www.mystudybro.com **Chemistry Unit 5** Past Paper This resource was created and owned by Pearson Edexcel | Vrite your name here Surname | Oth | er names | |--|---------------------------------|--------------------------| | Pearson Edexcel nternational Advanced Level | Centre Number | Candidate Number | | Chemistry | | | | Advanced Unit 5: General Principles and Organic Nitro (including synopti | gen Chemistry | - Transition Metals | | Unit 5: General Principles
and Organic Nitro | gen Chemistry
ic assessment) | Paper Reference WCH05/01 | # **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. # Information - The total mark for this paper is 90. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. - A Periodic Table is printed on the back cover of this paper. # **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ # **SECTION A** Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box 🔀 and then mark your new answer with a cross \boxtimes . - Manganese forms a complex with carbon monoxide, with the formula $Mn_2(CO)_{10}$. The oxidation number of manganese in Mn₂(CO)₁₀ is - **A** 0 - \mathbf{B} +2 - □ +10 (Total for Question 1 = 1 mark) 2 The reduction of nitrate(V) ions by aluminium in alkaline conditions may be represented by the equation below. $$x NO_3^- + y AI + a OH^- + b H_2O \rightarrow x NH_3 + y AI(OH)_4^-$$ From the change in the oxidation numbers of nitrogen and aluminium, it can be deduced that the values of x and y are - \triangle **A** x = 3 and y = 2 - **B** x = 2 and y = 3 - **C** x = 8 and y = 3 - \square **D** x = 3 and y = 8 (Total for Question 2 = 1 mark) - Which of the following is correct for the standard hydrogen electrode? - ☑ A The temperature is kept at 273 K. - Sulfuric acid with a concentration of 0.5 mol dm⁻³ is used. - ☑ C The metal electrode is copper foil. - ☑ D The hydrogen pressure is 1 atmosphere. (Total for Question 3 = 1 mark) 4 The standard electrode potentials of two electrode systems are given below. $$Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Cr(s)$$ $E^{\oplus} = -0.74 \text{ V}$ $$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)$$ $E^{\oplus} = -0.40 \text{ V}$ Calculate the $E_{\text{cell}}^{\ominus}$ for the reaction $$2Cr(s) + 3Cd^{2+}(aq) \rightarrow 3Cd(s) + 2Cr^{3+}(aq)$$ - \triangle **A** -0.34 V - B +0.34 V - ☑ C -0.28 V (Total for Question 4 = 1 mark) - **5** The calculated E^{\oplus} for a reaction is positive but no reaction occurs when the reagents are mixed under standard conditions. It can be deduced that - A the reaction is thermodynamically feasible and the reaction mixture is kinetically stable. - **B** the reaction is thermodynamically feasible and the reaction mixture is kinetically unstable. - ☑ C the reaction mixture is thermodynamically and kinetically stable. - **D** the reaction mixture is thermodynamically stable and kinetically unstable. (Total for Question 5 = 1 mark) **6** The electronic configuration of the iron(II) ion, Fe^{2+} , is ■ A [Ar] **↑** ↓ _____: | ↑ | | 3d ↑ | 4s ↑↓ ■ B [Ar] ↑↓ 1 $\uparrow\downarrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$ (Total for Question 6 = 1 mark) ■ Past Paper | 7 | Transition metal compounds often have catalytic properties. The best explanation for this is that | | | | | |---|--|---|--|---|----------------------| | | □ A transition metal compounds usually have a much larger surface area than other metal compounds. | | | | | | | В | ■ B transition metal ions readily promote electrons to higher energy levels by absorbing electromagnetic radiation in the visible region. | | | | | | | | latively small amounts of ene a transition metal. | rgy are required to change t | he oxidation state | | | ⊠ D | | e ionization energies of trans
her metals. | ition metals are much lower | than those of | | | | | | (Total for | Question 7 = 1 mark) | | 8 | | | the shapes of the dichlorocuprochromate(III) ion, CrCl4? | orate(I) ion, CuCl ₂ , and the | | | | | | CuCl ₂ | CrCl₄ | | | | ⊠ A | \ | V shaped | tetrahedral | | | | ⊠ B | | linear | tetrahedral | | | | ⊠ C | : | V shaped | square planar | | | | ⊠ D |) | linear | square planar | | | | | | | (Total for | Question 8 = 1 mark) | | 9 | greer | n pre
ion.
Mi
Fe | 2+ | olves slowly in excess ammo | | | | ■ D | Cr | 3+ | | | | | | | | (Total for | Question 9 = 1 mark) | - 10 The iron(II) ion forms complexes with monodentate ethanoate ions and bidentate ethanedioate ions. The complexes with ethanedioate ions are more stable. What is the best explanation for this? - ☑ A Ethanedioate ions form stronger bonds than ethanoate ions with iron(II) ions. - **B** Ethanedioic acid is a stronger acid than ethanoic acid. - ☑ C The formation of the ethanedioate complex produces more particles in solution. - D Ethanedioic acid forms stronger hydrogen bonds than ethanoic acid. (Total for Question 10 = 1 mark) 11 The diagram below summarises a sequence of reactions involving chromium compounds. How many different oxidation states of chromium are involved in this sequence? - **⋈ A** 2 - **B** 3 - **D** 5 (Total for Question 11 = 1 mark) **Chemistry Unit 5** ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel WCH05 | | | es the best evidence for this? | |--------|--------|--| | X | A | Valence shell electron pair repulsion theory | | × | В | X-ray diffraction | | X | C | High resolution nuclear magnetic resonance | | X | D | Infrared spectroscopy | | | | (Total for Question 12 = 1 mark) | | | | ne burns with a very smoky flame. This is evidence for the extent to which the ne molecule is | | × | Α | delocalised. | | X | В | stabilised. | | × | C | unsaturated. | | X | D | activated. | | | | (Total for Question 13 = 1 mark) | | | | ne water is added to an aqueous solution of phenol, a white precipitate with an ptic smell is formed. What is the explanation for this difference? | | ar
 | | Bromine is a powerful electrophile. | | ar | A
B | The benzene ring in phenol is activated. | | ar | | | | ar | В | The benzene ring in phenol is activated. | **15** The repeat unit of a polymer is shown below. What is the structure of the monomer? (Total for Question 15 = 1 mark) **16** An organic compound reacts with dilute sulfuric acid to form a colourless solution which produces a white solid on evaporation. It also gives a pale yellow solid on reaction with iodine in sodium hydroxide. The compound is (Total for Question 16 = 1 mark) - **17** An organic compound produces steamy fumes with phosphorus(V) chloride but does **not** react with 2,4-dinitrophenylhydrazine. The compound is (Total for Question 17 = 1 mark) Chemistry Unit 5 WCH05 ■ Past Paper | | the | mass spectrum of an organic compound, the molecular ion occurs at $m/e = 86$. | |----------|--------------------------------|--| | | | | | Wl | hich | of the following could be the empirical formula of the compound? | | X | A | C_6H_{14} | | X | В | $C_5H_{10}N$ | | X | C | $C_5H_{12}O$ | | \times | D | C_5H_7F | | | | (Total for Question 18 = 1 mark) | | fo | ur p | gh resolution proton nmr spectrum of propan-1-ol, CH ₃ CH ₂ CH ₂ OH, contains eaks. What is the splitting pattern of the four peaks? e 1 represents a singlet, 2 represents a doublet, etc.] | | × | | 3 2 2 1 | | X | В | 3 4 3 1 | | | | | | X | C | 3 6 3 1 | | X | | 3 6 3 1
3 6 4 2 | | | | | | .0 WI | D
hich | 3 6 4 2 | | O WI to | hich
red | (Total for Question 19 = 1 mark) of the following techniques would be the least effective as a control measure uce risk when heating a flammable liquid? | | O WI to | hich
red | (Total for Question 19 = 1 mark) of the following techniques would be the least effective as a control measure uce risk when heating a flammable liquid? se of | | • WI to | hich
red
e us
A
B | (Total for Question 19 = 1 mark) of the following techniques would be the least effective as a control measure uce risk when heating a flammable liquid? se of an electrical heater. | | O WI to | hich
red
ae us
A
B | (Total for Question 19 = 1 mark) of the following techniques would be the least effective as a control measure uce risk when heating a flammable liquid? se of an electrical heater. a fume cupboard. | This resource was created and owned by Pearson Edexcel # **SECTION B** # Answer ALL the questions. Write your answers in the spaces provided. - 21 Brass is an alloy of copper and zinc, often with traces of other metals. The copper content of brass can be determined by dissolving the metal in concentrated nitric acid and measuring, by titration, the concentration of the copper(II) ions formed. - (a) When concentrated nitric acid reacts with copper, the copper dissolves and one of the products is dinitrogen tetroxide, N_2O_4 . - (i) Use the data on page 15 of the Data Booklet to write the ionic half-equations for this reaction of copper with concentrated nitric acid. State symbols are not required. (2) (ii) Write the overall equation for the reaction of copper with concentrated nitric acid and calculate $E_{\text{cell}}^{\ominus}$ for the reaction. State symbols are not required. (2) (iii) State **one** observation that you would expect to make when copper dissolves in concentrated nitric acid. (1) (b) 1.35 g of a sample of rivet brass was dissolved in concentrated nitric acid. The resulting mixture was boiled and then allowed to cool before being transferred to a volumetric flask. The solution was made up to 250 cm³ with distilled water and mixed thoroughly. Excess potassium iodide solution was added to 25.0 cm³ samples of this solution, and the liberated iodine determined by titration with a solution of sodium thiosulfate of concentration 0.0505 mol dm⁻³. The mean titre was 26.35 cm³. (i) Write the **ionic** equation for the reaction of the copper(II) ions with iodide ions to form copper(I) iodide and iodine. State symbols are not required. (1) (ii) Write the **ionic** equation for the reaction of iodine with thiosulfate ions. State symbols are not required. (1) (iii) Use the equations in (b)(i) and (b)(ii) to show that the amount of copper(II) ions is equal to the amount of thiosulfate ions. (1) 12 **Chemistry Unit 5** Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel WCH05 (iv) Calculate the percentage by mass of copper in the sample of rivet brass. (4) **Chemistry Unit 5** WCH05 ■ Past Paper | (c) (i) | The reaction mixture in (b) was boiled before being transferred to a volumetric flask. This removed dissolved nitrogen oxides which would otherwise oxidize the iodide ions. | | |---------|--|-----| | | Explain the effect that omitting this step would have on the value obtained for the percentage of copper. | (2) | | | | | | (ii) | Any nitrogen oxides that remain after boiling can be removed by the addition of urea. When this was done, the mean titre changed by 0.25 cm ³ . By considering the uncertainties in the various measurements, explain whether the addition of urea is worthwhile. | | | | whether the addition of drea is worthwhile. | (2) | | | | | | | | | | (d) Bo | th copper and zinc are d-block elements, but only copper is a transition metal. | | | (i) | Explain the term d-block element . | (1) | | | | | | | | | | | | | # **Winter 2015** **Chemistry Unit 5** | W | CH | 105 | |---|----------|-----| | | \sim . | | | (ii) Explain why copper is classed as a transition metal but zinc is not. | (1) | |---|--------| | | | | | | | | | | *(iii) Explain why the complexes of copper(II) ions are coloured. | (4) | (iv) Although zinc is not a transition metal, zinc(II) ions form complexes. Explain | | | why these complexes are colourless. | (1) | | | | | | | | | | | (Total for Question 21 = 23 m | narks) | This resource was created and owned by Pearson Edexcel 22 Mandelic acid, 2-hydroxy-2-phenylethanoic acid, has a long history of medical use as an antibiotic and as a component of some cosmetic face creams. It was first obtained from an extract of bitter almonds and 'Mandel' is the German word for almond. Mandelic acid can be synthesized from benzene in the sequence shown below. (a) (i) Use your knowledge of electrophilic substitution to suggest the identity of the electrophile in Stage 1 of the synthesis. (1) Past Paper | (ii) Write the mechanism for the electrophilic substitution in Stage 1, using the electrophile that you have given in (a)(i). | (3) | |--|-----| | | | | | | | | | | | | |
(iii) State the reagents and conditions required for Stage 2. You may assume that the reaction is carried out at a suitable temperature. | (2) | | (iv) State the reagent (or reagents) required for Stage 3. | (1) | | | | (b) Cyclandelate is a vasodilator (causes blood vessels to dilate) used in the treatment of arteriosclerosis (hardening of artery walls). The structure of cyclandelate is shown below. (i) Suggest a single stage synthesis of cyclandelate from mandelic acid. Draw the skeletal formula of the organic compound that would be required and state any essential reagents and conditions. (3) | (ii) | Suggest a disadvantage of using the synthesis that you have suggested in | |------|--| | | (b)(i) for the large scale manufacture of cyclandelate. | (1) Past Paper This resource was created and owned by Pearson Edexcel | | 105 | |--|-----| | | | | | | | (iii) | iii) An alternative two stage synthesis of cyclandelate was proposed. This | | | | | |-------|---|--|--|--|--| | | involved reacting mandelic acid with phosphorus(V) chloride. Explain why | | | | | | | this suggestion is unsatisfactory. | | | | | (1) - (c) Cyclandelate has **three** asymmetric carbon atoms. - (i) Circle these three asymmetric carbon atoms on the structure below. (2) (ii) Explain the possible problem that the presence of asymmetric carbon atoms might cause with the medical applications of cyclandelate. (2) | (Tota | for Ou | estion 2 | 22 = 1 | 6 marks | |-------|--------|----------|--------|---------| 23 Compound P is a very dark purple solid which gives a lilac flame in a flame test. A sample of **P** was dissolved in dilute sulfuric acid to form a purple solution. A gaseous hydrocarbon, **M**, was bubbled into this solution which rapidly formed a colourless solution, containing an organic compound, **N**, and an inorganic compound, **Q**. When aqueous sodium hydroxide was added to \mathbf{Q} , a very pale brown precipitate, \mathbf{R} , formed. \mathbf{R} darkened on standing in air to form a dark brown solid, \mathbf{S} , which was filtered off and heated to form a dark brown metal oxide, TO_2 . The reaction sequence is summarised below. (a) Analysis of TO₂ showed that it contained 36.82% by mass of oxygen. Calculate the molar mass of the metal, T, and hence identify T. You **must** show your working. (3) This resource was created and owned by Pearson Edexcel (b) The mass spectrum of the organic product **N**, formed when **M** is reacted with the solution of **P**, is shown below. (i) Label the molecular ion on the mass spectrum and deduce the molar mass of ${\bf N}$. (ii) Identify, by name or formula, \boldsymbol{M} and $\boldsymbol{N}.$ (2) **Chemistry Unit 5** WCH05 ■ Past Paper | | TOTAL FOR SECTION B = 51 MAI | RKS | |---------|---|------| | | (Total for Question 23 = 12 ma | rks) | | (d) Wi | rite the formula of the cation in P and hence give the formula of compound P . | (2) | | (ii) | Suggest an equation for the conversion of the dark brown solid, $\bf S$, to TO_2 . State symbols are not required. | (2) | | (c) (i) | Write an ionic equation for the formation of the very pale brown precipitate, R Include state symbols in your answer. | (2) | Past Paper # **SECTION C** # Answer ALL the questions. Write your answers in the spaces provided. 24 # **Organic Nitrogen Chemistry** Organic compounds that contain nitrogen are vital to life, but are also important in everyday applications of chemistry. The simplest organic nitrogen compounds are amines, which may be regarded as derivatives of ammonia in which one or more of the hydrogen atoms of ammonia have been replaced by an alkyl group or an aryl group. Some simple amines are shown below. $$H_3C$$ H_3C H_3C $N - CH_3$ $N - CH_3$ H_3C H_3C methylamine dimethylamine trimethylamine phenylamine (aniline) Amines with one alkyl group are called primary, with two alkyl groups secondary and with three alkyl groups tertiary. Because of the presence of nitrogen, the physical and chemical properties of alkyl amines are similar to those of ammonia but the similarities are less marked with phenylamine. Amides are carboxylic acid derivatives which have a carbonyl group adjacent to an amine group. The simplest amide is ethanamide: $$H_3C-C$$ NH_2 ethanamide Because the two groups are adjacent, the chemical properties of amides are different from those of amines. Amino acids are compounds with an amine group and a carboxylic acid group. The presence of these two functional groups gives amino acids properties that are also different from those of amines. The great significance of the amino acids is their ability to form polymers called polypeptides, leading to the formation of proteins, the building blocks of life. To form polypeptides, amino acids are joined by the amide group, sometimes called the peptide link. # www.mystudybro.com **Chemistry Unit 5** ■ Past Paper This resource was created and owned by Pearson Edexcel | This resource was oreated air | a owned by I carbon Edoxoci | VV O1 100 | |--|---|-----------| | (a) Methylamine boils at 267 K and dissolves in | water to form an alkaline solution | | | (i) Explain why methylamine has a higher b A detailed description of the forces invol | oiling temperature than ammonia. | | | | | | | | | | | *(ii) Explain why primary amines are soluble as molar mass increases. | in water but their solubility decreases | | | | (3) | (iii) Write an equation for the reaction of me
alkaline solution. State symbols are not | | | | | | | | | | | | | | | | | | | Past Paper | N | Cŀ | Н0 | 5 | |----|----|----|---| | ٧V | UГ | Jυ | O | | (iv) Suggest why dimethylamine is more basic than methylamine and why both are much more basic than phenylamine. | (3) | |---|-------| | | (3) | (b) The interaction of the carbonyl group and the amine group in ethanamide may be shown by the following diagram. | | | 1_4 | | | O | | | H_3C — C NH_3 | | | 2 NH_2 | | | (i) Explain what each of the two arrows represents. | | | (i) Explain what each of the two allows represents. | (2) | | | . , | | row 1 | | | | | | | | | row 2 | | | | | | | | | (ii) Draw a diagram showing the ethanamide molecule if the changes indicated by the arrows go to completion. | | | by the arrows go to completion. | (1) | | | x = y | | | | | | | Past Paper This resource was created and owned by Pearson Edexcel | (iii) Suggest why the carbonyl group in an amide does not react with | h | |--|---| | 2,4-dinitrophenylhydrazine. | | (1) (c) The structures of the two simplest amino acids are shown below. $$H_2N$$ OI H_2C-C H₂N OF HC−C H₃C O glycine alanine (i) Draw the structures of the **two** compounds, called dipeptides, that can be formed when glycine and alanine combine. Any double bonds **must** be displayed. (2) **Chemistry Unit 5** **www.mystudybro.com**This resource was created and owned by Pearson Edexcel Past Paper WCH05 | (ii) In practice, glycine and alanine do not combine readily. Suggest a reason for this. | | |--|-------| | | (1) | | | | | | | | | | | | | | | | | *(iii) Describe in outline how a mixture of amino acids can be separated and identified using thin layer chromatography. You may assume that a suitable solvent is available. | | | | (3) | (Total for Question 24 = 19 m | arks) | | TOTAL FOR SECTION C = 19 MA TOTAL FOR PAPER = 90 MA | | ■ Past Paper 101 fermium 100 einsteinium Es berkelium 97 Carrient 98 plutonium neptunium uranium 92 protactinium thorium 9 90 Pa 232 28 Am 67 65 4 63 62 9 59 Pm 61 # The Periodic Table of Elements | 0 (8) | 4.0
He hetium 2 | 20.2 | Ne | neon
10 | 39.9 | Ar
argon | 18 | 83.8 | ᅐ | krypton
36 | 131.3 | Xe | xenon | 24 | [222] | Ru | radon
86 | | ted | | _ | | | | |-------|---------------------------|----------------------|---------------|--------------------------------|------|------------------------|------|------|----|--------------------------|-------|----|---------------------------------|----|-------|----------|-----------------|-------|---|-----------------------------|---|-------|-------------------|--| | 7 | (71) | 19.0 | L | fluorine
9 | 35.5 | C | 17 | 6.62 | Br | bromine
35 | 126.9 | - | iodine | 23 | [210] | At | astatine
85 | | oeen repor | | | 175 | | lutetium | | 9 | (16) | 16.0 | 0 | oxygen
8 | 32.1 | Sulfur | 16 | 79.0 | Se | selenium
34 | 127.6 | Б | tellurium | 75 | [509] | Po | polonium
84 | | 116 have ! | ticated | | 173 | Υp | ytterbium | | 2 | (15) | 14.0 | z | nitrogen
7 | 31.0 | P
phosphorus | 15 | 74.9 | As | arsenic
33 | 121.8 | Sb | antimony | 51 | 209.0 | Bi | bismuth
83 | | mbers 112- | but not fully authenticated | | 169 | E | thulium | | 4 | (14) | 12.0 | U | carbon
6 | 28.1 | Si | 14 | 72.6 | ge | germanium
32 | 118.7 | Sn | tin | 20 | 207.2 | Ъ | lead
82 | | Elements with atomic numbers 112-116 have been reported | Dut not 1 | ! | 167 | Ы | erbium | | ъ | (13) | 10.8 | В | boron
5 | 27.0 | Al | 13 | 69.7 | Ga | gallium
31 | 114.8 | 드 | indium | 46 | 204.4 | F | thallium
81 | | nents with | | | 165 | 운 | holmium | | | | A ^C | | | | | (12) | 65.4 | Zu | zinc
30 | 112.4 | В | cadmium | 48 | 200.6 | Ηœ | mercury
80 | | Elem | | | 163 | Š | terbium dysprosium holmium | | | | | | | | | (11) | 63.5 | J | copper
29 | 107.9 | Ag | silver | 4/ | 197.0 | Αn | gold
79 | [272] | Rg | roentgenium
111 | | 159 | | | | | | (01) | | | | | | | | nickel
28 | 106.4 | Pd | palladium | 46 | 195.1 | £ | platinum
78 | [271] | Mt Ds Rg | darmstadtium
110 | | 157 | В | gadolinium | | | | | | | | | (6) | 58.9 | ပိ | cobalt
27 | 102.9 | 뫈 | rhodium | 45 | 192.2 | <u>-</u> | iridium
77 | [268] | Mt | meitnerium
109 | | 152 | 3 | europium | | | 1.0 Hydrogen | | (8) | | | | (8) | 55.8 | Fe | iron
26 | 101.1 | Ru | ruthenium | 44 | 190.2 | os | osmium
76 | [277] | | hassium
108 | | 150 | Sm | samarium | | | | | | | | | (2) | 54.9 | Wn | manganese
25 | [86] | 2 | technetium | 43 | 186.2 | Re | rhenium
75 | [264] | Bh | bohrium
107 | | [147] | Pm | promethium | | | | mass | loc | umber | | | (9) | 52.0 | ъ | chromium manganese 24 25 | 95.9 | Wo | molybdenum technetium ruthenium | 47 | 183.8 | > | tungsten
74 | [566] | Sg | dubnium seaborgium b | | 144 | P. | praseodymium neodymium promethium samarium europium gadolinium | | | Key | relative atomic mass | atomic symbol | name
atomic (proton) number | | | (5) | 50.9 | > | vanadium
23 | 92.9 | å | Ē | 41 | 180.9 | Ta | tantalum
73 | [292] | P | dubnium
105 | | 141 | P | praseodymium | | | | relati | ato | atomic | | | (4) | 47.9 | ï | titanium
22 | 91.2 | Zr | zirconium | 40 | 178.5 | Ŧ | hafnium
72 | [261] | Æ | nutherfordium
104 | ш | 140 | | cerium | | | | | | | | | (3) | 45.0 | Sc | scandium
21 | 88.9 | > | Ε | 39 | 138.9 | La* | lanthanum
57 | [227] | | actinium
89 | ľ | | S | | | 7 | (2) | 9.0 | Be | beryllium
4 | 24.3 | Mg | 12 | 40.1 | Ca | calcium
20 | 9.78 | Sr | strontium | 28 | 137.3 | | barium
56 | [526] | Ra | radium
88 | | | Lanthanide series | * Actinide series | | - | (1) | 6.9 | ij | lithium
3 | 23.0 | Na | | 39.1 | ¥ | potassium
19 | 85.5 | | Ę | 3/ | 132.9 | ర | caesium
55 | [223] | Ŀ, | francium
87 | | | Lanth | * Actini | - | | | |