Summer 2016 Past Paper	www.mystudybro.com Write your name here This resource was created and owned by Pears Surname	Chemistry Unit 2 son Edexcel WCH02 Other names
	Pearson Edexcel	er Candidate Number
	Advanced Subsidiary Unit 2: Application of Core Pri	nciples of Chemistry
	Friday 10 June 2016 – Afternoon Time: 1 hour 30 minutes	Paper Reference WCH02/01
	Candidates may use a calculator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

aper	016 www.mystudybro.com Chemistry This resource was created and owned by Pearson Edexcel SECTION A	y Unit 2 WCH02
	swer ALL the questions in this section. You should aim to spend no more than 20 his section. For each question, select one answer from A to D and put a cross in t you change your mind, put a line through the box 🔀 and then mark your new ar a cross 🛛.	he box 🛛.
1	How many molecular ion peaks are in the mass spectrum of 1,2-dichloroethane?	
	Assume the only isotopes present are ¹ H, ¹² C, ³⁵ Cl and ³⁷ Cl.	
	■ A 4	
	B 3	
	C 2	
	■ D 1	
_	(Total for Question 1 = 1 m	ark)
2	Four compounds that contribute to global warming are	
	A carbon dioxide	
	B methane	
	C dichlorodifluoromethane	
	D sulfur hexafluoride	
	(a) Which of these molecules is polar?	
	(a) Which of these molecules is polar:	(1)
	A	
	B	
	⊠ C	
	D	
	(b) Which of these compounds is emitted in the largest quantity by anthropogenic activity?	
		(1)
	B	
	D	

P 4 6 6 5 9 A 0 2 2 4

Summer			Chemistry	
Past Paper	(c)	This resource was created and owned by Pearson Edexcel Which of these compounds depletes the ozone layer?		WCH02
				(1)
	\mathbf{X}	Α		
ST I	\times	В		
	\times	c		
	×	D		
DO NOT WRITE IN THIS AREA	(d)	Which of these molecules has an octahedral structure?		(1)
8	\times	Α		(=)
	X	В		
	\times	c		
	X	D		
× _		(Total for Ques	stion 2 = 4 mai	·ks)
NOT WRITE IN THIS AREA	Wh	ich of the following is a tertiary alcohol?		
Ē	X	A 4-methylpentan-2-ol		
	\mathbf{X}	B 3-methylpentan-2-ol		
MB	X	C 2-methylpentan-3-ol		
Ö	\times	D 3-methylpentan-3-ol		
		(Total for Que	estion 3 = 1 ma	nrk)
	U	se this space for rough working. Anything you write in this spac	e will gain no	credit.

Summer			www.mystudybro.com Chemistry	
Past Paper 4	Thi	is qı	This resource was created and owned by Pearson Edexcel uestion is about two isomeric alcohols and two isomeric carbonyl compounds.	WCH02
			Propan-1-ol, CH ₃ CH ₂ CH ₂ OH	
			Propan-2-ol, CH ₃ CH(OH)CH ₃	
			Propanal, CH ₃ CH ₂ CHO	
			Propanone, CH ₃ COCH ₃	
	(a)		nich of these compounds would not produce a colour change when heated th acidified sodium dichromate(VI) solution?	(1)
_	\times	A	Propan-1-ol	(1)
	\mathbf{X}	В	Propan-2-ol	
	\mathbf{X}	С	Propanal	
	\times	D	Propanone	
	(b)		nich pair of compounds would you expect to both have a singly charged peak $m/e = 29$ in their mass spectra?	(1)
	\mathbf{X}	Α	Propan-1-ol and propan-2-ol	(•)
_	\times	В	Propan-2-ol and propanal	
-	\times	С	Propanal and propanone	
	\mathbf{X}	D	Propan-1-ol and propanal	
	(c)	Wł	nich compound would you expect to give a peak at $m/e = 31$ in its mass spectrum	n? (1)
_	X	Α	Propan-1-ol	
-	\mathbf{X}	В	Propan-2-ol	
	\mathbf{X}	C	Propanal	
_	\mathbf{X}	D	Propanone	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Use the infrared absorptions, in wavenumbers, to identify the compound.

