This resource was create	ed and owned by F	Pearson Ede	excel	WCH01
Write your name here				
Surname		Other name	s	
Dearson Edaysol	Centre Number		Candidate Number	
Pearson Edexcel International Advanced Level				
Chemistry				

Advanced Subsidiary **Unit 1: The Core Principles of Chemistry**

Friday 22 May 2015 – Morning Time: 1 hour 30 minutes

Candidates may use a calculator.

Total Marks

Paper Reference

WCH01/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each guestion.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

P44880A ©2015 Pearson Education Ltd. 6/6/6/5/1/

SECTION A

۵	Answer All the questions in this section. You should aim to should he mays than 20 minutes on				
	Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠.				
	If you change your mind, put a line through the box 🔀 and then mark your new answer with a cross 🛛.				
1	ln v	vhi	ch order do the electrons fill the orbitals of an ato	m?	
			1s 2s 2p 3s 3p 4s 4p 3d		
			1s 2s 2p 3s 3d 3p 4s 4p		
			1s 2s 2p 3s 3p 3d 4s 4p		
	\times	D	1s 2s 2p 3s 3p 4s 3d 4p		
				(Total for Question 1 = 1 mark)	
2	lons	s a	re separated in the mass spectrometer by		
	\mathbf{X}	A	a vacuum pump.		
	\times	B	a magnetic field.		
	\times	C	an ionization chamber.		
	\times	D	electron bombardment.		
				(Total for Question 2 = 1 mark)	
2	\ \ / la :	: _ _			
3			of the following contains one mole of neutrons?		
	\mathbf{X}	Α	1 g of ¹H		
	\times	В	1 g of ¹² ₆ C		
	\mathbf{X}	c	2 g of ²⁴ ₁₂ Mg		
		Р	2 g of ²² ₁₀ Ne		
		U		(Total for Question 3 = 1 mark)	
	2				

	Soluti		
	The re	ons of barium chloride and silver nitrate are mixed t action that takes place is an example of	ogether.
	🖾 A	displacement.	
	B	neutralization.	
	🖾 C	oxidation.	
	🖾 D	precipitation.	
			(Total for Question 4 = 1 mark)
5	The Av	vogadro constant is numerically equal to the numb	er of
	🖾 A	ions in 1 mol of sodium chloride, NaCl	
	🖾 B	atoms in 1 mol of hydrogen gas, H_2	
	🖸 C	electrons in 1 mol of helium gas, He	
	🖾 D	molecules in 1 mol of oxygen gas, O_2	
			(Total for Question 5 = 1 mark)
	Which	ixture is stirred until no further reaction occurs. of the following is a result of this reaction? The resulting solution is colourless.	
	B	10 g of copper is displaced.	
	🖾 C	63.5 g of copper is displaced.	
	🛛 D	All the magnesium reacts.	
			(Total for Question 6 = 1 mark)

7	Which of the following gas samples has the same volume as 7.0 g of carbon monoxide?	
	All volumes are measured at the same temperature and pressure.	
	A 1.0 g of hydrogen	
	B 3.5 g of nitrogen	
	C 10.0 g of argon	
	D 35.5 g of chlorine	
_	(Total for Questio	n 7 = 1 mark)
8	Which of the following aqueous solutions contains the greatest number of n	egative ions?
	A 500 cm ³ of 0.10 mol dm ⁻³ Na ₂ SO ₄ (aq)	
	B 250 cm ³ of 0.12 mol dm ⁻³ BaCl ₂ (aq)	
	C 250 cm ³ of 0.15 mol dm ⁻³ KI(aq)	
	D 500 cm ³ of 0.10 mol dm ^{-3} Zn(NO ₃) ₂ (aq)	
_	(Total for Questio	n 8 = 1 mark)
9	In an experiment carried out at 200°C and 1 atm pressure, 20 cm ³ of ammon reacted with an excess of heated copper(II) oxide.	ia gas
	$3CuO(s) + 2NH_3(g) \rightarrow 3Cu(s) + 3H_2O(g) + N_2(g)$	
	If all measurements were made at 200°C and 1 atm pressure, what would be volume, in cm ³ , of gaseous products?	e the total
	☑ A 10	
	☑ B 20	
	C 30	
	D 40	
	(Total for Questio	n 9 = 1 mark)

