

Mark Scheme (Results)

Summer 2017

Pearson Edexcel IAL In Chemistry (WCH01) Paper 01 The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code WCH01_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General marking guidance

- This mark scheme provides a list of acceptable answers for this paper. Candidates will receive credit for all correct responses but will be penalised if they give more than one answer where only one is required (e.g. putting an additional cross in a set of boxes). If a candidate produces more written answers than the required number (two instead of one, three instead of two etc), only the first answers will be accepted. Free responses are marked for the effective communication of the correct answer rather than for quality of language but it is possible that, on some occasions, the quality of English or poor presentation can impede communication and loose candidate marks. It is sometimes possible for a candidate to produce a written response that does not feature in the mark scheme but which is nevertheless correct. If this were to occur, an examiner would, of course, give full credit to that answer.
- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	 1. The only correct answer is C A is not correct because 1kg = 10⁶ mg so no conversion factor is needed. B is not correct because 1kg = 10⁶ mg so no conversion 	(1)
	 B is not correct because 1kg = 10⁶ mg so no conversion factor is needed. D is not correct because 1kg = 10⁶ mg so no conversion factor is needed. 	

Question Number	Correct Answer	Mark
2	 2. The only correct answer is C A is not correct because this does not count the 3 ions per mol of Na₂SO₄ B is not correct because this assumes there are 2 ions per mol of Na₂SO₄ 	(1)
	D is not correct because this assumes there are 7 ions per mol of Na ₂ SO ₄	

Question Number	Correct Answer	Mark
3	3. The only correct answer is D	(1)
	A is not correct because this is based on mass, not mol	
	B is not correct because the Li:O ratio is wrong	
	<i>C</i> is not correct because the Li:P ratio is wrong	

Question Number	Correct Answer	Mark
4	 4. The only correct answer is C A is not correct because the mol of O have not been calculated B is not correct because the mol of O have not been calculated D is not correct because the molar ratio Cr:O has been inverted 	(1)

Question Number	Correct Answer	Mark
5	5. The only correct answer is A	(1)
	B is not correct because the ratio of $SO_2:SO_3$ is 1:1 and oxygen is in excess	
	\boldsymbol{C} is not correct because the ratio of SO ₂ :SO ₃ is 1:1 and oxygen is in excess	
	D is not correct because the ratio of SO ₂ :SO ₃ is 1:1 and oxygen is in excess	

Question Number	Correct Answer	Mark
6	6. The only correct answer is B	(1)
	A is not correct because Be has no unpaired electrons	
	C is not correct because Cl has one unpaired p electron	
	D is not correct because Ca has no unpaired electrons	

Question Number	Correct Answer	Mark
7	 7. The only correct answer is D A is not correct because this ion has 20 protons and S²⁻ has 16 	(1)
	 B is not correct because this ion has 17 protons and S²⁻ has 16 C is not correct because this ion has 19 protons and S²⁻ has 16 	

Question Number	Correct Answer	Mark
8	8. The only correct answer is D	(1)
	A is not correct because Na^+ has less polarising power than Al^{3+}	
	B is not correct because Na^+ has less polarising power than AI^{3+}	
	C is not correct because F ⁻ is smaller than I ⁻ and less easily polarised	

Question Number	Correct Answer	Mark
9	9. The only correct answer is C	(1)
	A is not correct because electrons are removed from level 2 before level 1	
	B is not correct because electrons are removed from 2p before 2s	
	D is not correct because electrons are removed from 2s before 1s	

Question Number	Correct Answer	Mark
10(a)	10(a). The only correct answer is B	(1)
	• is not compatible course CoCO (c) should not be shown	
	A is not correct because $CaCO_3(s)$ should not be shown as separated ions	
	C is not correct because $CaCO_3(s)$ should not be shown as separated ions	
	D is not correct because CaCl ₂ (aq) should be shown as separated ions and spectators then cancelled out	

Question Number	Correct Answer	Mark
10(b)	10(b). The only correct answer is A	(1)
	B is not correct because calcium chloride cannot be removed by distillation	
	C is not correct because calcium chloride cannot be removed by distillation	
	D is not correct because the excess solid calcium carbonate must be removed before evaporating	