Bond	Wavenumber range / cm ⁻¹
O—H (alcohol)	3750 – 3200
C—H (alkane)	2962 – 2853
C—H (aldehyde)	2900 – 2820 and 2775 – 2700
C—O (aldehyde or ketone)	1740 – 1680

The compound with this infrared spectrum is

- A propan-1-ol.
- **B** propan-2-ol.
- C propanal.
- **D** propanone.

(Total for Question 4 = 4 marks)

5

(1)

nmer ^{Paper} 5	AN	Лах	www.mystudybro.comChemistry Unit 2This resource was created and owned by Pearson EdexcelWCH02well-Boltzmann curve shows the distribution of molecular energies in aWCH02on system. When the temperature in this system is decreased , the peak isWCH02
		A	higher and further to the right.
	\times	В	higher and further to the left.
•	\times	С	lower and further to the right.
	\mathbf{X}	D	lower and further to the left.
			(Total for Question 5 = 1 mark)
	Use	thi	s space for rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

Summer 2016 Past Paper

6

DO NOT WRITE IN THIS AREA

www.mystudybro.com

This resource was created and owned by Pearson Edexcel This question is about the equilibrium reaction between hydrogen and carbon dioxide.

 $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g) \qquad \Delta H^{\ominus} = +40 \text{ kJ mol}^{-1}$

What effect would the following changes have on the rate of the reaction and the yield of carbon monoxide?

(a) **Decrease** in temperature from 700 K to 600 K.

	Rate	Yield of CO
Α 🛛	no change	decrease
B	decrease	decrease
⊠ C	decrease	increase
D 🛛	no change	increase

(b) Increase in pressure.

	Rate	Yield of CO
A 🛛	increase	increase
B	increase	no change
⊠ C	no change	increase
D 🛛	no change	no change

(Total for Question 6 = 2 marks)

- 7 What is produced when magnesium burns in air?
 - A Magnesium oxide only
 - **B** Magnesium oxide and magnesium carbonate
 - C Magnesium oxide and magnesium nitride
 - D Magnesium oxide, magnesium nitride and magnesium carbonate

(Total for Question 7 = 1 mark)

Chemistry Unit 2 WCH02

(1)

(1)

er	16		www.my	/studybro.com d and owned by Pearson Edexcel droxides and sulfates as Group 2	Chemistry Unit 2 WCH02
			o the solubilities of hyd magnesium?	droxides and sulfates as Group 2	is ascended
		Solul	oility of hydroxides	Solubility of sulfates	
×	A		decreases	decreases	
	B		decreases	increases	
×	c		increases	decreases	
×	D		increases	increases	
				(Total for Qu	estion 8 = 1 mark)
	once			es not form when a few drops of o potassium bromide?	
E		H₂S			
	c	KHSO₄			
	D				
E	D			(Total for Qu	estion 9 = 1 mark)
1	0.00 .00 m	SO ₂ cm ³ of 1.0 nol dm ⁻³ o	f sodium hydroxide.	d is fully neutralized by 20.00 cm	³ of
1	0.00 .00 m a) W	SO ₂ cm ³ of 1.0 nol dm ⁻³ o	f sodium hydroxide. concentration, in mol c		¹³ of produced by
1	0.00 .00 m a) W th	SO ₂ cm ³ of 1.0 nol dm ⁻³ o hat is the o	f sodium hydroxide. concentration, in mol c	d is fully neutralized by 20.00 cm	³ of
1	0.00 .00 m a) W th	SO ₂ cm ³ of 1.0 nol dm ⁻³ o hat is the o e reaction	f sodium hydroxide. concentration, in mol c	d is fully neutralized by 20.00 cm	¹³ of produced by
1	0.00 .00 m a) W th	SO ₂ cm ³ of 1.0 nol dm ⁻³ o hat is the o e reaction 0.33	f sodium hydroxide. concentration, in mol c	d is fully neutralized by 20.00 cm	¹³ of produced by

P 4 6 6 5 9 A 0 8 2 4

ner : per		Th	www.mystudybro.com This resource was created and owned by Pearson Edexcel e volumes are measured using burettes, with each burette reading ha certainty of ±0.05 cm ³ .	Chemistry Unit 2 WCH02 aving an
		Th	e percentage uncertainty in measuring the 10.00 cm ³ of the acid is	(1)
	\times	A	±0.05%	(1)
	\mathbf{X}	B	±0.10%	
	\times	С	±0.50%	
	\times	D	±1.00%	
_			(Total for Question	10 = 2 marks)
11	ln v	vate	er, hexan-1-ol is less soluble than ethanol. The best explanation for t	his is that
			hexan-1-ol molecules cannot form hydrogen bonds with water molecules can.	
	\mathbf{X}	B	carbon-carbon bonds are stronger in hexan-1-ol than in ethanol.	
	\mathbf{X}	C	London forces between hexan-1-ol molecules are stronger than bet ethanol molecules.	ween
	\times	D	permanent dipole forces are stronger in hexan-1-ol than in ethanol.	
			(Total for Question	n 11 = 1 mark)
12	As (Gro	up 7 is descended , the boiling temperatures of the hydrogen halide	s, from HF to HI,
	\mathbf{X}	A	decrease then increase.	
	\times	B	decrease.	
	\times	C	increase then decrease.	
	\times	D	increase.	
_			(Total for Question	n 12 = 1 mark)
-				
			TOTAL FOR SECTION	A = 20 MARKS

er 2016 ^{er}	www.mystudybro.com This resource was created and owned by Pearson Edexcel SECTION B	Chemistry	Unit 2 WCH02		
А	nswer ALL the questions. Write your answers in the spaces	provided.			
13 This question	on is about three chlorine compounds: BCI_3 , NCI_3 and CI_2O_7 .				
(a) For BCI_3	, give the shape of the molecule and give the CIBCI bond angle		(2)		
Shape					
Bond angle					
	NCl ₃ molecule, draw the shape you would expect, and suggest ngle. Explain why the molecule has this shape and bond angle				
Shape			(4)		
	ond angle				
Bond angle					
_					
_					
_					
_					
_					
_					
Explanation					
Explanation			(1)		
Explanation			(1)		
Explanation			(1)		
Explanation			(1)		
Explanation			(1)		
Explanation			(1)		

Summer Past Paper		www.mystudybro.com Chemistry	y Unit 2 WCH02
	(ii)	This resource was created and owned by Pearson Edexcel One oxygen atom bonds to both chlorine atoms in Cl_2O_7 . Suggest a displayed formula for Cl_2O_7 .	WCHIOZ
DO NOT WRITE IN THIS AREA			(1)
	(iii)) Water reacts with Cl ₂ O ₇ to form a single product. Suggest the equation for this reaction. State symbols are not required.	5
NOT WRITE IN THIS AREA			(1)
		(Total for Question 13 = 9 ma	arks)
DO NOT WRITE IN THIS AREA			
		$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	11 Turn over

Summ	or 2	016	www.mystudybro.com	Chemistry	Linit 2
Past Pap			This resource was created and owned by Pearson Edexcel uestion is about 1-chlorobutane, 1-bromobutane, and 1-iodobutane	e.	WCH02
			chlorobutane can be made by adding potassium chloride to a mixtu tan-1-ol and concentrated sulfuric acid.	re of	
		(i)	Explain why it is not possible to make 1-iodobutane from butan-1-potassium iodide and concentrated sulfuric acid.	ol using	(2)
		(ii)	1-iodobutane is prepared by adding iodine in small portions to a m red phosphorus and butan-1-ol.	nixture of	
			When all the iodine has been added, the mixture is refluxed.		
			In this reaction, iodine reacts with phosphorus to produce phosphown which then reacts with the butan-1-ol to form 1-iodobutane.	orus triiodide	3 7
			Write an equation for each reaction. State symbols are not required	d.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

mistry Unit 2 WCH02		r 2016 www.mystudybro.com Che This resource was created and owned by Pearson Edexcel (b) The rates of reaction of three halogenoalkanes with water are compared.										
		2 cm ³ of ethanol is added to three test tubes, A , B and C .										
ree test tubes.	ach of these three t	oalkane are added separately to e	Three drops of the haloger		\$ \$ \$							
		1-chlorobutane is added to test tube A .										
	1-bromobutane is added to test tube B .											
		1-iodobutane is added to test tube C .										
tube.	d to each test tube	ous silver nitrate solution are add	2 cm ³ portions of hot aque									
(1)		(i) Explain why ethanol is added to each test tube.										
ns. (1)	(ii) Give the name of the organic product which forms in all of these reactions.											
tion to	(iii) The halide ion formed in each reaction reacts with the silver nitrate solution t give a precipitate.											
ic (2)	id give the ionic	Give the colour of the precipitate formed in test tube C and give the ionic equation for the formation of this precipitate. Include state symbols in your equation.										
	olour											
les of	separate samples c	d aqueous ammonia are added to in test tubes A and C .		quatio	Eq							
(2)			Complete the table.									
with concentrate	Observation with aqueous an	Observation with dilute aqueous ammonia										
		Precipitate from Tube A										
			itate from Tube C	Precip	F							
				Precip	F							

mer aper	2016 (v)	www.mystudybro.com This resource was created and owned by Pearson Edexcel Give the order in which the precipitates form, in the test tubes A , I giving the fastest first.	Chemistry B and C,	Unit 2 WCH02
				(1)
	*(vi)	State how the bond polarities of carbon-halogen bonds vary.		
		Explain why bond polarity does not determine the rate of this read	tion.	(2)
		nen these halogenoalkanes are heated separately with ncentrated potassium hydroxide in ethanol, the same gaseous orga	nic product f	orms.
	(i)	Give the structural formula for this organic product.		(1)
	(ii)	State the type of reaction which occurs.		(1)
	(iii)	Give a chemical test for this organic product and state the colour o	change that	
		occurs.		(2)
		2020		
		ange		

Summer Past Paper VON OU MILLE IN THIS AREA	 www.mystudybro.com Chemi This resource was created and owned by Pearson Edexcel All three halogenoalkanes undergo substitution reactions with ammonia. The initial reaction forms butylamine, CH₃CH₂CH₂CH₂NH₂. (i) Write the equation for the initial reaction of 1-iodobutane with ammonia. State symbols are not required. 	stry Unit 2 WCH02
D NOT WRITE IN THIS AREA DO NO	(ii) The butylamine formed also reacts with the 1-iodobutane in a further substitution reaction.Suggest a structural formula for the product of this reaction.	(1)
WRITE	(Total for Question 14 = 19	marks)
DO NOT WRITE IN THIS AREA DO NOT		
	 $ \begin{array}{c} \\ \hline \\ P \end{array} \\ \hline \\ P \end{array} \\ \hline \\ \hline \\ \hline \\ P \end{array} \\ \hline \\$	15 Turn over

	016	www.mystudybro.com Chemis	try Unit 2
st Paper 15		This resource was created and owned by Pearson Edexcel l barium nitrate, Ba(NO ₃) ₂ .4H ₂ O, is strongly heated in a boiling tube and th g changes occur.	WCH02 e
	Stage 1	The white solid forms a clear colourless solution.	
	Stage 2	Condensation forms around the mouth of the boiling tube and a white solid starts to form at the bottom of the tube.	
	Stage 3	As the heating continues, the colourless solution disappears leaving another white solid.	
	Stage 4	This white solid melts.	
	Stage 5	Nitrogen dioxide and oxygen gases are given off, and barium oxide is le in the test tube.	ft
	(a) (i) Gi	ive the formula for the white solid formed in Stage 3.	(1)
	(ii) W	/hat would you see when nitrogen dioxide is given off in Stage 5?	(1)
	(iii) D	escribe the test for oxygen and its positive result.	(1)
		<i>I</i> rite the equation for the complete thermal decomposition of ydrated barium nitrate, $Ba(NO_3)_2.4H_2O$.	
	St	tate symbols are not required.	(2)
	16		

Summer ast Paper	(b)	www.mystudybro.com Chemistr This resource was created and owned by Pearson Edexcel Describe a simple test tube experiment that you can use to compare the thermal stabilities of anhydrous barium nitrate and anhydrous calcium nitrate.	ry Unit 2 WCH02
		State two essential conditions necessary to ensure a fair test.	
X			
王		You may wish to draw a diagram.	
DO NOT WRITE IN THIS AREA		Detailed measurements are not required.	(3)
DO NOT WRITE IN THIS AREA		Explain why anhydrous calcium nitrate decomposes more readily than anhydrous barium nitrate.	(3)
DO NOT WRITE IN THIS AREA		The chlorides of calcium and barium can be distinguished using flame tests.	
NOT WR		State what you would see in each test.	(2)
	alciun	n chlorideBarium chloride (Total for Question 15 = 13 m	
- #		TOTAL FOR SECTION B = 41 MA	ARKS

www.mystudybro.com This resource was created and owned by Pearson Edexcel SECTION C

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL the questions. Write your answers in the spaces provided.

16 Sunflower oil is an important edible oil. It can be used as an alternative to butter in cooking.

A useful method of comparing fats and oils is by measuring their iodine values. An iodine value is the amount of iodine in grams that reacts with 100 g of a fat or oil. The iodine value is a measure of the degree of unsaturation of the fat or oil.

The iodine value of sunflower oil can be determined in the following way.

Add 0.200 g of sunflower oil to a 250 cm³ conical flask.

Add 10 cm³ of solvent to dissolve the oil.

Add 10.0 cm³ of a solution of iodine monochloride, called Wijs solution.

Stopper the flask and allow to stand in the dark for half an hour.

Add 15 cm³ (an excess) of 10% potassium iodide solution and 100 cm³ of water, and shake the mixture.

Titrate the liberated iodine with 0.100 mol dm⁻³ sodium thiosulfate solution. This gives the sample titre.

Carry out a blank titration with the same sodium thiosulfate solution, using 10 cm³ of solvent, 10.0 cm³ of Wijs solution, 15 cm³ of 10% potassium iodide solution and 100 cm³ of water.

- (a) Trichloromethane and 1,1,1-trichloroethane are two possible solvents for this reaction.
 - (i) Give the **skeletal** formulae for trichloromethane and 1,1,1-trichloroethane .

(2)

Trichloromethane

1,1,1-trichloroethane

nmer Paper		www.mystudybro.com Cher This resource was created and owned by Pearson Edexcel Explain why 1,1,1-trichloroethane has a higher boiling temperature than trichloromethane.	mistry Unit 2 WCH02
			(2)
	(iii)) Suggest why solvents such as trichloromethane and 1,1,1-trichloroethan no longer used.	e are (1)
	(b) (i)	Complete the formula of the product when iodine monochloride reacts inoleic acid, $CH_3(CH_2)_4CH=CHCH_2CH=CH(CH_2)_7COOH$, the most abundation unsaturated compound in sunflower oil. $CH_3(CH_2)_4-C-C-CH_2-C-C-(CH_2)_7COOH$	
	(ii)	lodine monochloride solution is preferred to iodine solution for this reac because it is more reactive. Explain why this is so.	tion (1)
	(iii)) Suggest why Wijs solution is stored in a brown bottle.	(1)

er 2016 ^{ber} (iv	www.mystudybro.com Cr This resource was created and owned by Pearson Edexcel) The equation for the reaction between iodide ions and iodine monocl given below.	Nemistry Unit 2 WCH02 hloride is
	Show that this is a redox reaction by giving all the oxidation numbers identifying the oxidizing agent.	and (2)
	$\label{eq:ICI} ICI \ + \ I^- \ \rightarrow \ I_2 \ + \ CI^-$ Oxidation numbers	(2)
Oxidizing	agent	
(c) (i)	Starch solution is usually added as an indicator towards the end of the titration.	2
	Describe how the colour of the mixture would change during the titra before starch is added.	ation, (1)
(ii)	Explain why starch solution is not added at the start of the titration.	(1)
	the blank titration, 40.0 cm³ of 0.100 mol dm⁻³ sodium thiosulfate soluti acted with 10.0 cm³ of Wijs solution.	ion
(i)	Calculate the number of moles of 0.100 mol dm ⁻³ sodium thiosulfate t reacted in the blank titre.	hat (1)
(ii)	Calculate the number of moles of iodine, I_2 , which reacted with the th solution in the blank titration.	iosulfate
	$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$	(1)
20		

mer 2 aper		www.mystudybro.com Chemistry This resource was created and owned by Pearson Edexcel Using your answer to (d)(ii), and the equation in (b)(iv), deduce the	Unit 2 WCH02
	(11)	corresponding number of moles of iodine monochloride solution in 10.0 cm ³ of Wijs solution.	
		,	(1)
	(iv)	The number of moles of iodine monochloride left after reacting the Wijs solution with the sample of the sunflower oil, calculated from the titre, is 1.10×10^{-3} mol.	
		Use this, and your answer to (d)(iii), to calculate the number of moles of iodine monochloride that reacted with the sample.	(1)
	(v)	Your answer to (d)(iv) is equal to the number of moles of iodine that would	
		have reacted with 0.2 g of sunflower oil. Calculate the number of moles of iodine that would have reacted with 100 g of sunflower oil.	(1)
	(vi)	Calculate the mass of iodine, I_2 , which would have reacted with 100 g of sunflower oil, which is the iodine value for the sunflower oil.	(1)
			2 Turn ove

Summer 2016	www.mystudybro.com Chemistry Unit 2
Past Paper	This resource was created and owned by Pearson Edexcel WCH02 Butter contains a smaller percentage of unsaturated molecules than sunflower oil.
(e)	Butter contains a smaller percentage of unsaturated molecules than sunflower oil.
	Would the titre value and iodine value for butter be higher, lower or about the
	same as the values for sunflower oil?
	(1)
Titre va	
La alia a u	
loaine	value
	(Total for Question 16 = 19 marks)
	TOTAL FOR SECTION C = 19 MARKS
	TOTAL FOR PAPER = 80 MARKS
22	
	P 4 6 6 5 9 A 0 2 2 2 4

DO NOT WRITE IN THIS AREA DO

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Summer 2016

Past Paper

BLANK PAGE

Summer 2016

Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	0 (8)	(18) 4.0 hetium 2	20.2 Ne 10	39.9 Ar argon 18	83.8	krypton 36	131.3	Xe xenon	54	[222]	radon 86	<u>م</u>		
	7	(21)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9	bromine 35	126.9	I iodine	ñ	[210]	At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu lutetium 71	[257] Lr lawrencium 103
	9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	selenium 34	127.6	Te tellurium	75	[209]	polonium 84	-116 have b nticated	173 Yb ytterbium 70	[254] No 102
	2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9	AS arsenic 33	121.8	Sb antimony	15	209.0	bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69	[256] Md mendelevium 101
	4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6	حو germanium 32	118.7	S ≞:	20	207.2	lead 82	atomic nu but not 1	167 Er erbium 68	[253] Fm fermium 100
	٣	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7	gallium 31	114.8	In indium	49	204.4	thallium 81	nents with	165 Ho holmium 67	[251] [254] Cf Es californium 98 99
ients				(12)	65.4	3 ziju 30 ziju	112.4	Cd cadmium	48	200.6	mercury 80		163 Dy dysprosium 66	[251] Cf californium 98
Elem				(11)	63.5	copper 29	107.9	Ag silver	4/	197.0	gold 79	[272] Rg 111	159 Tb terbium 65	[245] BK berkelum 97
The Periodic Table of Elements				(10)	58.7	n ickel 28	106.4	Pd palladium	46	195.1	platinum 78	[271] DS damstadtium 110	157 Gd gadolinium 64	[247] CM aunium 96
c Tab				(6)	58.9	cobalt 27	102.9	Rh rhodium	45	192.2	iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium 95
riodi		1.0 H hydrogen 1		(8)	55.8 1	ron 26	101.1	Ru ruthenium	44	190.2	osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] [243] Pu Am plutonium americium 94 95
ne Pe				<i>(</i> 2)	54.9	Mn manganese 25	[98]	Tc	43	186.2	rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	238 [237] U Np uranium neptunium 92 93
È			mass bol umber	(9)	52.0	vanadium chromium manganese 23 24 25	95.9	Mo Tc molybdenum technetium	42	183.8	tungsten 74	[266] Sg seaborgium 106	141 144 [147] Pr Nd Pm presect/mium recodymium promethium 59 60 61	238 U ^{uranium} 92
		Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	vanadium 23	92.9	E	41	180.9	tantalum 73	[262] Db dubnium 105	141 Pr 59	[231] Pa protactinium 91
			relati ato atomic	(4)	47.9	11 titanium 22	91.2	Zr zirconium	40	178.5	hafnium 72	[261] Rf rutherfordium 104	140 Ce cerium 58	232 Th thorium 90
				(3)	45.0	Scandium 21	88.9	E	39	138.9	La ^m lanthanum 57	[227] AC* actinium 89	8	
	2	(2)	9.0 Be beryllium 4	24.3 Mg 12	40.1	calcium 20	87.6	Sr strontium	ŝ	137.3	barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
	٣	(E)	6.9 Li lithium 3	23.0 Na sodium 11	39.1	K potassium 19	85.5	Rb rubidium	3/	132.9	caesium 55	[223] Fr francium 87	* Lanth * Actini	

