WCH02	
-------	--

Please check the examination deta	ails below	before entering	g your candidate information
Candidate surname		0	ther names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Wednesday 1	6 J	anua	ry 2019
Morning (Time: 1 hour 30 minute	es)	Paper Refe	erence WCH02/01
Chemistry Advanced Subsidiar Unit 2: Application of C		Principles	s of Chemistry
Candidates must have: Scienti	fic calc	ulator	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over 🕨

DO NOT WRITE IN THIS AREA

SECTION A

		SECTION A
	this sea	LL the questions in this section. You should aim to spend no more than 20 minutes on ction. For each question, select one answer from A to D and put a cross in the box \boxtimes . hange your mind, put a line through the box \bigoplus and then mark your new answer with a cross \boxtimes .
1	Which	of these molecules is planar?
	A	Ethane, CH ₃ CH ₃
	B	Ethanoic acid, CH ₃ COOH
	🛛 C	Methanal, HCHO
	D	Methanol, CH ₃ OH
		(Total for Question 1 = 1 mark)
2	Which	molecule contains bond angles of both 90° and 120°?
	A	SF ₆
	B	PCl ₅
	🖾 C	BCl ₃
	D	BeCl ₂
		(Total for Question 2 = 1 mark)
3	Which	molecule has the most polar bond ?
	A	CH ₃ CH ₂ NH ₂
	B	CH ₃ CH ₂ OH
	🖂 C	CH ₃ CH ₂ Cl
	D	CH ₃ CH ₂ I
		(Total for Question 3 = 1 mark)
	Use th	is space for any rough working. Anything you write in this space will gain no credit.

4 Which is correct for tetrabromomethane, CBr₄?

	Polarity of C-Br bond	Polarity of CBr ₄ molecule
🖾 A	polar	polar
B	non-polar	non-polar
🖾 C	non-polar	polar
D 🖾	polar	non-polar

(Total for Question 4 = 1 mark)

5 In alkanes, increasing the length and branching of the carbon chain both affect the boiling temperature.

Which of the following combination of effects is correct?

	Effect on boilin	ig temperature
	Increasing chain length	Increasing branching
🖾 A	increases	decreases
B	decreases	increases
🖾 C	decreases	decreases
D 🛛	increases	increases

(Total for Question 5 = 1 mark)

- **6** What is the correct order of boiling temperatures for the hydrogen halides, from the lowest to highest?
 - 🖾 A HCl, HBr, HI, HF
 - 🖾 **B** HF, HCl, HBr, HI
 - 🖾 C HBr, HCl, HF, HI
 - 🖾 **D** HI, HBr, HCl, HF

(Total for Question 6 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

Turn over 🕨

DO NOT WRITE IN THIS AREA

	aper		This resource was created and owned by Pearson Edexcer	VICHU
_				
7			is always formed when s-block nitrates thermally decompose?	
			A metal nitrite	
	\times	B	A metal oxide	
			Nitrogen dioxide	
	\times	D	Oxygen	
			(Total for Question 7 = 1 mai	r k)
8			solid potassium bromide reacts with concentrated sulfuric acid, which ance does not form?	
	\times	Α	HBr	
	×	B	Br ₂	
	×	C	SO ₂	
	X	D	H ₂ S	
			(Total for Question 8 = 1 mai	r k)
9			n equation does not represent a disproportionation reaction?	
			$Cl_2 + H_2O \rightarrow HClO + HCl$	
			$3Cl_2 + 6KOH \rightarrow KClO_3 + 5KCl + 3H_2O$	
			$2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$	
	\times	D	$4\text{KClO}_3 \rightarrow 3\text{KClO}_4 + \text{KCl}$	
			(Total for Question 9 = 1 mai	r k)
10			does the addition of a catalyst to a reaction affect the shape of the Maxwell-Boltzn oution curve?	nann
	X	A	There is no change.	
	\mathbf{X}	B	The peak moves to the left and is higher.	
	\mathbf{X}	C	The peak moves to the right and is lower.	
	X	D	The total area under the curve increases.	

11 This question is about the equilibrium between sulfur dioxide, oxygen and sulfur trioxide in the gas phase.

$$SO_2(g) + \frac{1}{2}O_2(g) \implies SO_3(g) \quad \Delta H^{\ominus} = -98 \text{ kJ mol}^{-1}$$

(a) What are the effects of **decreasing** the temperature?

(1)

	Effect on rate	Effect on equilibrium yield of SO ₃
🖾 A	increases	decreases
B	decreases	increases
🖾 C	decreases	decreases
D	increases	increases

(b) What are the effects of **increasing** the pressure?

