

Autumn 2018

Past Paper (Mark Scheme)

Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH01) Paper 01 Core Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018 Publications Code WCH01_01_1810_MS* All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the meaning of the phrase or the

actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	The only correct answer is B	(1)
	A is not correct because 6HF and $2H_2O$ are needed to balance the equation.	
	$\boldsymbol{\mathcal{C}}$ is not correct because 6HF and 2H ₂ O are needed to balance the equation.	
	D is not correct because 6HF and $2H_2O$ are needed to balance the equation.	

Question Number	Correct Answer	Mark
2	The only correct answer is B	(1)
	A is not correct because the 0.06 g kg ⁻¹ is 60 ppm and this can be safely exceeded	
	C is not correct because this equals 6000 ppm	
	D is not correct because this equals 60 000 ppm	

Question Number	Correct Answer	Mark
3	The only correct answer is B	(1)
	A is not correct because mol chloride = $3 \times 10^{-4} < 6 \times 10^{-4}$	
	C is not correct because mol chloride = $4.5 \times 10^{-4} < 6 \times 10^{-4}$	
	D is not correct because mol chloride = $5 \times 10^{-4} < 6 \times 10^{-4}$	

Question Number	Correct Answer	Mark
4	The only correct answer is D	(1)
	A is not correct because the lighter ion is deflected more	
	B is not correct because the Fe^{2+} ion has one more electron	
	C is not correct because the Fe^{2+} ion has an extra proton	

Question Number	Correct Answer	Mark
5	 The only correct answer is C (To make solution 1/20 as concentrated, total volume would be 200 cm³ produced by adding 190 cm³ to 10 cm³) A is not correct because this is the dilution factor B is not correct because this is just based on 5-fold increase in volume 	(1)
	D is not correct because the final volume would be 210 cm ³	

Question Number	Correct Answer	Mark
6	The only correct answer is B (<i>There is 0.5 mol NO and each molecule contains 2 atoms so answer is 0.5 x 2 x L</i>)	(1)
	A is not correct because this is 0.5 x L	
	C is not correct because this is (2/0.5) x L	
	D is not correct because this is 15 x L	

Question Number	Correct Answer	Mark
7	The only correct answer is C	(1)
	A is not correct because this ignores excess oxygen B is not correct because this assumes all NO and O_2 are used up	
	D is not correct because this assumes O_2 is not used up	

Question Number	Correct Answer	Mark
8	The only correct answer is A	(1)
	B is not correct because X is in Group 4 and this is a Group 6 oxide formula	
	<i>C</i> is not correct because <i>X</i> is in Group 4 and this is a Group 1 oxide formula	
	D is not correct because X is in Group 4 and this is a Group 3 oxide formula	

Question Number	Correct Answer	Mark
9	The only correct answer is B	(1)
	A is not correct because it counts sub-shells not orbitals	
	\boldsymbol{C} is not correct because it includes $3p_z$	
	D is not correct because it treats the subshells as single orbitals	

Question Number	Correct Answer	Mark
10	The only correct answer is A	(1)
	B is not correct because ionic radii decrease across the series	
	C is not correct because first ionisation energy decreases down the group	
	D is not correct because this is only true for the first 4 elements in the period.	

Question Number	Correct Answer	Mark
11	The only correct answer is B	(1)
	A is not correct because it is less easy to polarise bromide than iodide ions.	
	C is not correct because potassium ions polarise anions less than lithium.	
	D is not correct because potassium ions polarise anions less than lithium.	

Question Number	Correct Answer	Mark
12	The only correct answer is D	(1)
	A is not correct because it is the mass of $4H_3PO_4$ divided by the mass of $P_4 + 5O_2 + P_4O_{10} + 6H_2O(x100)$	
	B is not correct because it is the mass of $4H_3PO_4$ divided by the mass of $P_4 + 5O_2 + P_4O_{10}$ (x100)	
	C is not correct because it is the mass of $P_4 + 5O_2$ divided by the mass of $4H_3PO_4$ (x100)	

Question Number	Correct Answer	
13(a)	The only correct answer is A	(1)
	<i>B</i> is not correct because carbonate ions are not spectators<i>C</i> is not correct because carbonate ions are not spectators	

Question Number	Correct Answer	Mark
13(b)	The only correct answer is C	(1)
	A is not correct because this uses 1/20 instead of 0.2	
	B is not correct because it is based on a 2:1 ratio	
	D is not correct because it is based on 0.4 mol gas forming	

Question Number	Correct Answer	
13(c)	The only correct answer is C	(1)
	A is not correct because this based on ratio 4.0 : 0.2	
	B is not correct because ratio 1 : 2 for NiCO₃ : HCl not used	
	D is not correct because it is twice the amount needed	

Question Number	Correct Answer	Mark
14	The only correct answer is C	
	A is not correct because mol reacting = 0.2 not 0.4	
	B is not correct because mass of solution = 200 cm^3 and mol reacting = 0.2 and energy transferred should be divided by number of mol	
	D is not correct because mass of solution = 200 cm^3 and energy transferred should be divided by number of mol	

Question Number	Correct Answer	Mark
15	The only correct answer is B	(1)
	A is not correct because this is 90% of 30 tonnes of hydrogen C is not correct because this is 160 x 6/16 (ie mass $3H_2$ /mass CH_4)	
	D is not correct because this is 60(the mass of hydrogen) /0.9	

Question Number	Correct Answer	Mark
16	The only correct answer is D	(1)
	A is not correct because the name is not based on the longest carbon chain in the monomer	
	B is not correct because the name is not based on the longest carbon chain in the monomer	
	C is not correct because this monomer has 7C atoms	

Question Number	Correct Answer	Mark
17	The only correct answer is A	(1)
	B is not correct because the Ca:C ratio is inverted	
	C is not correct because this is related to mass, not mol	
	D is not correct because Ca: C ratio is incorrect	

Question Number	Correct Answer	
18	The only correct answer is D	(1)
	A is not correct because only acidified KMnO ₄ gives this product	
	B is not correct because only acidified $KMnO_4$ gives this product	
	<i>C</i> is not correct because only acidified $KMnO_4$ gives this product	

(Total for Section A = 20 marks)

Question Number	Acceptable Answers		Reject	Mark
19(a)(i)	M1 % of fourth isotope = 18.60 ALLOW 18.6(0) or 0.186(0) used in the calculation, even not explicitly stated M2 $((64 \times 49.00) + (66 \times 27.90) + (67 \times 4.50)) + 18$ 100 = 65.44 OR $((64 \times 49.00) + (66 \times 27.90) + (67 \times 4.50))$ 100 = 52.79 $(65.44 - 52.789) \times 100$ = 68.016 18.60 OR $((64 \times 49.00) + (66 \times 27.90) + (67 \times 4.50))$ 100 = 52.79	(1)	((64 x 49.00) +(66 x27.90) +(67 x 4.50)) +x =65.44	(3)
	(65.44 - 52.79) = 12.65 $\frac{18.6x}{100} = 12.65$	(1)		
	(x = 68.016) Isotopic mass = 68 Final answers of 68.0 / 68.01/68.02 / 68.016 score 2 Correct answer with no working scores max 2	(1)	Isotopic mass to more than 2SF	

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	No difference And chemical properties depend on electron(ic) configuration/ electron(ic) structure/ same outer shell electrons		(1)
	ALLOW On number of electrons (which is the same) IGNORE Number of protons is same number of neutrons differs		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	M1 To accelerate ions / To make ions travel at same speed / ALLOW Just "acceleration" IGNORE To control velocity To select ions travelling in same direction / In one direction / on same path ALLOW In a straight line OR To produce a (fine) beam (of ions) OR To focus ions (1 IGNORE To form ions / to deflect ions / to detect ions / to detect ions / to deviate ions / to concentrate ions Description of other parts of mass spectrometer	To change direction (of ions)	(2)

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	Using a magnetic field / an electromagnet field / a magnet / an electromagnet IGNORE By deflection By their mass By their charge		(1)

Acceptable Answers	Reject	Mark
Mass/ charge (ratio)		(1)
ALLOW		
Mass number for mass	Mass per electron	
5	Mass and charge	
Mass divided by charge	Mass compared to	
Mass relative to charge	charge	
IGNORE		
	Mass/ charge (ratio) ALLOW Mass number for mass Mass to charge ratio / value Mass:charge Mass over charge Mass per (unit) charge Mass divided by charge Mass relative to charge	Mass/ charge (ratio)ALLOWMass number for massMass number for massMass to charge ratio / valueMass to charge ratio / valueMass: chargeMass over chargeMass over chargeMass per (unit) chargeMass divided by chargeMass relative to chargeIGNOREm/em/e

Question Number	Acceptable Answers	Reject	Mark
19(c)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$		(1)
	OR (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰		
	OR For 2p and/or 3p: $p_x^2 p_y^2 p_z^2$		

Question Number	Acceptable Answers	Reject	Mark
19(d)	$(+) \stackrel{e^{-}}{(+)} (+) (+) \stackrel{e^{-}}{(+)} (+) \stackrel{e^{-}}{(+)} (+) \stackrel{e^{-}}{(+)} (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)$		(3)
	M1 Diagram of regular lattice of positively charged ions with electrons between them and at least 2 rows and 2 columns of ions. ALLOW touching circles.	Electrons just around the edge of lattice Circles that overlap	
	Ions may be shown as particles with +, 2+, or as Zn ²⁺ ALLOW Zn ⁺	Ions labelled protons	
	Electrons may be shown as e, e^- , — or circle with — charge. Number of electrons should be approximately equal to number of + charges shown (1)	Electrons double number of +	
	IGNORE Lines joining nuclei		
	M2 Electrons are delocalised (stated or on label of diagram) ALLOW Are mobile/ free/ sea of electrons (1)		
	M3 Held together by electrostatic forces OR attraction of opposite charges OR forces between + and — charges OR force between positive nuclei/ions and electrons ALLOW Just "forces between charges" if + and — are shown in diagram. (1)	Attractions between atoms and electrons London forces	
	IGNORE The attractions are metallic bonds	stion 19 = 12 marl	

(Total for Question 19 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	Cross shown above level of P (vertically above 16) (actual value = 2251) ALLOW 2100 - 2400 IGNORE A solid line or dotted line joining the crosses		(1)

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	$Al^{+}(g) \rightarrow Al^{2+}(g) + e^{(-)}$		(2)
	ALLOW Al ⁺ (g) - $e^{(-)} \rightarrow Al^{2+}(g)$ Al ⁺ (g) + $e^{(-)} \rightarrow Al^{2+}(g) + 2e^{(-)}$		
	Equation (1)		
	State symbols		
	ALLOW as long as a reasonable attempt to write the equation e.g. correct third ionisation energy Or $AI^{+}(g) + e^{(-)} \rightarrow AI^{2+}(g)$	Equations with Al ⁻	
	(1) IGNORE (g) on electron		

Question Number	Acceptable Answers	Reject	Mark
*20(a)(iii)	M1 In Mg and Al the second electron removed is from 3s / from the same orbital / from the same sub shell OR In Mg and Al the second electron has the same amount of shielding ALLOW Electron configurations of the Mg ⁺ and Al ⁺ ions (1) M2 Al has more protons than Mg OR Al has higher nuclear attraction than Mg ALLOW Al has greater nuclear charge (1)	Reference to the charge on the ions	(4)
	M3 The second electron in Si is removed from a (3)p orbital/sub-shell (1) M4 (3)p higher (energy) than (3)s OR (3)p needs less energy to remove OR (3)p is more shielded than (3)s (1) IGNORE Atomic radius/ distance from nucleus Comments on full versus half full orbitals		

Question Number	Acceptable Answers	Reject	Mark
20(a)(iv)	Na And because electron is removed from a lower quantum shell /	K with correct explanation	(1)
	lower energy level / shell closer to the nucleus/ full p shell / full outer shell / level 2(p)	Different shell	
	ALLOW Na ⁺ has inert gas configuration (so is stable)		
	The + ion with smallest (ionic) radius is Na^+		
	Less shielding		

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	ONE clear difference needed		(1)
	Magnesium chloride conducts when molten OR when liquid OR in (aqueous) solution	If no state mentioned	
	and		
	Sulfur dichloride does not conduct (when solid, liquid or gas)		

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	Two single bonds each with one shared pair of electrons (1) Rest of diagram (remaining electrons) (1) ALLOW circles for dots reversed symbols for electrons Shared pair beside each other Non bonded electrons not shown in pairs IGNORE Inner electrons even if incorrect Bond angles	All electrons shown the same	(2)

Question number	Acceptable Answers	Reject	Mark
20(b)(iii)	5		(1)
	Diagram with at least one contour line going round all three atoms		
	ALLOW diagrams showing three unlabelled atoms diagram with at least one contour line going round one S and both Cl diagrams without inner contour lines round individual atoms diagrams without indentations	Ions in diagram round just 2 nuclei round S and Cl ₂	
	IGNORE Orientation/ bond angles of the three atoms		

Question Number	Acceptable Answers	Reject	Mark
20(b)(iv)	There is no overlap of the (contour) lines around each ion OR there are separated circles / each ion has discrete contour lines/ contour line do not go around more than one nucleus there are gaps between ions/ electron density is zero between ions ALLOW Contour lines do not join	No overlap of orbitals Mg ²⁺ and Cl ₂	(1)
	Information on diagram Separate circles round Mg ²⁺ and 2Cl ⁻		

Question Number	Acceptable Answers		Reject	Mark
20(c)(i)	$\frac{Mg^{2+}(g) + 2Cl(g) (+2e^{-})}{\uparrow \text{ and }}$		2Cl ⁻ (g) on top line	(4)
	<u>Mg⁺(g) + 2Cl(g) (+e⁻)</u> ↑	(1)		
	<u>Mg(g) + 2Cl(g)</u> ↑	(1)		
	<u>Mg(g) + Cl₂ (g)</u> ↑	(1)		
	<u>(Mg(s) + Cl₂ (g))</u>			
	↓ <u>MgCl₂ (s)</u>	(1)		
	ALLOW Atomisation of Mg and Cl_2 in either order Ionisation of Mg before atomisation of Cl_2			
	IGNORE Number of electrons shown Missing state symbol for chlorine Values added beside arrows			

Question Number		Acceptable Answer	s		Reject	Mark
20(c)(ii)	Lattice ener -641.3 -(14	rgy = 17.7 + 738 + 1451 + 2(12	21.7) + 2(-	-348.8))		(2)
	= -2523.8	(kJ mol ⁻¹)				
	Correct met	thod		(1)		
	Final answe	er with sign		(1)		
	ALLOW kJ/mol, kJ r Final answe IGNORE SF except 1 COMMON E	er with no working scores . or 2 SF		(2)	Incorrect unit	
	-2872.6	Omission of 2x EA of Cl	(1)]		
	-2402.1	Omission of 2x atomisation of Cl	(1)			
	-2750.9	Omission of 2x EA of Cl and 2x atomisation of Cl	(1)			
	+2523.8	Incorrect use of Hess	(1)			
	-3919	Incorrect sign with atomisation of 2Cl	(1)			
		(Tot	al for Ou	estion 20	= 19 marks	<u> </u>

Question Number	Acceptable Answers	Reject	Mark
21(a)	$\begin{array}{r} \Delta H^{\rho}_{\text{reaction}} \\ N_{2}H_{4}(l) + O_{2}(g) & N_{2}(g) + 2H_{2}O(l) \\ (+50.6) & (-285.8 \times 2) \\ N_{2}(g) + 2H_{2}(g) + O_{2}(g) \\ \textbf{M1} \\ \hline \text{For correct species with state symbols in the lower} \\ \text{box and linked to top line by arrows} \\ \hline \text{ALLOW} \\ \text{Unlabelled arrows / arrows labelled } \Delta H \\ \hline \text{Addition of } O_{2}(g) \text{ shown on both arrows} \\ \hline \text{IGNORE} \\ \hline \text{Direction of arrows} \\ \hline \textbf{M2} \\ \Delta H^{\rho}_{\text{reaction}} = (-(285.8 \times 2) - 50.6) \\ = -622.2 \text{ (kJ mol}^{-1}) \\ \hline \end{array} $ (1)		(2)

Question	Acceptable Answers	Reject	Mark
Number 21(b)(i)	The total enthalpy changes for breaking and making bonds need not be shown if the method of calculating them is shown or if M3 is correct.		(3)
	Correct answer with no working scores (3)		
	M1Energy to break bonds: $N-N$ 158 $4 \times N-H$ $(4x391=)1564$ $O=O$ 498 Total: $(+)2220 (kJ mol^{-1})$		
	M2Energy from making bonds: $N \equiv N$ 945 $4 \times O-H$ $(4x464=)1856$ Total:(-)2801 (kJ mol ⁻¹)		
	$\Delta H = 158 + 4x391 + 498 - 945-4x464$ scores M1 and M2	Incorrect sign	
	M3 Value for M1-value for M2 If both correct ΔH (= 2220 - 2801) = - 581 (kJ mol ⁻¹)		
	ALLOW TE for M3 on two wrong energy totals (1)		
	Ignore SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	 M1 Bond energies are based on substances in the gaseous state OR the Hess cycle is using values for liquid(s) ALLOW Energy is released as water turns from gas to liquid / vaporisation of water is 	Substances aren't pure Incomplete reaction Heat loss	(2)
	IGNORE The reaction is not done under standard conditions		
	M2 Bond enthalpies (of N-H and O-H) are average / mean for the bond in different compounds OR Bond energies vary with the environment ALLOW Bond energies are different in different		
	substances Mean bond energies do not equal real values (1)	r_{0} outputs r_{1} r_{2} r_{2}	

(Total for Question 21= 7 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Balanced equation including dot for radical(s) and 2Cl• / Cl• + Cl• in products (1)		(2)
	Curly half arrows ending on or close to Cl (1) IGNORE UV above arrow	Use of full arrows	

Question Number	Acceptable Answers		Reject	Mark
22(a)(ii)	$C_{10}H_{22} + CI^{\bullet} \rightarrow C_{10}H_{21}^{\bullet} + HCI$	(1)		(2)
	$C_{10}H_{21}^{\bullet} + CI_2 \rightarrow C_{10}H_{21}CI + CI^{\bullet}$	(1)		
	ALLOW equations in either order max(1) for use of wrong alkane			
	IGNORE Curly arrows even if incorrect Non-subscript numbers			

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	$C_{10}H_{21}^{\bullet} + CI^{\bullet} \rightarrow C_{10}H_{21}CI$ (1)		(2)
	$C_{10}H_{21}^{\bullet} + C_{10}H_{21}^{\bullet} \rightarrow C_{20}H_{42}$ (1)		
	ALLOW equations in either order		
	product written $C_{10}H_{21}C_{10}H_{21}$		
	Termination steps in which a second Cl has been substituted eg		
	$C_{10}H_{20}CI^{\bullet} + CI^{\bullet} \rightarrow C_{10}H_{20}CI_{2}$		
	$C_{10}H_{20}CI^{\bullet} + C_{10}H_{20}CI^{\bullet} -> C_{20}H_{40}CI_{2}$		
	Radicals from incorrect alkanes combining		
	IGNORE Curly arrows even if incorrect $2CI \bullet \rightarrow Cl_2$		

Question Number	Acceptable Answers	Reject	Mark
22(b)	2,2,4-trimethylheptane	4,6,6-trimethylheptane	(1)
	ALLOW	2-dimethyl,4-methylheptane	
	4,2,2-trimethylheptane	2,2,4-trimethylseptane	
	2,2-dimethyl,4-methylheptane	2-dimethyl,4-methylheptane	

