This resource w	as created and	owned by Pearsor	n Edexcel

Write your name here Surname		Other names	
Pearson Edexcel International Advanced Level	Centre Number	Canc	lidate Number
Chomictry)
Chemistry Advanced Subsidiar Unit 2: Application of	r y	ciples of C	hemistry
Advanced Subsidia	ry of Core Prin	Paper	Chemistry Reference CH02/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	this	se	ALL the questions in this section. You should aim to spend no more than 20 minutes on ction. For each question, select one answer from A to D and put a cross in the box \boxtimes . hange your mind, put a line through the box \bigoplus and then mark your new answer with a cross \boxtimes .
1			e test was carried out on a mixture of magnesium chloride and potassium chloride. ame colour observed was
	\times	A	white and lilac.
	\mathbf{X}	В	orange.
	\times	С	lilac.
	\mathbf{X}	D	bright white, which masks any other colour.
			(Total for Question 1 = 1 mark)
2	Th	e ec	quation for the reaction of lithium with excess water is
-			$2\text{Li}(s) + 2\text{H}_2\text{O}(I) \rightarrow \text{Li}_2\text{O}_2(s) + 2\text{H}_2(g)$
			$2\text{Li}(s) + H_2O(I) \rightarrow \text{Li}_2O(s) + H_2(g)$ $2\text{Li}(s) + H_2O(I) \rightarrow \text{Li}_2O(s) + H_2(g)$
			$Li(s) + H_2O(I) \rightarrow LiOH(s) + \frac{1}{2}H_2(g)$
			$2\text{Li}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{LiOH}(aq) + \text{H}_2(q)$
			(Total for Question 2 = 1 mark)
3			odium is reacted with chlorine gas and the product of this reaction is added to This gives
	×	A	an insoluble white crystalline solid.
	X	В	a colourless solution.
	\mathbf{X}	С	a pale green solution.
	\times	D	a cloudy white mixture.
			(Total for Question 3 = 1 mark)
	2		

P 4 4 8 8 2 A 0 2 2 4

.....

.

 A their colours. B the pH of their solutions. C their reactions with hydrochloric acid. D their solubility in water. (Total for Question 4 = 1 mark) a the gas released on heating the solids. b their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. (Total for Question 5 = 1 mark) The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₂)₂, 12H₂O₂ is A -2 B + 2 C + 6 D + 8 (Total for Question 6 = 1 mark) 9 Which one of the following equations represents a halogen displacement reaction that can occi? A ≥ XBR(aq) + I₂(aq) → 2XR(aq) + Br₂(aq) C ≥ XF(aq) + CJ₂(aq) → 2XR(aq) + CJ₂(aq) C ≥ XF(aq) + CJ₂(aq) → 2XC((aq) + Br₂(aq) C ≥ XF(aq) + CJ₂(aq) → 2XC((aq) + Br₂(aq) C ≥ XF(aq) + CJ₂(aq) → 2XC((aq) + Br₂(aq) C total for Question 7 = 1 mark) 			
 B the pH of their solutions. C their reactions with hydrochloric acid. D their solubility in water. (Total for Question 4 = 1 mark) The solids magnesium carbonate and magnesium nitrate are identical in A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. (Total for Question 5 = 1 mark) The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₂)₂,12H₂O₂ is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + L₁(aq) → 2KI(aq) + Br₂(aq) B 2KCI(aq) + Br₃(aq) → 2KR(aq) + Cl₂(aq) C 2KF(aq) + Cl₃(aq) → 2KCI(aq) + Br₂(aq) D 2KBr(aq) + Cl₃(aq) → 2KCI(aq) + Br₂(aq) C 10 2KBr(aq) + Cl₃(aq) → 2KCI(aq) + Br₂(aq) 	4	The sc	lids barium hydroxide and barium sulfate are similar in
 C their reactions with hydrochloric acid. D their solubility in water. (Total for Question 4 = 1 mark) The solids magnesium carbonate and magnesium nitrate are identical in A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₂), 12H₂O, is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + L₂(aq) → 2KL(aq) + Br₂(aq) E 2KCl(aq) + Br₂(aq) → 2KCl(aq) + Br₂(aq) C 2KF(aq) + CL₂(aq) → 2KCl(aq) + Br₂(aq) D 2KBr(aq) + CL₂(aq) → 2KCl(aq) + Br₂(aq) C 2KF(aq) + CL₂(aq) → 2KCl(aq) + Br₂(aq) C 2KF(aq) + CL₂(aq) → 2KCl(aq) + Br₂(aq) 		A 🖾	their colours.
 D their solubility in water. (Total for Question 4 = 1 mark) The solids magnesium carbonate and magnesium nitrate are identical in A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. (Total for Question 5 = 1 mark) The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₄), 12H₅O, is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + L₁(aq) → 2KL(aq) + Br₂(aq) C 2KF(aq) + CL₁(aq) → 2KCl(aq) + Br₂(aq) D 2KBr(aq) + CL₂(aq) → 2KCl(aq) + Br₂(aq) (Total for Question 7 = 1 mark) 		B	the pH of their solutions.
 f The solids magnesium carbonate and magnesium nitrate are identical in A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. Total for Question 5 = 1 mark) Total for Question 5 = 1 mark) The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₄)₂.12H₂O₄ is A -2 B +2 C +6 D +8 Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCI(aq) + Br₂(aq) → 2KI(aq) + CI₂(aq) C 2KBr(aq) + CI₂(aq) → 2KCI(aq) + Br₂(aq) D 2KBr(aq) + CI₂(aq) → 2KCI(aq) + Br₂(aq) 		🖾 C	their reactions with hydrochloric acid.
 5 The solids magnesium carbonate and magnesium nitrate are identical in A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. 6 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KA(SO₄)₂.12H₂O, is A -2 B +2 C +6 D +8 7 Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCl(aq) + Br₂(aq) → 2KCl(aq) + F₁(aq) C 2KF(aq) + CI₂(aq) → 2KCl(aq) + F₁(aq) D 2KBr(aq) + CI₂(aq) → 2KCl(aq) + Br₂(aq) 		D 🛛	their solubility in water.
 A the gas released on heating the solids. B their reaction with hydrochloric acid. C the solid product of their thermal decomposition. D their solubility in water. (Total for Question 5 = 1 mark) 5 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KA((SO₂)₂, 12H₂O₂ is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) 7 Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCl(aq) + Br₂(aq) → 2KBr(aq) + CI₂(aq) C 2KF(aq) + CI₂(aq) → 2KCl(aq) + Br₂(aq) D 2KBr(aq) + CI₂(aq) → 2KCl(aq) + Br₂(aq) 			(Total for Question 4 = 1 mark)
■ B their reaction with hydrochloric acid. ■ C the solid product of their thermal decomposition. ■ D their solubility in water. ICtal for Question 5 = 1 mark) 5 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO ₄) ₂ ,12H ₂ O ₇ is ■ A -2 ■ B +2 ■ C +6 ■ D +8 ICtal for Question 6 = 1 mark) 7 Which one of the following equations represents a halogen displacement reaction that can occur? ■ A 2KBr(aq) + I ₂ (aq) → 2KI(aq) + Br ₂ (aq) ■ B 2KCl(aq) + Br ₂ (aq) → 2KBr(aq) + CI ₂ (aq) ■ C 2KF(aq) + CI ₂ (aq) → 2KCl(aq) + F ₂ (aq) ■ D 2KBr(aq) + CI ₂ (aq) → 2KCl(aq) + Br ₂ (aq) ICtal for Question 7 = 1 mark)	5	The sc	olids magnesium carbonate and magnesium nitrate are identical in
 C the solid product of their thermal decomposition. D their solubility in water. <i>Ictal for Question 5 = 1 mark</i>) A - 2 B + 2 C + 6 D + 8 Michto one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCl(aq) + Br₃(aq) → 2KSr(aq) + Cl₂(aq) C 2KF(aq) + Cl₂(aq) → 2KCl(aq) + Br₂(aq) D 2KBr(aq) + Cl₂(aq) → 2KCl(aq) + Br₂(aq) Ictal for Question 7 = 1 mark) 		A 🖂	the gas released on heating the solids.
 □ b their solubility in water. (Total for Question 5 = 1 mark) 5 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KA((SO₄)₂, 12H₂O₇ is □ A -2 □ B +2 □ C +6 □ D +8 (Total for Question 6 = 1 mark) V Which one of the following equations represents a halogen displacement reaction that can occur? □ A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) □ B 2KCl(aq) + Br₂(aq) → 2KCl(aq) + F₂(aq) □ D 2KBr(aq) + CI₂(aq) → 2KCl(aq) + Br₂(aq) (Total for Question 7 = 1 mark) 		B	their reaction with hydrochloric acid.
$ \begin{array}{c} \text{ Total for Question 5 = 1 mark)} \\ \text{ for excitation number of sulfur in potassium aluminium sulfate (potash alum),} \\ \text{KA}(SO_{4})_{2},12H_{2}O,15 \\ \hline A & -2 \\ \hline B & +2 \\ \hline C & +6 \\ \hline D & +8 \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{ Cotal for Question 6 = 1 mark)} \\ \text{ Which one of the following equations represents a halogen displacement reaction that can occur?} \\ \hline A & 2KBr(aq) + I_{2}(aq) \rightarrow 2KI(aq) + Br_{2}(aq) \\ \hline B & 2KCl(aq) + Br_{2}(aq) \rightarrow 2KBr(aq) + Cl_{2}(aq) \\ \hline C & 2KF(aq) + Cl_{2}(aq) \rightarrow 2KCl(aq) + F_{2}(aq) \\ \hline D & 2KBr(aq) + Cl_{2}(aq) \rightarrow 2KCl(aq) + Br_{2}(aq) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{ (Total for Question 7 = 1 mark)} \\ \end{array}$		🖾 C	the solid product of their thermal decomposition.
 5 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₄)₂.12H₂O, is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) 7 Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCI(aq) + Br₂(aq) → 2KBr(aq) + CI₂(aq) C 2KF(aq) + CI₂(aq) → 2KCI(aq) + F₂(aq) D 2KBr(aq) + CI₂(aq) → 2KCI(aq) + Br₂(aq) (Total for Question 7 = 1 mark) 		D 🛛	their solubility in water.
 5 The oxidation number of sulfur in potassium aluminium sulfate (potash alum), KAI(SO₄)₂.12H₂O, is A -2 B +2 C +6 D +8 (Total for Question 6 = 1 mark) 7 Which one of the following equations represents a halogen displacement reaction that can occur? A 2KBr(aq) + I₂(aq) → 2KI(aq) + Br₂(aq) B 2KCI(aq) + Br₂(aq) → 2KBr(aq) + CI₂(aq) C 2KF(aq) + CI₂(aq) → 2KCI(aq) + F₂(aq) D 2KBr(aq) + CI₂(aq) → 2KCI(aq) + Br₂(aq) (Total for Question 7 = 1 mark) 			(Total for Question 5 = 1 mark)
$KAl(SO_4)_2.12H_2O, is$ $A = -2$ $C + 6$ $D + 8$ $(Total for Question 6 = 1 mark)$ $(Total for Question 6 = 1 mark)$ $(Total for Question 6 = 1 mark)$ $A 2KBr(aq) + I_2(aq) \rightarrow 2KI(aq) + Br_2(aq)$ $B 2KCI(aq) + Br_2(aq) \rightarrow 2KBr(aq) + CI_2(aq)$ $C 2KF(aq) + CI_2(aq) \rightarrow 2KCI(aq) + F_2(aq)$ $D 2KBr(aq) + CI_2(aq) \rightarrow 2KCI(aq) + Br_2(aq)$ $(Total for Question 7 = 1 mark)$			
		B	+2
Image: displacement of the following equations represents a halogen displacement reaction that can occur? Image: displacement reaction Image: displacement reaction displac			
Which one of the following equations represents a halogen displacement reaction that can occur? A $2KBr(aq) + I_2(aq) \rightarrow 2KI(aq) + Br_2(aq)$ B $2KCl(aq) + Br_2(aq) \rightarrow 2KBr(aq) + Cl_2(aq)$ C $2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$ D $2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ Image: Comparison of the following equations represents a halogen displacement reaction of the following equations represents a halogen displacement reaction for the following equations represents a halogen displacement reaction for the following equations represents a halogen displacement reaction for the following equations represents a halogen displacement reaction for the following equations for the followin		⊠ D	
that can occur? $\Box A 2KBr(aq) + I_2(aq) \rightarrow 2KI(aq) + Br_2(aq)$ $\Box B 2KCl(aq) + Br_2(aq) \rightarrow 2KBr(aq) + Cl_2(aq)$ $\Box C 2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$ $\Box D 2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ (Total for Question 7 = 1 mark)			(Total for Question 6 = 1 mark)
$\square \mathbf{B} \ 2KCl(aq) + Br_2(aq) \rightarrow 2KBr(aq) + Cl_2(aq)$ $\square \mathbf{C} \ 2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$ $\square \mathbf{D} \ 2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ (Total for Question 7 = 1 mark)	7		
$\Box \ C \ 2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$ $\Box \ D \ 2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ (Total for Question 7 = 1 mark)		A 🖾	2 KBr(aq) + $I_2(aq) \rightarrow 2$ KI(aq) + Br $_2(aq)$
$\square \mathbf{D} 2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$ (Total for Question 7 = 1 mark)		B	$2\text{KCI}(aq) + \text{Br}_2(aq) \rightarrow 2\text{KBr}(aq) + \text{CI}_2(aq)$
(Total for Question 7 = 1 mark)		🖾 C	$2KF(aq) + CI_2(aq) \rightarrow 2KCI(aq) + F_2(aq)$
		D 🛛	$2KBr(aq) + CI_2(aq) \rightarrow 2KCI(aq) + Br_2(aq)$
			(Total for Question 7 = 1 mark)
Image:			