Question Number	Correct Answer	Mark
10(c)	10(c). The only correct answer is B	(1)
	A is not correct because this does not use the molar masses and the value is based on 10.4/14.7	
	C is not correct because the 2:1 ratio of HCl:CaCl₂ is not used	
	D is not correct because it is not based on the theoretical yield of calcium chloride being 14.7g	

Question Number	Correct Answer	Mark
11	11. The only correct answer is C	(1)
	A is not correct because melting temperatures decrease down Group 1	
	B is not correct because the melting temperature of P is less than Si	
	D is not correct because the melting temperature of Ar is less than the others	

Question Number	Correct Answer	Mark
12	12. The only correct answer is C	(1)
	A is not correct because it has used a wrong sign in the calculation and then divided the answer by 2	
	B is not correct because it has used a wrong sign in the calculation	
	D is not correct because the wrong sign for enthalpy change has been used	

Question Number	Correct Answer	Mark
13	13. The only correct answer is D	(1)
	A is not correct because there are 6 C atoms in the longest chain	
	B is not correct because there are 6 C atoms in the longest chain	
	C is not correct because the chain should be numbered from the end which gives lowest numbers for the side chains	

Question Number	Correct Answer	Mark
14	14. The only correct answer is B	(1)
	A is not correct because in the double bond the first C atom has 2H attached	
	C is not correct because in the double bond the first C atom has 2Cl attached	
	D is not correct because in the double bond one C atom has $2CH_3$ attached	

Question Number	Correct Answer	Mark
15	15. The only correct answer is A	(1)
	B is not correct because the molecular formula C_5H_8 cannot be simplified	
	$m{C}$ is not correct because the molecular formula C_5H_{12} cannot be simplified	
	D is not correct because the molecular formula C_5H_{12} cannot be simplified	

Question Number	Correct Answer	Mark
16	16. The only correct answer is D	(1)
	A is not correct because hydrogen peroxide does not react with propene to give a diol	
	B is not correct because oxygen and water do not react with propene to give a diol	
	C is not correct because aqueous sodium hydroxide does not react with propene to give a diol	

Question Number	Correct Answer	Mark
17	17. The only correct answer is A	(1)
	B is not correct because bromine, not HBr, is needed to produce dibromopropane	
	C is not correct because bromine, not HBr, is needed to produce bromopropanol	
	D is not correct because bromine water, not HBr, is needed to produce bromopropanol	

Question Number	Correct Answer	Mark
18	18. The only correct answer is B	(1)
	A is not correct because another alkene is required to react with ethene	
	C is not correct because another alkene is required to react with ethene	
	D is not correct because an alkene with 3C atoms is required to react with ethene	

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers		Reject	Mark
19a(i)	<u>(6.10x54 + 92.0x56 +1.90x57)</u> 100	(1)		(2)
	= (5589.7 /100)			
	= 55.9 Final answer must be to 3 SF IGNORE Units	(1)	55.89/ 55.90	
	Correct answer with no working sho scores (2)	own		

Question Number	Acceptable Answers		Reject	Mark	
19a(ii)	X = Fe / iron. ALLOW Fe ⁺			Fe with negative charge	(2)
	protons	electrons	neutrons		
	26	25	30		
	MP2 number of e	lectrons and	number (1) neutrons element (1)		

Question Number	Acceptable Answers	Reject	Mark
19a(iii)	X ²⁺ / Fe ²⁺ forms	Fe ²⁻	(1)
	IGNORE any atomic numbers or mass numbers	Silicon, Si, Ni, Si ⁺ , N ₂ ⁺	

Question Number	Acceptable Answers	Reject	Mark
19a(iv)	The isotopes have the same number of electrons (1)		(2)
	(therefore)		
	same number of electrons in outer shell / valence electrons		
	(so the same chemical properties) (1)		
	Isotopes have the same electronic configuration/structure scores (2)		
	IGNORE Same number of protons/ different number of neutrons		

Question Number	Acceptable Answers	Reject	Mark
19b(i)	Sample is vaporised / converted to a gas / atomised ALLOW sample is sublimed (1)	`vaporised to form ions'	(2)
	(Atoms are) bombarded with (high energy) electrons / electron removed with electron gun / electron removed with electron beam (1)		