Question Number	Acceptable Answers	Reject	Mark
22(c)	$C_{10}H_{22} \ + \ 10\frac{1}{2}O_2 \ \to \ 10CO \ + \ 11H_2O$		(1)
	ALLOW Multiples, 21/2 for $10\frac{1}{2}O_2$, 10.5 O_2 IGNORE State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	$C_{10}H_{22} \ \rightarrow \ C_4H_{10} \ + \ C_2H_4 \ + \ C_4H_8$		(1)
	ALLOW structural formulae		
	IGNORE State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
*22d(ii)	Any TWO of the following:		(2)
	There is no free rotation/ there is restricted rotation (around a C=C bond / pi bond/ in alkenes) (1)	Alkenes lack rotation "can't be flipped" Different	
	There are geometric isomers only if there are (two) different groups on each C at the end of the C=C bond (and some of the products do not meet this requirement) OR reverse argument(1)	"molecules" attached.	
	Ethene/ but-1-ene/ 2-methylprop-1-ene have 2 H atoms at one end of the double bond so would not have different (geometric) isomers		
	ALLOW Answer even if it is not clear which alkene it refers to (1)		

Question Number	Acceptable Answers	Reject	Mark
22(d)(iii)	Diagram of <i>trans</i> (<i>E</i>) but-2-ene		(1)
	$H_{3C} = C_{H_{3}}$		
	ALLOW Fully displayed or skeletal formula		

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
*23(a)	M1: (In C=C) there is good/ "head-on" overlap of orbitals in the sigma bond (1) M2: Sideways/ parallel overlap the p orbitals OR The p orbitals are parallel (so overlap is limited) in the pi bond (1) ALLOW Information given on labelled diagram for both M1 and M2 can score (2) eg $\left(\begin{array}{c} O \\ O \\ O \end{array} \right) \left(\begin{array}{c} \sigma \\ \sigma \end{array} \right) \left(\begin{array}{c} \sigma \\ \end{array} \right) \left(\begin{array}{c} \sigma \\ \sigma \end{array} \right) \left(\begin{array}{c} \sigma \end{array} \right) \left(\begin{array}{c} $	Just 'C=C' consists of 1 sigma and 1 pi bond $0 0^{-\pi}$	(3)
	 M3: pi bond breaks more easily/ is weaker (so the alkene is reactive) OR Region of high electron density between the carbon nuclei / above and below the C-C bond allows attack by electrophiles (1) 		

Question Number	Acceptable Answers		Reject	Mark
23(b)(i)	$\begin{array}{c} H_{3}C \\ H \\ $			(4)
	M1: Correct dipole on HBr (1	1)		
	M2: Curly arrow from C=C double bond to H^{δ^+} and curly arrow from H-Br bond to Br^{δ^-} (2)	1)	from C atom	
	M3: Structure of intermediate (secondary carbocation) 1)		
	M4: Arrow from anywhere on Br ⁻ to C ⁺ and formation of product (on [1]		
	Mechanism showing primary carbocation does not score MP3, but can score MP4 as a TE if final product is 1-bromobutane. (Giving max 3)	t		
	Penalise missing bonds and missing H atoms once only	e		

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	A secondary carbocation (intermediate) is more stable OR a primary carbocation is less stable ALLOW $CH_3CH^+CH_3$ is more stable than $CH_2^+CH_2 CH_3$	Just 'the intermediate is more stable' 2-bromopropane is more stable than 1- bromopropane	(1)

Question Number	Acceptable Answers	Reject	Mark
-	Acceptable Answersn H2C = CHCH2Br $+$ <th>Reject Bond from C to Br</th> <th>Mark (2)</th>	Reject Bond from C to Br	Mark (2)
	Balancing mark can be awarded if there is an error in drawing the polymer (1)	stion 23 = 10 marks	

(Total for Question 23 = 10 marks) (Total for Section B = 60marks)

Total for Paper = 80 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom