		1

Question	Accontable Answers		Deject	Mark
Question	Acceptable Answers		Reject	Mark
Number				
24(e)(ii)	Moles $H_2 = \frac{1}{2} \times \text{mol Na}$	(1)		2
	Volume $H_2 = 0.06(0) \times 24$			
		1)		
		-		
	ALLOW			
	ECF from moles of Na in (e)(i)			
	ALLOW			
	ALEOW			
	Both marks if answer given 1440 c	m³		
	Correct answer, no working scores (2) NOTE:			
	The following answers score (1)	۱		
	mark	,		
	with or without working			
	$2.88 (dm^3) / 2880 cm^3$			
	$5.76 (dm^3) / 5760 cm^3$			
	5.76 (am ²) / 5760 cm²			
	However, check as 2.88 could score	2 2		
	as a TE of 0.24 mol from (e)(i)			
	IGNORE			
	SF except 1 SF			

Question Number	Acceptable Answers	Reject	Mark
-	1st mark: Moles NaOH = moles of Na (1) Can be implied by use of value from (e)(i) 2nd mark: (<u>0.12</u>) = 0.24(0) (mol dm ⁻³) 0.500 (1) ALLOW (1) ALLOW (1) ALLOW (1) Scores (2) (1) IGNORE (2) SF except 1 SF (1) NOTE: TE from first mark to second mark only if answer from (e)(i) has been used in some way e.g. answer to (e)(i) × 2 would not score mark 1, but could then be used to score mark	No 2 nd mark if give wrong units, e.g "mol/dm ⁻³ " "dm ³ /mol"	2
	2 as a TE	Question 24 = 19 r	

(Total for Question 24 = 19 marks)

TOTAL FOR SECTION B = 60 MARKS

TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom