	-		
This was a company.		access and lack Dataset	a a la El al a su a a l
This resource wa	as created and	owned by Pear	son Edexcel
11110 10000100 11	ao oroatoa ana	omnou by i our	

Nrite your name here Surname		Other names	
Pearson Edexcel nternational Advanced Level	Centre Number		andidate Number
(homistry			
Advanced Subsidiar Unit 2: Application of	r y	ciples of	Chemistry
	ry of Core Prin	Pa	Chemistry Der Reference /CH02/01

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Show all your working in calculations and give units where appropriate.

Turn over 🕨

DO NOT WRITE IN THIS AREA

			SECTION A	
	Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.			
1	Wh	ich	species does not have a trigonal pyramidal struct	ure?
	\mathbf{X}	A	AlCl ₃	
	\mathbf{X}	B	NH ₃	
	\times	С	H_3O^+	
	\mathbf{X}	D	PCl ₃	
				(Total for Question 1 = 1 mark)
2	Wh	nich	molecule contains three atoms in a straight line?	
			BF ₃	
	\times		CH₄	
	\times		H ₂ O	
	\times		SF ₆	
				(Total for Question 2 = 1 mark)
3	W/h	hich	compound has the greatest ionic character?	
5	VVI		Sodium bromide	
		B	Sodium chloride	
		C	Sodium fluoride	
		D	Sodium iodide	
		U	Solumioude	(Total for Question 3 = 1 mark)
		th	is space for any rough working. Anything you v	
	030		is space for any rough working. Anything you	white in this space will gain no creak.

4 Which best represents the position of the bonding pair of electrons and the dipole of hydrogen chloride?

	Position of bonding electrons	Dipole
A 🛛	H— ∶ Cl	$\stackrel{\delta +}{H} \stackrel{\delta -}{\longrightarrow} Cl$
B	H ∶ —Cl	$\stackrel{\delta + \delta -}{H}$
⊠ C	H— ∶ Cl	$\stackrel{\delta-}{H} \stackrel{\delta+}{\longrightarrow} \operatorname{Cl}$
D 🛛	H : —Cl	$egin{array}{ccc} \delta_{-} & \delta_{+} \ H_{-\!\!-\!\!-}Cl \end{array}$

(Total for Question 4 = 1 mark)

- 5 When a system is at equilibrium, it is **always** true that
 - A molecules of reactants stop changing into molecules of products.
 - **B** the concentrations of reactants and products are equal.
 - C the concentrations of reactants and products are constant.
 - **D** the activation energies of the forward and reverse reactions are equal.

(Total for Question 5 = 1 mark)

6 An oxidising agent

- A gains electrons and is oxidised.
- **B** loses electrons and is oxidised.
- **C** gains electrons and is reduced.
- **D** loses electrons and is reduced.

(Total for Question 6 = 1 mark)

- 7 Which trend is correct for the Group 2 metals as the atomic number **increases**?
 - A The atomic radius decreases.
 - **B** The electronegativity increases.
 - **C** The first ionisation energy decreases.
 - **D** The thermal stability of their nitrates decreases.

(Total for Question 7 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 1 6 0 0 A 0 4 2 4

ummer 2018 ast Paper	8 www.mystudybro.com Chemistry Unit This resource was created and owned by Pearson Edexcel WCHO
9 A white s alkaline s	solid gives a lilac flame colour. The solid reacts with water, forming a strongly solution.
The solid	d could be
🖾 A ca	alcium oxide.
🛛 В р	ootassium oxide.
🖾 C ca	alcium chloride.
🖾 D p	ootassium chloride.
	(Total for Question 9 = 1 mark)
10 Which of	f the following is an isomer of 2,2-dimethylpentan-1-ol?
A C	CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ OH
B (0	CH ₃) ₃ CCH(CH ₃)CH ₂ OH
≥ c C	$H_3CH_2CH_2CH_2CH_2CH_2CH_2OH$
□ D (0	CH ₃) ₂ CHC(CH ₃) ₂ CH ₂ CH ₂ OH
	(Total for Question 10 = 1 mark)
11 Which of	f the following hydroxides is the most soluble in water?
🖾 A B	arium hydroxide
BC	Calcium hydroxide
🖾 C N	/lagnesium hydroxide
D St	trontium hydroxide
	(Total for Question 11 = 1 mark)