Past Paper This resource was created and owned by Pearson Edexcel 10 Ammonia is manufactured from hydrogen and nitrogen in the Haber process. $3H_2(q) + N_2(q) \rightleftharpoons 2NH_3(q)$ If 60 tonnes of hydrogen produces 80 tonnes of ammonia, what is the percentage yield in the reaction? \square **A** $\frac{80}{170} \times 100\%$ **B** $\frac{80}{340} \times 100\%$ \square C $\frac{30}{80}$ \times 100% $\square \mathbf{D} \frac{60}{80} \times 100\%$ (Total for Question 10 = 1 mark) 11 Which of the following compounds has the greatest ionic character? 🖾 A Caesium fluoride **B** Caesium iodide C Potassium fluoride **D** Potassium iodide (Total for Question 11 = 1 mark) 12 Which species has a dative covalent bond? ■ **A** H₃O⁺ \blacksquare **B** H₂O C OH- \square **D** O_2 (Total for Question 12 = 1 mark)

www.mystudybro.com

Summer 2015

13 The atomic radius of potassium is larger than that of sodium because potassium has A a larger nuclear charge. **B** a larger nucleus. C more occupied electron shells. **D** a smaller first ionization energy. (Total for Question 13 = 1 mark) **14** Consider the following data. $S(s) + H_2(g)$ \rightarrow H₂S(g) $\Delta H^{\ominus} = a$ $\Delta H^{\ominus} = \mathbf{b}$ $H_2(g) + \frac{1}{2}O_2(g)$ \rightarrow H₂O(I) $S(s) + O_2(g)$ \rightarrow SO₂(g) $\Delta H^{\ominus} = c$ $H_2S(g) + 1\frac{1}{2}O_2(g) \rightarrow H_2O(I) + SO_2(g)$ $\Delta H^{\ominus} = \mathbf{d}$ What is the relationship between a, b, c and d? \square **A** a = b + c - d \square **B** a = d - b - c \square **C** a = b - c - d \square **D** a = d + c - b (Total for Question 14 = 1 mark)

20 Which of the following fuels, when burned, would make no significant contribution to climate change?		
A	Hydrogen	
B	Methane	
🖾 C	Petrol	
D	Coal	
	(Total for Question 20 = 1 mark)	
	TOTAL FOR SECTION A = 20 MARKS	

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **21** A propellant for a rocket consists of a fuel, kerosene, and an oxidizer, liquid oxygen.
 - (a) The formulae of some hydrocarbons present in kerosene are shown in the table below.

(i) Name the homologous series to which the compounds **A**, **B**, **C** and **E** belong.

(1)

ast Paper	This resource was created and owned by Pearson Edexcel	WCH01
	(ii) Name the compound A .	(1)
	(iii) Explain the term structural isomers , by reference to two molecules selected from the table in part (a).	(3)
	(iv) Give the molecular formula of the compound D .	(2)

ast Paper	This resource was created and owned by Pearson Edexcer		WCHUT
(b)	In the petrochemical industry, other fuels are obtained by the cracking and reforming of kerosene.		
	Using appropriate letters, A to D , identify a molecule listed in the table that could be formed from E by		
	(i) cracking alone	(1)	
	(ii) cracking and then reforming	(1)	
(c)	Suggest how engine performance is improved by using a fuel containing the molecule that you have identified in (b)(ii).	(1)	
(d)	The energy density of a fuel is defined as the energy produced per kilogram of fu Calculate the energy density of dodecane, $C_{12}H_{26}$, in kJ kg ⁻¹ . Give your answer to two significant figures.	el.	
	The enthalpy change of combustion of dodecane is –8086 kJ mol ⁻¹ .		
	[Molar mass: $C_{12}H_{26} = 170 \text{ g mol}^{-1}$]		
		(3)	
	energy density =		kJ kg⁻¹
	(Total for Question 21 = 13 ma		-
	(10101101 2000101121 - 101110		

- 22 Born-Haber cycles can be used to determine experimental values of lattice energies.
 - (a) The diagram below shows a Born-Haber cycle for the formation of strontium chloride from strontium and chlorine.

(b) The table below shows the energy changes that are needed to determine the lattice energy of strontium chloride, SrCl₂.

Energy change	ΔH / kJ mol ⁻¹
enthalpy change of atomization of strontium	+164
first ionization energy of strontium	+550
second ionization energy of strontium	+1064
enthalpy change of atomization of chlorine, $\frac{1}{2}Cl_2$	+122
first electron affinity of chlorine	-349
enthalpy change of formation of strontium chloride	-829

(i) Define the term **lattice energy**.