Question Number	Acceptable Answers	Reject	Mark
19b(ii)	 MP1 Reference to acceleration, deflection, detection in correct order IGNORE Additional comments on vaporisation and ionisation (1) MP2 and 3 Acceleration: (ions pass through slit in negatively) charged plate / electric field / electronic field (1) Deflection: (ions pass through) a magnetic field ALLOW magnet / electromagnet (1) 	Incorrect order Analysing Just positively charged plate 'electron field'	(3)
(Total for Question 19 –12 marks)			

(Total for Question 19 =12 marks)

Question Number	Acceptable Answers	Reject	Mark
20a(i)	MP1 Metallic (bonding) and	Intermolecular forces	(2)
	Na has delocalised / mobile electrons / free electronsALLOWSea of electrons(1)		
	MP2 attracting the positive ions / attracting the metal ions / attracting the nuclei (1) Second mark depends on first	Attraction in any sort of bonding other than metallic	

Question Number	Acceptable Answers	Reject	Mark
20a(ii)	Ionic bonding and (electrostatic) force /attraction between oppositely charged ions OR + and — ions OR Na ⁺ and Br ⁻ ions OR cations and anions	Intermolecular forces between ions Attraction of differently charged ions Sodium and bromine	(1)

Question Number	Acceptable Answers	Reject	Mark
20a(iii)	Ionic (bonding) is stronger than metallic (bonding) (in this case) OR Bonding in NaBr is stronger (than in Na)	Any reference to incorrect types of bonding	(1)
	ALLOW		
	Attraction in NaBr is stronger		
	Reverse argument		

Question Number	Acceptable Answers	Reject	Mark
20a(iv)	Electrical conductivity: Sodium conducts (in solid or liquid state) NaBr does not conduct when solid/ only conducts when molten / in (aqueous) solution OR Thermal conductivity : Na good, NaBr poor Sodium conducts heat is insufficient OR Malleability/ Ductility: Na malleable/ ductile, NaBr brittle ALLOW Hardness Na soft; NaBr harder Density Na low ; NaBr higher	NaBr cannot conduct heat	(2)
	Name of property and correct for Na or NaBr (1)	Chemical properties	
	Correct for the second substance (1) IGNORE Explanations for differences	Colour Solubility	

Question Number	Acceptable Answers		Reject	Mark
20b(i)	Covalent: The (bonding) electrons come (equally) from both atoms	(1)		(2)
	Dative covalent: The (bonding) electrons come from one atom	(1)		

Question Number	Acceptable Answers	Reject	Mark
20b(ii)	$\begin{bmatrix} H & H & H \\ H & H & H \\ H & H & H \end{bmatrix}^{+}$ N joined to four H with three correct N- H single bonds, i.e. with a dot and a cross (1) Datively covalently bonded H (lone pair on N shared with fourth H) and a + charge on this H / on the whole ion / on the N ALLOW 2 crosses for dative bond (1) IGNORE Arrow from N to H indicating dative	Just diagram for ammonia	(2)
	covalent Lack of square brackets		

Question Number	Acceptable Answers	Reject	Mark
20b(iii)	(Electron density contour) lines go round ion and not around other nuclei/ do not overlap/ do not fuse/ do not intercept/ OR There is a gap between particles/ ions with no electron density lines IGNORE Number of circles ALLOW Diagram		(1)

(Total for Question 20 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
21a(i)	Answers between 7000 and 8500, including 7000 and 8500 (kJ mol ⁻¹)		(1)

Question Number	Acceptable Answers	Reject	Mark
21a(ii)	$\begin{array}{l} Mg^{2+}(g) \rightarrow Mg^{3+}(g) \ + \ e^{(-)}((g)) \\ \\ ALLOW \\ Mg^{2+}(g) \ - \ e^{(-)}((g)) \ \rightarrow \ Mg^{3+}(g) \\ \\ \\ Gaseous \ states \ for \ both \ magnesium \\ species \ (1) \\ \\ \\ Rest \ of \ equation \ correct \ (1) \end{array}$		(2)

Question Number	Acceptable Answers		Reject	Mark
21b(i)	$\begin{array}{ c c c c c } \hline (Enthalpy change \\ \hline \Delta H_1 & Atomisation of Mg \\ and (2x) atomisa \\ Cl_2 / Cl / chlorine \\ \hline ALLOW \\ \Delta H_{at} \mbox{ for (enthalpy of) atomisation } \\ OR \mbox{ Bond enthalpy for } \Delta H_{at} \\ \hline Ignore \mbox{ state sym} \end{array}$	y CI-CI		(3)
	$ \begin{array}{ c c c c c c c c } \Delta H_3 & (2x) (first) electrod affinity of Cl / chl (2x) EA of Cl \\ & (2x) EA of Cl \\ & ALLOW \\ & Electron affinity cl \\ \Delta H_5 & Formation (of Mg \\ & \Delta H_f (of MgCl_2) \end{array} $	orine	EA of Cl ₂	

Question Number	Acceptable Answers	Reject	Mark
21b(ii)	(+)2189 (kJ mol ⁻¹)	-2189 (kJ mol ⁻¹)	(1)

Question Number	Acceptable Answers	Reject	Mark
21b(iii)	$\Delta H_4 = -641.3 - (391.1 + 2189 - 697.6)$ (1)		(2)
	= - 2523.8/ -2524 (kJ mol ⁻¹) (1)	incorrect unit, but allow the minor slip eg	
	Final answer without working scores 2 Correct value with + sign scores 1	kJ mol ⁻	
	TE on incorrect value in (b)(ii) for 2 marks:		
	(b)(ii) = +1451, (b)(iii) = -1785.8		
	(b)(ii) = -2189, (b)(iii) = (+)1854.2		
	If no value has been calculated in (b)(ii), $\Delta H_4 = -334.8 - \Delta H_2$ This scores (1)		

Question Number	Acceptable Answers	Reject	Mark
*21c(i)	Ca atom has a larger radius (than Mg)/ has more electron shells (than Mg) / has (outer) electrons which are further from nucleus OR The (outer shell) electrons in Ca are more shielded (1)	Ca ions larger Just "Ca is larger (than Mg)" The molecules are larger	(2)
	(Outer shell) electrons experience less attraction from the nucleus OR require less energy/ are easier to remove (1) ALLOW reverse argument IGNORE References to charge density		

Question Number	Acceptable Answers	Reject	Mark
*21c(ii)	MP1 Mg ²⁺ has higher charge density / same charge but smaller (radius) than Ca ²⁺ / distance between ions is smaller	Atomic radius	(2)
	IGNORE Mg ²⁺ has higher polarising power than Ca ²⁺ (1)		
	MP2 So attracts Cl ⁻ more strongly (in MgCl ₂)/		
	so more energy is released when bond forms (1)	`attracts chlorine' References to	
	MP2 depends on MP1	incorrect type of bond/force	
	ALLOW reverse argument	al for Question	

(Total for Question 21 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	Difficult to measure energy supplied/ take measurements while heating (the sample)/ to decide when reaction is complete ALLOW Difficult to measure the temperature of a solid Difficult to measure heat supplied/ heat absorbed	Just "because requires heating" Because of heat losses	(1)

Question Number	Acceptable Answers	Reject	Mark
22b(i)	To protect from or prevent (the acid/ reaction mixture) spraying/ spitting/ splashing out/ bubbling over/ spilling with reason eg due to excessive frothing / stirring IGNORE Reaction is vigorous	Just "spilling"	(1)

Question Number	Acceptable Answers		Reject	Mark
22b(ii)	Mol HCl = $(100 \times 1.25 / 1000)$ =1.25 x 10 ⁻¹ / 0.125 Mol NaHCO ₃ = $(8.0/84)$ = 0.095238/ 0.0952 Ignore SF except 1 SF	(1) (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
22b(iii)	Energy transferred = $(100 \times 4.18 \times 7.3)$ = 3051.4 (J) / 3.0514 kJ Ignore sign Ignore SF except 1 or 2 SF (1) $\Delta H = + 3051.4 \div 0.095238$ Allow TE from incorrect NaHCO ₃ from (b) (ii) (1) = + 32040 J mol ⁻¹ / + 32.040 / + 32.0 kJ mol ⁻¹ ALLOW answers using rounded values of 0.095238 e.g. + 32.120 kJ mol ⁻¹ if based on 0.095 (1) IGNORE SF Use of 0.125 mol does NOT score MP2, but will score MP3 for +24.41 kJ mol ⁻¹		(3)