DO NOT WRITE IN THIS AREA

f \ E E 13 /	forr Wh	m w aat is A B C D D orote ses f	r suitable conditions, a mixture of carbon monoxide and hydrogen reacts to water and a mixture of hydrocarbons. $nCO + (2n + 1)H_2 \rightarrow nH_2O + hydrocarbons$ is the general formula for the hydrocarbons produced? C_nH_{2n-2} C_nH_{2n} C_nH_{2n+1} C_nH_{2n+2} (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly from ozone's ability to	
E E E 13 /	X X X A p	A B C D	is the general formula for the hydrocarbons produced? C_nH_{2n-2} C_nH_{2n} C_nH_{2n+1} C_nH_{2n+2} (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly	
E E E 13 /	X X X A p	A B C D	$C_{n}H_{2n-2}$ $C_{n}H_{2n}$ $C_{n}H_{2n+1}$ $C_{n}H_{2n+2}$ (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly	
13 /	X X A p	B C D	C_nH_{2n} C_nH_{2n+1} C_nH_{2n+2} (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly	
13 <i>A</i>	A p	C D orote ses f	C_nH_{2n+1} C_nH_{2n+2} (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly	
13 /	X A p	D prote	C_nH_{2n+2} (Total for Question 12 = 1 mark) tective layer of ozone, O ₃ , exists in the atmosphere. This protection mainly	
13 /	A p	orote ses f	(Total for Question 12 = 1 mark) tective layer of ozone, O_3 , exists in the atmosphere. This protection mainly	
	-	ses f	tective layer of ozone, O_3 , exists in the atmosphere. This protection mainly	
	-	ses f		
	×			
	X	A	absorb ultraviolet radiation.	
		В	reflect ultraviolet radiation.	
	X	С	break down chlorofluorocarbons.	
	X	D	reflect chlorofluorocarbons.	
			(Total for Question 13 = 1 mark)	
14 (Cor	acid	dor the following equation	
14	COI	ISIU	der the following equation. $ClO_{3}^{-}(aq) + 6H^{+}(aq) + ne^{-} \rightarrow Cl^{-}(aq) + 3H_{2}O(l)$	
,	W/h	at y		
v IS			value of <i>n</i> is required to balance the above equation?	
		A		
			6	
	X	D		
			(Total for Question 14 = 1 mark)	
15 T	The	e co	onversion of butanoic acid into butan-1-ol is an example of	
	X	Α	elimination.	
	X	В	substitution.	
	X	с	oxidation.	
	X	D	reduction.	
_			(Total for Question 15 = 1 mark)	
e	6			

16 Compound **X** forms compound **Y** in the reaction shown in the equation. No knowledge of this reaction is required.

 $\begin{array}{cccc} C_7H_6O_3 & + & C_2H_4O_2 & \rightarrow & C_9H_8O_4 & + & H_2O\\ compound \mbox{\bf X} & & compound \mbox{\bf Y} \end{array}$

What mass of compound X is required to produce 8.4 g of compound Y, if the yield is 40%?

[Molar masses/g mol⁻¹: $C_7H_6O_3 = 138$ $C_9H_8O_4 = 180$]

🖾 **A** 3.4 g

■ B 6.4 g

🖾 **C** 16.1 g

🖾 **D** 21.0 g

(Total for Question 16 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

Addition of excess barium chloride solution resulted in the precipitation of 2.33 g of barium sulfate.

 $[Molar mass of BaSO_4 = 233 g mol^{-1}]$

The original substance could be

- A calcium sulfate.
- **B** copper(II) sulfate.
- C magnesium sulfate.
- **D** sodium sulfate.

(Total for Question 19 = 1 mark)

20 The concentration of a solution of iodine can be determined by titration with a solution of sodium thiosulfate.

The sulfur-containing **product** of this reaction is

- $\blacksquare \textbf{A} \quad Na_2S_2O_3$
- \blacksquare **B** Na₂S₄O₆
- \square **C** Na₂SO₃
- \square **D** Na₂S₂O₈

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

DO NOT WRITE IN THIS AREA

Past Pa	aper This resource was created and owned by Pearson Edexcel	W
	SECTION B	
	Answer ALL the questions. Write your answers in the spaces provided.	
21	This question is about the chemistry of Group 7.	
	(a) Silver nitrate solution is added to an aqueous solution containing two different halide ions. A mixture of two different precipitates, A and B , is formed. When concentrated ammonia solution is then added, precipitate A remains and precipitate B dissolves completely.	
	(i) Identify, by name or formula, the halide ion in A .	(1)
	(ii) Identify, by name or formula, one possible halide ion in B .	(1)
	(iii) Write an ionic equation, including state symbols, for the formation of precipitate A .	(2)
	(b) Concentrated sulfuric acid is added to solid potassium chloride. A reaction occurs in which steamy fumes are formed.	
	(i) Give the formula of the steamy fumes.	
		(1)
	(ii) Write an equation for this reaction. State symbols are not required.	(1)