(2)

(ii) Calculate the lattice energy of strontium chloride, in kJ mol⁻¹.

(2)

lattice energy = kJ mol⁻¹

*(c) The lattice energies of sodium fluoride and magnesium fluoride are shown in the table below.

Compound	Lattice energy / kJ mol ⁻¹
Sodium fluoride, NaF	-918
Magnesium fluoride, MgF ₂	-2957

Explain, in terms of the sizes and charges of the ions involved, why the lattice energy of MgF_2 is more negative than that of NaF.

(3)

(Total for Question 22 = 11 marks)

ast Paper	This resource was created and owned by Pearson Edexcel	WCH01
23 Thi	question is about alkenes.	
(a)	Give the general formula for the homologous series of alkenes.	(1)
	Give the structural formula of the organic product formed when ethene , CH ₂ =CH ₂ , reacts with	
	(i) hydrogen	(1)
	(ii) chlorine	
		(1)
	(iii) acidified aqueous potassium manganate(VII)	(1)
	(iv) bromine water	
		(1)
L.		

P 4 4 8 8 0 A 0 2 0 2 8

- (c) When **propene**, CH₃CH=CH₂, reacts with hydrogen chloride, there are **two** possible products, a major product and a minor product.
 - (i) Draw the **displayed** formulae of these products.

(2)

Major product	Minor product
	·

(ii) Give the mechanism for the reaction of **propene** with hydrogen chloride which forms the major product.

(3)

Past Paper	This resource was created and owned by Pearson Edexcel	WCH01
(d)	Propene can be polymerized.	
	(i) Write a balanced equation for the polymerization of propene to form poly(propene), drawing the displayed formula of the repeat unit of poly(propene).	(3)
	(ii) State a problem associated with the disposal of waste poly(propene).	(1)
22		

(e) Standard enthalpy changes of combustion can be used to calculate the standard enthalpy change of formation of propene.

 $3C(s) + 3H_2(g) \longrightarrow C_3H_6(g)$

Values for some standard enthalpy changes of combustion, ΔH_c^{\ominus} , are shown in the table below.

Substance	ΔH_{c}^{\ominus} / kJ mol ⁻¹
C(s)	-394
H ₂ (g)	-286
C₃H₅(g)	-2058

(i) Complete the Hess cycle below to enable you to calculate $\Delta H_{\rm f}^{\ominus}$ from combustion data.

(ii) Calculate ΔH_{f}^{\ominus} , in kJ mol⁻¹.

(2)

(Total for Question 23 = 17 marks)

24 The diagram below shows the pattern in the first ionization energies of the first 18 elements. 2500-He Ne 2000 First Ar 1500 ionization energy Н / kJ mol⁻¹ 1000 500 Na 0 2 3 8 9 10 11 12 13 14 15 16 17 18 1 5 6 7 4 Atomic number (Z) (a) Give the equation, including state symbols, for the first ionization energy of fluorine. (2) *(b) Explain why there is a **general** increase in the first ionization energies from sodium to argon. (3)

Past Paper (c) *(i) Explain why the first ionization energy of aluminium (Z = 13) is less than that of magnesium (Z = 12). (2) *(ii) Explain why the first ionization energy of sulfur (Z = 16) is less than that of phosphorus (Z = 15). (2) (d) The table below, which is incomplete, refers to the elements sodium to sulfur. AI Ρ S Element Na Mg Si Melting low high temperature Structure giant

		J				
 Electrical conductivity		high				
(i) Complete the	e melting te	mperature ro	ow by using o	only the word	ds	

'high' or 'low'.

(2)

- (ii) Complete the **structure** row by using only the words 'giant' or 'molecular'.
- (2)
- (iii) Complete the **electrical conductivity** row by using only the words 'high' or 'low'.