Question Number	Acceptable Answers	Reject	Mark
22b(iv)	$\frac{2 \operatorname{Na} \operatorname{HCO}_{3}(s)}{+ 2 \operatorname{HCL}((ae))} \xrightarrow{\qquad} \operatorname{Na}_{2} \operatorname{CO}_{3}(s) + \frac{4}{2} \operatorname{HCL}((ae)) + 2 \operatorname{HCL}(($		(4)
	2NaCl + 2H2O + 2CO2 in bottom boxIGNOREState symbols(1)	Cycles using ΔH _f	
	Two arrows pointing downwards each with 2HCl OR Two arrows pointing downwards with 2HCl on each side of the equation in both top boxes (1)		
	ALLOW Right hand arrow pointing upwards and 2HCl if $(2x) (b)(iii) + 36.3$ used correctly in calculation		
	ΔH for Reaction 1 = 2 x answer to (b)(iii) -(-36.3) (1)		
	= (+)100.3 (kJ mol ⁻¹) (1)		
	If factor of 2 missing in MP3 allow TE in MP4 = $(+)68.3 (kJ mol^{-1})$		
	TE on incorrect answer to (b)(iii) Answer of +3.05 in (b)(iii) gives (2x 3.05 +36.3) = (+)42.4 (kJ mol ⁻¹) Answer of +24.41 in (b)(iii) gives (2x 24.41 +36.3) = (+)85.12 (kJ mol ⁻¹)		
	(Total for question		

(Total for question 22 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
23a(i)	MP1 Diagram with 3 lone pairs of electrons per atom and one shared pair ALLOW All dots or all crosses (1) MP2 One electron from the CI-CI bond goes to each atom to produce a (free) radical / the bonding electrons are divided equally between the atoms to produce a (free) radical (1)	Just Cl-Cl with half arrows	(2)

Question Number	Acceptable Answers		Reject	Mark
23a (ii)	Penalise omission of dots in correct equations only once in (ii) and (iii)			(2)
	$C_2H_6 + CI \bullet \rightarrow HCI + C_2H_5 \bullet$	(1)		
	$C_2H_5\bullet + CI_2 \rightarrow C_2H_5CI + CI\bullet$	(1)		
	ALLOW • before or after the formula.			
	TE in equation 2 if the wrong hydrocarbo used (eg methane giving $CH_3 \bullet$)	n is		
	TE in equation 2 for formation of further substituted chloroalkane			
	IGNORE any curly arrows			

Question Number	Acceptable Answers	Reject	Mark
23a(iii)	2 $C_2H_5 \bullet \rightarrow C_4H_{10}$ ALLOW TE from incorrect alkyl radical in (a)(ii) eg 2CH ₃ $\bullet \rightarrow C_2H_6$	Equations not giving a hydrocarbon	(1)

Question Number	Acceptable Answers	Reject	Mark
*23b(i)	MP1pi bond forms by overlap ofp orbitals.ALLOWCorrect labelled diagram(1)	p sub shells / pi orbital	(2)
	MP2 Orbital overlap is poor so bond breaks easily OR Orbital overlap is poor as orbitals are parallel / sideways	Just "it is weaker than the sigma bond" without a reason why	
	(Poor overlap must be described, not just drawn) OR Region of high electron density makes bond reactive / susceptible to attack by electrophiles (1)		

Question	Acceptable Answers	Reject	Mark
Number			
*23b(ii)	$ \begin{array}{c} H \\ C \\ C \\$		(3)
	MP2 Intermediate with + charge, and Cl [−] (1) MP3 Arrow from anywhere on Cl [−] to + on C and product (lone pair on Cl [−] not required) ALLOW TE if partial charges are shown in MP2 (do not penalise these twice) (1) Correct mechanism shown with bromine or HX or an incorrect alkene scores a maximum of 2 marks.	Partial charges on intermediate and chloride No TE from a free radical mechanism	

Question Number	Acceptable Answers	Reject	Mark
23b(iii)	1,2-dichloroethane	ethene for ethane in the name	(1)

Questio n	Acceptable Answers	Rejec t	Mar k	
23c	Here a construction of the state of the s		(2)	
(Total for Question 23 = 13 marks)				

TOTAL FOR PAPER = 80 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

Welsh Assembly Government