(i) Cive the evi		of culture			
(i) Give the oxi	uation number	of sulfur i	n		(2)
sulfuric acid					
sulfur dioxide					
(ii) Complete th	e ionic equatio	on for this	redox reaction.		
State symbo	ls are not requ	ired.			
					(2)
H_2SO_4 +	H ⁺	+	Br [−] →	+	+H ₂ O
	producing two vo reduction p	reductior	d to solid potassiu n products other t In each case, give	han sulfur di	oxide. on that
					(4)
First reduction product					
Observation					
Second reduction prod	uci				
Observation					
			(Total fo	r Question	21 = 14 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

0

0 0

(d) (i) Use information from the graph to calculate the number of moles of magnesium carbonate that reacted with the dilute hydrochloric acid. [The molar volume of a gas = $24000 \text{ cm}^3 \text{ mol}^{-1}$ under the conditions of the experiment.] (2) (ii) Calculate the mass of magnesium carbonate that reacted and hence the percentage by mass of magnesium carbonate in the hydromagnesite. (2) Percentage by mass of magnesium carbonate =%

DO NOT WRITE IN THIS AREA

Sumn Past Pap	ner 201 Der	8 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Chemistry	Unit 2 WCH02
23	This que	estion is about chemical equilibrium.		
	a) The	gases nitrogen dioxide, NO ₂ and dinitrogen tetroxide, N ₂ O ₄ form an ilibrium mixture at room temperature.		
		$2NO_2(g) \implies N_2O_4(g) \qquad \Delta H = -58 \text{ kJ mol}^{-1}$ brown colourless		
	I	A gas syringe containing an equilibrium mixture of these gases is co by pushing in the plunger and then allowed to stand with the plung new position.		
		Predict how the appearance of the equilibrium mixture would chan this procedure.	ge during	
	-	Justify your answer.	(3)	
	(ii) S	State and explain the effect of an increase in temperature on this eq		
			(1)	
				15
		P 5 1 6 0 0 A 0 1 5 2 4	iuri	n over

DO NOT WRITE IN THIS AREA

P 5 1 6 0 0 A 0 1 6 2 4

I mmer 2018 st Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Chemistry Unit 2 WCH02
24 This question is	about the reactions and properties of 1-bromobutane.	
	tane can be converted into butan-1-ol in a one-step reaction.	
	e reagents and conditions required for this reaction.	
		(2)
Reagents:	Conditions:	
(ii) Draw th	e mechanism for this reaction.	
Include	curly arrows, and relevant dipoles and lone pairs.	(4)
	7 1-bromobutane is much less soluble in water than in butan- description of the forces involved is not required.	1-ol. (3)
	(Total for Question 2	24 = 9 marks)

DO NOT WRITE IN THIS AREA

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

25 Organic compounds can be analysed using physical methods such as mass spectrometry and infrared spectroscopy, chemical tests and quantitative measurements.

The mass spectrum and infrared spectrum of ethanol, C_2H_5OH , are shown.

Some infrared data are given in the table below.

Bond stretching vibration	Wavenumber / cm ⁻¹
C—H, alkane	2962–2853
C—H, alkene	3100–3010
O—H (weak), carboxylic acids	3300–2500
O—H (broad), alcohols	3750–3200

Past Paper			This resource was created and owned by Pearson Edexcel	onemistry
(a)	(i)		t can be deduced about ethanol from the presence of the pea in the mass spectrum.	ak at (1)
	(ii)		e species responsible for the peak at $m/e = 31$ in the mass sp , and state how it is formed.	ectrum (2)
· · · · · · · · · · · · · · · · · · ·	(iii)	group in e	ne feature of the infrared spectrum which confirms the functi thanol. e appropriate wavenumber range in your answer.	onal (1)
			s are often used to identify functional groups in organic mole e meaning of the term functional group .	cules. (2)
· · · · · · · · · · · · · · · · · · ·				
				Turn

(ii) The reaction of sodium metal with ethanol can be used to confirm the presence of the functional group in ethanol.

Give the equation for the reaction of sodium with ethanol. State symbols are not required.

(2)

(c) A carboxylic acid **E** was investigated by quantitative and qualitative methods.**E** was known to have one of the following structures:

Structure 1	CH ₃ CH ₂ CH=CHCOOH	Molar mass = $100 \mathrm{g}\mathrm{mol}^{-1}$
Structure 2	HOOCCH ₂ CH ₂ COOH	Molar mass = $118 \mathrm{g}\mathrm{mol}^{-1}$

A sample of 1.20 g of **E** was burned in excess oxygen. A mass of 1.79 g of carbon dioxide was formed.

(i) Calculate the mass of carbon present in the sample of **E**.

P 5 1 6 0 0 A 0 2 0 2 4

Mass of oxygen =

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

g

g

Past Paper	This resource was created and owned by Pearson Edexcel		WCH02
	(iii) Use the information from parts (c)(i) and (c)(ii) to calculate the empirical formula of E .	(2)	
	(iv) Deduce the identity of E . Give a reason for your answer by referring to the information at the start of (c) and your answer to (c)(iii).	(1)	
Test: Results	 (v) Describe a qualitative chemical test that would distinguish between Structure 1 and Structure 2. State the expected results. a for Structure 1: a for Structure 2: 	(2)	

DO NOT WRITE IN THIS AREA

Past Paper	This resource was created and owned by Pearson Edexcel	WCH02
	(vi) Draw the displayed formula of a compound that can be oxidised to form	
	Structure 2 .	(1)
		(1)
×	*(vii)Explain why a molecule of Structure 1 can show geometric isomerism.	
		(2)
	(Total for Question 25 = 19 ma	rks)
	TOTAL FOR SECTION C = 19 MA	RKS
	TOTAL FOR PAPER = 80 MA	
22		
	P 5 1 6 0 0 A 0 2 2 2 4	

BLANK PAGE

			_													_			,														
	0 (8)	(18) 4.0 heltum	7	20.2	Ne	10 10	39.9	Ar	argon 18	83.8	노	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		ted													
	7		<u>(</u> 2)	19.0	щ	fluorine 9	35.5	ບ	cniorine 17	79.9	Ъ	bromine 35	126.9	I	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated		175	Lu		[257]	Lr Iawrencium 103	2						
	9		(16)	16.0	0	oxygen 8	32.1	s	sulfur 16	79.0	Se	selenium 34	127.6	Те	tellurium 52	[209]	8	polonium 84		116 have l Iticated		173	٩,	70	[254]	Nobelium 107	171						
	2	į	(15)	14.0	z	nitrogen 7	31.0	۵.	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169	٤	69	[256]	Md mendelevium	2						
	4		(14)	12.0	υ	6	28.1		14	72.6	e	germanium 32	118.7	Sn	2 ti	207.2	P	lead 82		atomic nur but not fi		167	Ъ	68	[253]	fermium 100	~						
	ñ		(3)	10.8	8	5	27.0	۶.	aluminium 13	69.7		gallium 31	114.8	Ŀ	indium 49	204.4	F	thallium 81		ents with a		165	ĥ		[254]	Es einsteinium aa							
ents									(12)	65.4	Zn	30 30	112.4	ß	cadmium 48	200.6	Нg	mercury 80		Elem		163	Q	uysprosium 66	[251]	Cf californium 98	ŝ						
Elem									(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg		159	٩L		[245]	BK berketium	:						
le of									(01)	58.7	ïz	nickel 28	106.4	Р	palladium 46	195.1	¥	platinum 78	[271]	5		157	Bdd	64	[247]	erin G	2						
c Tabl											(6)	58.9	ა	cobalt 27	102.9	ዲ	45	192.2	F	iridium 77	[268]	Ę	601	152	Eu	63	[243]	Am americium 95	2				
riodic		1.0 hydrogen	-						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	ő	osmium 76	[277]	E	100	150	Sm		[242]	Pu plutonium 94	ţ						
The Periodic Table of Elements			_						(2)	54.9	٩u	manganese 25	[98]	Ľ	technetium 43	186.2	Re	rhenium 75	[264]	ă	101	[147]	Pa	61	[237]	neptunium 93	2						
È			Key	mass	mass	mass	relative atomic mass	ive atomic mass	mass	mass	pol	umber			(9)	52.0	Ե	chromium 24	95.9	Ŵ	molybdenum 42	183.8	≥	tungsten 74	[366]	Sg seaborgium	001	144	PZ	60	238	U uranium 92	*
		2		Key	Key	Key			atomic symbol	name atomic (proton) number			(2)	50.9	>	vanadium 23	92.9	q	niobium 41	180.9	Та	tantalum 73	[262]	E	COL	141	Pr Nd	59	[231]	Pa protactinium 91	;		
				relati	ato	atomic			(4)	47.9	Ξ	titanium 22	91.2	Zr	zirconium 40	178.5	Ħ	hafnium 72	[261]	Rf nutherfordium	104	140	e B		232	thorium M	2						
									(3)	45.0	S	scandium 21	88.9	۲	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac* actinium	60		S.										
	2	ł	2	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	ß	calcium 20	87.6	S	strontium 38	137.3	Ba	barium 56	[226]	Ra radium	8		 Lanthanide series 	 Actinide series 									
	-	:	ε	6.9	כ	lithium 3	23.0	Na	11	39.1	¥	potassium 19	85.5	ď	rubidium 37	132.9	പ്	caesium 55	[223]	Fr francium	0		• Lanth	 Actin 									

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 1 6 0 A 0 2 4 2 4