(1)

(1)

Effect on rate	Effect on equilibrium yield of SO_3
increases	decreases
decreases	increases
decreases	decreases
increases	increases
	increases decreases decreases

(c) The equation for the reaction can also be written as

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

The enthalpy change for this equation is

- ☑ A −49 kJ mol⁻¹
- **B** −98 kJ mol⁻¹
- **C** −196 kJ mol⁻¹
- **D** −9604 kJ mol⁻¹

(Total for Question 11 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

ast Paper	This resource was created and owned by Pearson Edexcel
12 A sam	ple of 50 cm ³ of ethanol gas is burned completely in 200 cm ³ of oxygen.
	$C_2H_2OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$
All vo	umes are measured at a temperature of 400 K and 1 atm pressure.
	is the total volume of gas when the reaction is complete?
	150 cm ³
B	200 cm ³
⊠ C	250 cm ³
D	300 cm ³
	(Total for Question 12 = 1 mark)
13 Which	is a tertiary alcohol?
A	2-methylbutan-2-ol
B	2-methylbutan-1-ol
🖾 C	pentan-2-ol
D	pentan-3-ol
	(Total for Question 13 = 1 mark)
14 Exces	ammonia in ethanol reacts with 1-bromobutane at high pressure.
	products could be formed in this reaction?
A	$C_4 H_9 N H_2$ and $N H_4 B r$
	$C_4H_9NH_2$ and C_4H_{10}
🖾 C	C ₄ H ₁₀ and HBr
D	C_4H_8 , NH_4Br and HBr
	(Total for Question 14 = 1 mark)
Use th	is space for any rough working. Anything you write in this space will gain no credit.

пареі п	is resource was created and owned by rearson Edexcer	0001
15 This question is about r	nechanisms and reaction types.	
(a) The reaction betwee	en an alkane and a halogen to form a halogenoalkane is	(1)
🖂 A electrophilic add	dition.	(1)
🖾 B nucleophilic add	dition.	
C free radical subs	stitution.	
D nucleophilic sub	ostitution.	
(b) The reaction betwee	en ammonia and a halogenoalkane is	(1)
🖾 A electrophilic add	dition.	
🛛 B nucleophilic add	dition.	
C free radical subs	stitution.	
D nucleophilic sub	ostitution.	
	(Total for Question 15 =	2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Winter 2019 www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper 16 Which of these substances causes the greatest amount of anthropogenic global warming? A Carbon dioxide В Methane \times 🛛 C Dinitrogen monoxide **D** Dichlorodifluoromethane (Total for Question 16 = 1 mark) 17 In which pair do **both** substances deplete the ozone layer? A Water vapour and carbon dioxide **B** Dichlorodifluoromethane and nitrogen monoxide **C** Dichlorodifluoromethane and carbon dioxide \times **D** Water vapour and nitrogen monoxide (Total for Question 17 = 1 mark) **TOTAL FOR SECTION A = 20 MARKS**

	SECTION B	
	Answer ALL the questions. Write your answers in the spaces provided.	
18 This qu	estion is about diamond, graphite and other carbon structures.	
(a) (i)	In diamond, each carbon atom is covalently bonded to four others, in a three-dimensional structure.	
	Draw a diagram showing this arrangement.	(1)
(ii)	Explain the shape and bond angle of this arrangement of carbon atoms in dia	mond. (3)
	Shape	
	Bond angle	
Explanatic	n	

DO NOT WRITE IN THIS AREA

Past Paper	This resource was created and owned by Pearson Edexcel	WCH	D
(b)	Graphite consists of a layer lattice, with strong covalent bonds within the layers and a weaker force between the layers.		
	 (i) Draw a diagram to show part of one layer of graphite with between 13 and 19 carbon atoms, and give the bond angle. 		
	Diagram	(2)	
	Bond angle		
	(ii) Name the force between the layers.	(1)	
	(iii) Give a reason why graphite conducts electricity whereas diamond does not.		
		(1)	
			_

(iv) A graphite shield was used on the front of early spacecraft to prevent them getting too hot when re-entering the atmosphere. Use your knowledge of the structure of graphite and its physical properties to suggest **two** reasons for this use.

(c) Name **one** other form of pure carbon.