		lver halide which is insoluble in water but soluble in dilute aqueous ammonia is
\times		AgCl
X		AgBr
\times	C	AgI
\mathbf{X}	D	AgAt
		(Total for Question 8 = 1 mark)
Со	onsi	der the following equilibrium.
		$PCI_3(g) + CI_2(g) \implies PCI_5(g) \qquad \Delta H = -92.5 \text{ kJ mol}^{-1}$
		ich of the following would both the stated changes increase the amount of the act, PCI ₅ , present at equilibrium?
\times	Α	Decreasing temperature and decreasing pressure.
\times	В	Decreasing temperature and increasing pressure.
×	C	Increasing temperature and increasing pressure.
\times	C D	Increasing temperature and increasing pressure. Increasing temperature and decreasing pressure.
		Increasing temperature and decreasing pressure.
	D	Increasing temperature and decreasing pressure.
	D	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$
□ □ 0 Co	D	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple
□ □ 0 Co	D	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple ion of a few drops of sodium carbonate solution would
□ □ 0 Co	D	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple
□ □ 0 Co	D onsi	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple ion of a few drops of sodium carbonate solution would
□ □ 0 Co	D onsi Idit A	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple ion of a few drops of sodium carbonate solution would make the colour of the equilibrium mixture turn purple and then yellow.
□ □ 0 Co	D onsi Idit A B	Increasing temperature and decreasing pressure. (Total for Question 9 = 1 mark) der the following simplified equilibrium for an indicator, HIn. $HIn(aq) \rightleftharpoons H^+(aq) + In^-(aq)$ yellow purple ion of a few drops of sodium carbonate solution would make the colour of the equilibrium mixture turn purple and then yellow. make the colour of the equilibrium mixture paler.