(1)

Past Paper	This resource was created and owned by Pearson Edexcel	WCH01
(e)	In an experiment, 2.76 g of sodium completely reacted with water to form 500 cm ³ of aqueous sodium hydroxide.	
	$2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$	
	(i) Calculate the number of moles of sodium that reacted.	(1)
	(ii) Calculate the maximum volume, in dm ³ , of hydrogen that can be formed at room temperature and pressure.	
	[1 mol of any gas occupies 24 dm ³ at room temperature and pressure.]	(2)
	(iii) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide solution, NaOH(aq), formed in the experiment.	(2)
	(Total for Question 24 = 19 m	arks)
	TOTAL FOR SECTION B = 60 MA TOTAL FOR PAPER = 80 MA	

Summer 2015

Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Chemistry Unit 1 WCH01

	0 (8)	(18) 4.0 hetium 2	20.2 Ne neon	39.9	Ar argon 18	83.8	krvnton	36	131.3	Xe	54 xenon	[222]	Rn	radon 86		pa							
	7	(17)	19.0 F fluorine	35.5	Cl chlorine 17	79.9	Br bromine	35	126.9	-	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated		175	Lu lutetium 71	[257]	2	lawrencium 103	
	9	(16)	16.0 oxygen	32.1	S sulfur 16	79.0	Selenium	34	127.6	Te	tellurium 52	[209]	P B	polonium 84		116 have b nticated		173	Yb ytterbium 70	[254]	۶	nobelium 102	
	5	(15)	14.0 N nitrogen	31.0	P phosphorus 15	74.9	As	33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav		169	Tm thulium 69	[256]	ΡW	mendelevium 101	
	4	(14)	12.0 C carbon	28.1		72.6	Ge	32	118.7	Sn	tin 50	207.2	PD	lead 82	1	atomic nu but not f		167	Er erbium 68	[253]			
	с	(13)	10.8 B boron	27.0	Al aluminium 13	69.7	Ga	31	114.8	<u>_</u>	indium 49	204.4	F	thallium 81	ents with a	165	Ho holmium 67	[254]	្ត្រ	californium einsteinium 98 99			
lents					(12)	65.4	Zn	30	112.4	B	cadmium 48	200.6	Hg	mercury 80			_	163	Dy dysprosium 66	[251]	ືປ	californium 98	
Elem					(11)	63.5	Cu	29	107.9	Ag	silver 47	197.0	Au	gold	[272]	Rg	111	159	Tb terbium 65	[245]	Ä	berketium 97	
le of			(10)	58.7	iz	28	106.4	Р	palladium 46	195.1	£.	platinum 78		Mt Ds meitnerium damstadtium	110	157	Gd gadolinium 64	[247]	ູ່ຮ	curium 96			
c Tab					(6)	58.9	C Cohalt	27	102.9		rhodium 45	192.2	<u>ہ</u>	77	[268]	Mt	109	152	Eu europium 63	[243]	Am	americium 95	
riodi		1.0 H hydrogen		(8)				26	101.1	Ru	ruthenium 44	190.2	S	76	[277]	Hs hassium	108	150	sai	[242]	Pu	plutonium 94	
The Periodic Table of Elements					(2)	54.9	Cr Mn	25	[98]	Ъ	molybdenum technetium ruthenium 42 43 44	186.2	Re	75	_	Bh bohrium	107	[147]	Pr praseodymium neodymium promethium 59 60 61	[237]	Np Pu Am	neptunium 93	
È			mass bol		(9)	52.0	Cr chroniun	24	95.9	Mo	molybdenum 42	183.8	8	tungsten 74	[266]	Sg seaborøium	106	144	neodymium 60	238		uranium 92	
		Key	relative atomic mass atomic symbol name atomic (proton) number		(2)	50.9	V	23	92.9	qN	niobium 41	180.9	Ta	tantalum 73		Db		141	Pr praseodymium 59	[231]	Pa	protactinium 91	
			atomic		(4)	47.9	Ti	22	91.2	Zr	zirconium 40	178.5	H.	hatnium 72	[261]	Rf nutherfordium	104	140	Ce cerium 58	232	Ę	thorium 90	
					(3)	45.0	Sc	21	88.9	۲	yttrium 39	138.9	La*	tanthanum 57	[227]	Ac*	89		Sa				
	2	(2)	9.0 Be beryllium	24.3	Mg magnesium 12	40.1	Ca	20	87.6	Sr	strontium 38	137.3	Ba	56	[226]	Ra radium	88		* Lanthanide series * Actinide series				
	-	(1)	6.9 Li lithium	23.0	Na sodium 11	39.1	K notaccium	19	85.5	ß	rubidium 37	132.9	ک	55	[223]	Fr francium	87		* Lanth * Actini				

P 4 4 8 8 0 A 0 2 8 2 8