(1)

(Total for Question 18 = 11 marks)

DO NOT WRITE IN THIS AREA

This resource was created and owned by Pearson Edexcel	WCH0
out the structure, properties and reactions of the alcohols, ethan	ol
<i>v</i> ith water in all proportions, but butan-2-ol has limited solubility	y
e intermolecular forces present in these alcohols.	(2)
butan-2-ol has limited solubility in water.	(2)
	(2)
is are not required.	(2)
	put the structure, properties and reactions of the alcohols, ethan with water in all proportions, but butan-2-ol has limited solubility e intermolecular forces present in these alcohols. I butan-2-ol has limited solubility in water.

DO NOT WRITE IN THIS AREA

 (c) Both alcohols are separately heated under reflux with acidified potassium dichromate(VI). After refluxing, the organic product is distilled from each mixture. (i) Name the organic product formed from ethanol and give a chemical test, with the result, to show the functional group present in the product. 	
potassium dichromate(VI). After refluxing, the organic product is distilled from each mixture. (i) Name the organic product formed from ethanol and give a chemical test, with	
(i) Name the organic product formed from ethanol and give a chemical test, with	
(2	2)
Name	
Test and result	
(ii) Give the structure of the organic product formed from butan-2-ol.	
(1)
(iii) State the ways in which the infuenced spectre of button 2 of and its evidetion	
(iii) State the ways in which the infrared spectra of butan-2-ol and its oxidation product would differ. Suggifier and the second se	
Specific wave numbers are not required.	2)
(Total for Question 10 - 12 marks	:)
(Total for Question 19 = 13 marks	5)
(Total for Question 19 = 13 marks	5) 1:

20 This question is about iodine and some of its compounds.

	odine can be obtained from iodine compounds, such as potassium iodide, by reaction with chlorine.	
	 Write the ionic equation for the formation of iodine, by the addition of chlorine to aqueous potassium iodide. State symbols are not required. 	(1)
	(ii) The colour of the iodine solution formed is red-brown.	
	Name an organic solvent that can be added to extract iodine from its aqueou solution, and give the colour of the organic layer.	s
		(2)
	Name	
	Colour	
	(iii) lodine reacts with sodium thiosulfate solution.	
	$I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow 2NaI(aq) + Na_2S_4O_6(aq)$	
	State which element is oxidised and which is reduced, giving the relevant changes in oxidation number.	(2)
14		/ %

(d) Aqueous sodium hydroxide reacts with 1-iodopropane to form propan-1-ol.

Draw the mechanism for this reaction. Include curly arrows and relevant lone pairs.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(e) Hot concentrated potassium hydroxide in ethanol reacts with 1-iodopropane and 2-iodopropane. The same organic compound is formed in each case.	
(i) State the type of reaction occurring.	(1)
(ii) Name the organic product formed in both reactions.	(1)
(Total for Question 20 -	- 16 marks)

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

21 'Hard' water is water that contains significant concentrations of calcium ions or magnesium ions.

Hard water may be produced when rainwater, containing dissolved carbon dioxide, passes through rocks containing calcium carbonate. Calcium hydrogencarbonate is formed in solution.

Hard water may also be formed when rain water passes through minerals containing calcium sulfate or magnesium sulfate.

Hard water causes two problems.

The first is that it forms a precipitate (scum) when mixed with soap.

The second is that, on heating, it will form a deposit of calcium or magnesium carbonate which reduces the efficiency of heating elements and may lead to blockages in boiler pipes.

- (a) A flame test can be used to detect the metal ion present in the precipitate formed by heating hard water.
 - *(i) Explain how metal ions produce a colour in a flame test.

(3)

(ii) Give the colour of the flame you would expect to see when calcium ions are present.

(1)

(iii) Give the reason why magnesium ions do not produce a flame colour.

(1)

Paper	This resource was created and owned by Pearson Edexcel	WCH02
r	Write an equation to show how calcium hydrogencarbonate is formed when ainwater, containing dissolved carbon dioxide, reacts with calcium carbonate. State symbols are not required.	(1)
	Suggest why calcium sulfate and magnesium sulfate can form hard water but parium sulfate cannot.	(1)
	Group 2 metal carbonates decompose on heating. MCO ₃ → MO + CO ₂ i) Explain why calcium carbonate requires stronger heating to decompose than magnesium carbonate.	(3)

DO NOT WRITE IN THIS AREA

(ii) When 10.00 g of a Group 2 metal carbonate is completely decomposed by heating, 1.626 dm³ of carbon dioxide forms, at room temperature and pressure (r.t.p.).

Deduce by calculation the metal ion present.

[Molar volume of a gas at r.t.p. = $24.0 \,\mathrm{dm^3 \, mol^{-1}}$]

(3)

(iii) Calcium oxide dissolves in water to form calcium hydroxide (limewater), Ca(OH)₂(aq).

Write the equation for the reaction of carbon dioxide with limewater. Include state symbols.

(1)

saturated solution.

hydrochloric acid.

conical flask.

(e) The solubility of calcium hydroxide in water is determined by titration of a

The flask is stoppered, shaken and allowed to stand overnight.

An excess of calcium hydroxide is added to about 100 cm³ of distilled water in a

 $10.0\,cm^3$ portions of this saturated solution are titrated with $0.0500\,mol\,dm^{-3}$

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

 $\label{eq:Ga} \begin{array}{rcl} {\sf Ca}({\sf OH})_2 \ + \ 2{\sf HCl} \ \rightarrow \ {\sf Ca}{\sf Cl}_2 \ + \ {\sf H}_2{\sf O} \end{array}$

(ii) The mean titre is 8.90 cm^3 .

Calculate the concentration of the saturated calcium hydroxide solution, in $g dm^{-3}$.

(4)

(Total for Question 21 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

Past Paper

DO NOT WRITE IN THIS AREA

BLANK PAGE

Í.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	0 (8)	4.0 He	hetium 2	20.2	Ne	10	39.9	Ar	argon 18	83.8	Ъ,	krypton 36	131.3	Xe	54 54	[222]	ĥ	radon 86]	ed							
	7		(17)	19.0	Ŀ,	fluorine 9	35.5	ບ	cntorine 17	79.9	Ъ	bromine 35	126.9	I	iodine 53	[210]	At	astatine 85		een report		175	Г	lutetium 71	[257]	5	103
	9		(16)	16.0	0	oxygen 8	32.1	ŝ	sultur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	å	polonium 84		Elements with atomic numbers 112-116 have been reported	nticated	173	ď	ytterbium 70	[254]		102
	2		(15)	14.0	z	nitrogen 7	31.0	۹.	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112-	ully auther	169	Ē	thulium 69	[256]	ΡW	mendelevium 101
	4		(14)	12.0	U	6	28.1	Si	14	72.6	9 Ge	germanium 32	118.7	Sn	2 ti	207.2	Pb	lead 82		stomic numbers 112-116 hav but not fully authenticated	167	Ъ	erbium 68	[253]	Ē	100	
	ñ		(13)	10.8	8	5 5	27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ŀ	indium 49	204.4	Ħ	thallium 81		nents with		165		ž	[254]	ES	einsteimum 99
ents							_		(12)	65.4	Zn	30 zinc	112.4	ß	cadmium 48	200.6	Hg	mercury 80				163	2	dysprosium 66	[251]	ັບ	catifornium 98
Elem									(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	٩u	gold 79	[272]	Rg	roentgenium 111	159	đ	terbium 65	[245]	¥.	реткелит 97
The Periodic Table of Elements									(10)	58.7	ïż	nickel 28	106.4	РЧ	palladium 46	195.1	¥	platinum 78	[271]		damstadtiun 110	157	В	gadolinium 64	[247]	E.	96
c lab									(6)	58.9	ა	cobalt 27	102.9	RЪ	rhodium 45	192.2	Ч	iridium 77	[268]	Mt	meitnerium 109	152	Ēū	europium 63	[243]		amencium 95
		°: ד	1 1						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	£	hassium 108	150	Sm	samarium 62	[242]	Pu	plutonium 94
e re									(2)	54.9	Mn	manganese 25	[98]	Ч	technetium 43	186.2	Re	rhenium 75	[264]		bohrium 107	[147]	Pa	promethium 61	[237]	ď	neptunium 93
=				mass	pol	umber]		(9)	52.0	֊	chromium 24	95.9	Wo	molybdenum 42	183.8	≥	tungsten 74	[366]	Sg	seaborgium 106	144	P	neodymium 60	238	5	uranium 92
				Key	relative atomic mass	atomic symbol	atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	q	niobium 41	180.9	Ta	tantalum 73	[262]		dubnium 105	141	Ъ	praecodymium 59	[231]	Pa
				relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	Rf	nutherfordium 104	140	e	cerium 58	232	ŧ	90
									(3)	45.0	S	scandium 21	88.9	۲	yttrium 39	138.9	La*	Lanthanum 57	[227]	Ac*	actinium 89		8				
	2		(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	ß	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra	radium 88		 Lanthanide series 	 Actinide series 			
	-		(1)	6.9	Ŀ	3 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	ßЪ	rubidium 37	132.9	പ	caesium 55	[223]	F	francium 87		 Lanth 	 Actin 			

24