P 4 4 8 8 2 A 0 4 2 4

ast Paper	This resource was created and owned by Pearson Edexcel	WCH02
	n of the following species has the smallest bond angle?	
	CO ₂	
⊠ B	H ₂ O	
⊠ C	SO ₃	
D 🛛	H_3O^+	
	(Total for Question 11 = 1 mark)	
12 Which	n of the following bonds is likely to be the most polar?	
🛛 A	H—F	
🗵 B	P-O	
🛛 C	N-CI	
🛛 D	C—S	
	(Total for Question 12 = 1 mark)	
	p of malachite, CuCO ₃ .Cu(OH) ₂ , reacts with 40 cm ³ of 0.50 mol dm ⁻³ hydrochloric acid. ate of reaction can be increased significantly by increasing the pressure.	
B	crushing the malachite lump.	
⊠ C	replacing the acid with 80 cm ³ of 0.25 mol dm ⁻³ hydrochloric acid.	
⊠ D	using a magnetic stirrer to agitate the mixture.	
	(Total for Question 13 = 1 mark)	
	der the following reaction carried out with 0.10 g of magnesium ribbon and s hydrochloric acid.	
	$Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$	
Whick	n method should be used to follow the rate of this reaction?	
A 🛛	Measure the pH of the solution, using a pH meter.	
B	Measure the colour of the solution, using a colorimeter.	
🖾 C	Measure the volume of gas being formed, using a gas syringe.	
D 🛛	Measure the mass of the mixture, using a balance which weighs to two decimal places.	
	-	

15			action, the change in concentration of a product with time is shown by the d line X on the graph below.
			centration roduct D
			Time
	Whi	ich	of the lines, A to D , shows the effect of adding a catalyst to this reaction?
	X	A	
	\times	B	
	X	С	
	×	D	
			(Total for Question 15 = 1 mark)
16	Hov	vev	bethane reacts with concentrated alcoholic ammonia to produce ethylamine. ver, in this reaction mixture, the ethylamine formed further reacts with the bethane to produce diethylamine.
	This	s fu	irther reaction of ethylamine can best be limited by carrying out the reaction with
	\mathbf{X}	A	iodoethane instead of bromoethane.
	\mathbf{X}	B	less concentrated ammonia.
	\mathbf{X}	С	excess bromoethane.
	\mathbf{X}	D	excess ammonia.
			(Total for Question 16 = 1 mark)
	6		

P 4 4 8 8 2 A 0 6 2 4

astraper	This resource was created and owned by T carson Edexcer	1001102
	preparation of 1-bromobutane from butan-1-ol, it is preferable to react the n bromide with 50% sulfuric acid, rather than concentrated sulfuric acid.	
	ain reason for not using concentrated sulfuric acid is because it	
	makes the reaction too exothermic.	
B	oxidizes HBr to Br_2 .	
⊠ C	is a dehydrating agent.	
D	is more hazardous.	
	(Total for Question 17 = 1 mark)	
	action between aqueous hydroxide ions and a halogenoalkane to produce an ol is classified as	
Α 🖾	electrophilic substitution with heterolytic bond fission.	
⊠ B	electrophilic substitution with homolytic bond fission.	
🖾 C	nucleophilic substitution with heterolytic bond fission.	
D	nucleophilic substitution with homolytic bond fission.	
	(Total for Question 18 = 1 mark)	
19 Which	of the following has the longest bond length?	
	CI-CI	
B	H–Cl	
	0=0	
	N≡N	
	(Total for Question 19 = 1 mark)	

7

20 A Maxwell-Boltzmann distribution graph can be used to illustrate the effect of increasing temperature on the rate of a chemical reaction.
 Which area on the graph below indicates the **increase** in the number of molecules that have sufficient energy to react, when the temperature changes from 400 K to 420 K?

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

21 This is a question about an acid-base titration.

Potassium hydroxide, KOH, is used to assist in the removal of hair. For example, it is present in some pre-shave products and used in solutions for soaking animal skins prior to the removal of the animal hair.

The skin of a red-brown cow was soaked in a solution of potassium hydroxide containing 226.8 g of potassium hydroxide in 45.0 dm³ of solution. After several hours, the skin was removed.

The residual solution, **R**, contained unreacted potassium hydroxide. In order to determine the potassium hydroxide concentration in **R**, 25.00 cm³ samples of the solution were titrated with 0.0500 mol dm⁻³ sulfuric acid.

Titration	Trial	1	2	3
Final volume / cm ³	5.00	9.50	14.10	18.55
Initial volume / cm ³	0.00	5.00	9.55	14.10
Volume added / cm ³	5.00	4.50	4.55	4.45

Mean titre = 4.50 cm^3

The equation for the reaction is:

- $2 \text{KOH}(\text{aq}) ~+~ \text{H}_2 \text{SO}_4(\text{aq}) ~\rightarrow~ \text{K}_2 \text{SO}_4(\text{aq}) ~+~ 2 \text{H}_2 \text{O}(\text{I})$
- (a) (i) Calculate the number of moles of sulfuric acid that react with 25.00 cm^3 of the potassium hydroxide solution **R**.

(1)

 (ii) From your answer to (a)(i), deduce the number of moles of potassium hydroxide in the 25.00 cm³ of solution R.

(1)

ast Paper	This resource was created and owned by Pearson Edexcel		WCH02
7	(iii) Calculate the concentration, in mol dm ⁻³ , of potassium hydroxide in the solution R .	(1)	
	(iv) Calculate the difference between the initial concentration of the potassium hydroxide used to soak the animal skin and the concentration of solution R , which you have calculated in (a)(iii). Relative Atomic Masses: $K = 39.1$; $O = 16$; $H = 1$	(3)	
	Initial KOH Concentration		
	KOH concentration in solution R		
	Difference		
	(v) Calculate the total mass of potassium hydroxide used up in the soaking process. Give your answer to three significant figures.	(2)	

2015	This resource was created and owned by Pearson Edexcel	nemistry	WCH02
The indi	cator phenolphthalein could have been used for this titration.		
		vhen (2)	
	to		
		(1)	
A stı	udent suggested that for safety reasons there should be no naked flan		
ls th	is an appropriate suggestion? Justify your answer.	(1)	
pipette,	the uncertainty is ± 0.06 cm ³ on the volume measured. For each bure	tte	
for t	he pipette volume of 25.00 cm ³ , show that in this case the burette error		
grea		(2)	
	Burette titre % e	error	
	Pipette volume % e	error	
	The indi (i) State sulfu (ii) Suge judg (iii) Phen A stu pres Is th Titration pipette, reading, (i) By c for t	This resource was created and owned by Pearson Edexcel The indicator phenolphthalein could have been used for this titration. (i) State the colour change you would expect at the end-point of a titration visulfuric acid is added to potassium hydroxide using phenolphthalein. (ii) Suggest why the particular skin used might make it difficult to accurately judge the end-point of the titration. (iii) Phenolphthalein is used as a solution in ethanol which is highly flammabil. A student suggested that for safety reasons there should be no naked flam present during this titration. Is this an appropriate suggestion? Justify your answer. Titration experiments use equipment with a measurement uncertainty. For a pipette, the uncertainty is ±0.05 cm ³ on the volume measured. For each bure reading, the uncertainty is ±0.05 cm ³ . (i) By calculating the percentage error for the burette titre value of 4.50 cm ³ , for the pipette volume of 25.00 cm ³ , show that in this case the burette error greater than the pipette error. Burette titre % e	This resource was created and owned by Pearson Edexcel The indicator phenolphthalein could have been used for this titration. (i) State the colour change you would expect at the end-point of a titration when sulfuric acid is added to potassium hydroxide using phenolphthalein. (ii) Suggest why the particular skin used might make it difficult to accurately judge the end-point of the titration. (iii) Phenolphthalein is used as a solution in ethanol which is highly flammable. A student suggested that for safety reasons there should be no naked flames present during this titration. Is this an appropriate suggestion? Justify your answer. (1) Titration experiments use equipment with a measurement uncertainty. For a pipette, the uncertainty is ±0.05 cm ³ on the volume measured. For each burette reading, the uncertainty is ±0.05 cm ³ . (2) (i) By calculating the percentage error for the burette titre value of 4.50 cm ³ , and for the pipette volume of 25.00 cm ³ , show that in this case the burette error is greater than the pipette error. (2) Burette titre % error (2)

1	(ii) Suggest two ways by which the percentage error for the burette titre could be reduced, without changing the apparatus.	(2)
2		
	(iii) The trial titre value was not included in the calculation of the mean.	
	In what circumstances could the trial value be used in the calculation of the me	an?
		(1)
	(Total for Question 21 = 17 mar	·ks)

22 This is a question about environmental chemistry.

(a) Ozone, O_{3} , is a non-linear molecule present in the Earth's upper atmosphere. It absorbs ultraviolet radiation from the Sun and so protects living organisms from this type of radiation. (i) Complete the dot and cross diagram for the ozone molecule. Show the outer electrons only. Use dots (•) for the electrons of the left-hand oxygen atom, crosses (x) for the central oxygen atom and triangles (Δ) for the right-hand oxygen atom. (2) О O О (ii) Explain why ozone is a non-linear molecule. (1) (iii) State **one** harmful consequence to a person of increased exposure to ultraviolet radiation. (1) (iv) What property of ultraviolet radiation makes it more harmful than infrared radiation to living organisms? Justify your answer. (1)

			involved in the depletion of ree radical nitrogen monoxi	
Define	the term free	radical.		(1)
(vi) Comple with oz		ons below for the re	eaction of the nitrogen mon	oxide (3)
Reaction 1	NO•	$+ 0_3 \rightarrow$		
Reaction 2		\dots + O ₃ \rightarrow \dots		
Overall Reaction		\rightarrow		
	on your answe detion of the c		he role of the nitrogen mon	oxide in (1)
		ase of free radical n es not affect the oze	itrogen oxides by vehicles, sone layer.	such as (1)
atmospher climate cha	e of gases that inge.	t absorb infrared ra	ease in concentration in the diation because of the effec osphere that absorbs infrare	t on
radiatic	en.		ed radiation and what effec	
•	tion has on the			(2)
				15

P 4 4 8 8 2 A 0 1 5 2 4

CFCs make a significant contribution to global warming, despite being present n only very small concentrations in the atmosphere. Suggest a reason for this.	(1)
Suggest why there is now little concern over the contribution of CFCs to global warming compared with that of carbon dioxide.	(1)
Water vapour is another molecule in the atmosphere that absorbs infrared radia out it is not considered to be responsible for anthropogenic climate change. Ju his statement.	
The term 'carbon neutrality' has become widely used with reference to biofuels. Use of biofuels is one of the measures employed in an attempt to stabilise the level of carbon dioxide in the atmosphere and hence to reduce climate change. Explain the term 'carbon neutrality' and suggest why biofuels are unlikely to be completely carbon neutral.	(2)
	n only very small concentrations in the atmosphere. Suggest a reason for this. Suggest why there is now little concern over the contribution of CFCs to lobal warming compared with that of carbon dioxide. Vater vapour is another molecule in the atmosphere that absorbs infrared radii out it is not considered to be responsible for anthropogenic climate change. Ju his statement. The term 'carbon neutrality' has become widely used with reference to piofuels. Use of biofuels is one of the measures employed in an attempt to tabilise the level of carbon dioxide in the atmosphere and hence to reduce limate change. Xplain the term 'carbon neutrality' and suggest why biofuels are unlikely to

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

23 Some organic molecules, either on their own or as part of a mixture, contribute to some very unpleasant odours.

The molecule shown below, commonly called isovaleric acid, is responsible for the smell of sweaty feet.

Isovaleric acid can be used to produce esters that have important industrial uses in the pharmaceutical industry, as sedatives and tranquilizers, and in the food industry, as flavouring and fragrance additives.

The molecule with the systematic name (5 α)-androst-16-en-3-one, labelled **X** in this question, is found in human sweat and urine.

However, in other situations, these molecules can induce a very different effect. For example, **X** is present in commercial products used by pig farmers to determine when sows are ready for mating.

(a) What is the systematic name for isovaleric acid?

(1)

(b) What is the molecular formula of isovaleric acid?

(c) Isovaleric acid has three structural isomers which are also carboxylic acids. One of these acids is drawn in the first box below.

In the empty boxes below, draw the structures, using **skeletal** formulae, of the other two carboxylic acid structural isomers of isovaleric acid.

(2)

ОН	
valeric acid	

*(d) At room temperature, valeric acid is a liquid. It is sparingly soluble in water and very soluble in ethanol.

Describe simple experiments you could carry out to show the different solubilities of valeric acid in these two solvents. No measurements are required, but you should state how you would make your experiments valid.

State the expected observations from your experiments.

(3)

(e) Isoamyl alcohol is the alcohol from which isovaleric acid can be produced directly. This alcohol forms intermolecular hydrogen bonding. Using the simplified representation R–O–H, draw a hydrogen bond between two alcohol molecules and clearly indicate the bond angle about the hydrogen involved in the hydrogen bond. (2) (f) There are also London forces between molecules of isoamyl alcohol. *(i) Describe how London forces are formed. (2) (ii) The straight-chain structural isomer of isoamyl alcohol has a boiling temperature of 138°C. Suggest whether the boiling temperature for isoamyl alcohol will be higher than, lower than or the same as the straight-chain isomer. Justify your choice. (3)

но	
۲ (i) The oxidation of an alcohol of this type with acidified sodium dichromate(VI) could involve either reflux or distillation.	
Explain why either could be used in this case. (1)	
 (ii) An alternative reagent for the oxidation of an alcohol is acidified potassium manganate(VII), KMnO₄. However, this is likely to produce other products because X contains another functional group that could react with this reagent. Name this other functional group in X and suggest the type of molecule formed in its reaction with acidified potassium manganate(VII), KMnO₄. Functional group that reacts Type of molecule formed 	

*(h) Isovaleric acid and alcohol Y could react together to produce a compound with a pleasant aroma, but this can be masked by even a small residue of the starting molecules. Generally, spectroscopic methods are much more reliable than sense of smell in detecting the presence of molecules. The infrared absorption ranges associated with some functional groups are given below. O-H stretching in alcohols 3750 - 3200 cm⁻¹ O-H stretching in carboxylic acids 3300 – 2500 cm⁻¹ C=O stretching in aldehydes 1740 – 1720 cm⁻¹ C=O stretching in ketones 1700 – 1680 cm⁻¹ C=O stretching in carboxylic acids, alkyl 1725 – 1700 cm⁻¹ C—H stretching in alkane 2962 - 2853 cm⁻¹ C-H stretching in alkene 3095 – 3010 cm⁻¹ By quoting appropriate data, describe how both infrared spectroscopy and mass spectrometry could be used to determine the presence of **isovaleric acid**. The skeletal formula of isovaleric acid is shown below. \cap OH (4) (Total for Question 23 = 21 marks) TOTAL FOR SECTION C = 21 MARKS **TOTAL FOR PAPER = 80 MARKS**

BLANK PAGE

	0 (8)	(18) 4.0 He	2	20.2	Ne	neon 10	39.9	Ar argon 18	83.8	Kr	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86								
	0			2		2427	m		~		800 ^{- 0}				2		Acri		orted		3	- 1			
	٢		(17)	19.0	ц	fluorine 9	35.5	chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]		astatine 85		been rep	175		71	[257]		103
	9		(16)	16.0	0	oxygen 8	32.1	S sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polonium 84		116 have ticated	173	٩	yuterbium 70	[254]	٩	102
	5		(15)	14.0	z	nitrogen 7	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		bers 112- Ily authen	169	۳ ۲	69	[256]	PW	101
	4		(14)	12.0		carbon 6	28.1	Silicon p	72.6	Ge	germanium 32	118.7	Sn		207.2	ЪЪ	lead 82		tomic numbers 112-116 hav but not fully authenticated	167	Ъ	68	[253]		100 n
	с		(13)	-	boron 5	27.0	Al aluminium 13	69.7	Ga	gallium ge 31	114.8	Ē	indium 49	204.4	F	thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated		165	Р	67	[254]	Cf Es	· · · · · ·	
s			į			1.54					norm da				100				lemer	\vdash	-		F		
lent								(12)	65.4	Z	zinc 30	112.4	5	cadmium 48	200.6	Hg	mercu 80			163	Ŋ	66	[251]		
Elem								(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg roentgenium 111	159	q	(65	[245]	BK	97
e of								(10)	58.7	ïz	nickel 28	106.4	РД	palladium 46	195.1	Ł	platinum 78	[271]	DS damstadtium 110	157	BG	64	[247]	E U	96
Tabl								(6)	58.9	ვ	cobalt 27	102.9	Rh	rhodium 45	192.2	<u> </u>	iridium 77	[268]	Mt meitnerium 109	152		63	[243]	Am	95
iodic		1.0 H hydrogen	-					(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	ŝ	osmium 76	[277]	Hs hassium n 108	150		62	[242]	Pu	94
The Periodic Table of Elements								(2)	54.9	Mn	anganese 25	[98]	Ч	chnetium r 43	186.2	Re	rhenium 75	[264]	Bh bohrium 107	[147]			[237]	Np Pu Am	93
Ţ				ass	-	ber]	(9)	52.0	Ⴑ	vanadium chromium manganese 23 24 25	95.9	Mo	molybdenum technetium 42 43	183.8		tungsten r 74	[366]	Sg seaborgium 106	144	PN	59 60 61 61	238	D	
				mic mä	ymbo	e n) nun			_	5 2	um ch									┢					
			Key	relative atomic mass	atomic symbol	name (proton		(5)	50.9	>	vanadi 23	92.9	q	niobium 41	180.9	Ta	tantalum 73	[262]	dubnium 105	141	Ъ	59	[231]	Pa	protactimum 91
				relati	ato	name atomic (proton) number		(4)	47.9	Ξ	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	Rf nutherfordium 104	140	Ce	58	232	Ч Т	90
								(3)	45.0	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	AC* actinium 89		10				
	2		(2)	9.0	Be	beryllium 4	24.3	Mg nagnesium 12	40.1	Ca	calcium s 20	87.6		strontium 38	137.3		56 56	[226]	Ra radium 88		* Lanthanide series	e series			
	-		(1)	6.9		3 bitting bitt	23.0	Na sodium m	39.1		potassium 19	85.5	_	37 37	132.9	S	caesium 55	[223]	Fr francium 87		* Lanthai	* Actinide series			
						- 				_	ă			5	ай -	_	5		fi						

