

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040564 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

Question Number	Scheme		Notes	Marks	
1.	f(2	$x) = x^4 - x^3$	$-9x^2 + 29x - 60$		
	1 – 2i is also a root		Seen anywhere	B1	
-	$x^2 - 2x + 5$		M1: Attempt to expand (x-(1+2i))(x-(1-2i)) or any valid method to establish the quadratic factor A1: x^2-2x+5	M1A1	
	$f(x) = (x^2 - 2x + 5)(x^2 + x)$	-12)	M1: Attempt other quadratic factor A1: $x^2 + x - 12$	- M1A1	
	$x^{2} + x - 12 = (x + 4)(x - 3) =$	$\Rightarrow x = \dots$	Attempt to solve their other quadratic factor.	M1	
	x = -4 and $x = 3$		Both values correct	A1	
				(7) Tetal 7	
	Alton	Alternative using Factor Theorem Total 7			
	$f(3) = \dots$ or $f(-4) = \dots$		M1: Attempts $f(3)$ or $f(-4)$	M1	
	f(3) = 0 or $f(-4) = 0$		A1: Shows or states $f(3) = 0$ or $f(-4) = 0$	A1	
	$f(3) = \dots$ and $f(-4) = \dots$		M1: Attempts $f(3)$ and $f(-4)$ or f(3) and g(-4) where $g(x) = \frac{f(x)}{x-3}$ or f(-4) and h(3) where $h(x) = \frac{f(x)}{x+4}$	M1	
	f(3) = 0 and $f(-4) =$	0	A1: Shows or states $f(3) = 0$ and $f(-4) = 0$ or shows or states $f(3) = 0$ and g(-4) = 0 where $g(x) = f(x)/(x - 3)orshows or states f(-4) = 0 andh(3) = 0$ where $h(x) = f(x)/(x + 4)$	A1	
	NB $g(x) = x^3 +$	$2x^2 - 3x + 3x$	$h(x) = x^3 - 5x^2 + 11x - 15$		
	x = 3 or x = -4 (One of $x = 1$	3 or $x = -4$ clearly stated as a root	M1	
	x = 3 and $x = -4$		Both $x = 3$ and $x = -4$ clearly stated as A1 roots A1		
	x = 1 - 2i			B1	

Question Number	Scheme	Scheme Notes			
2	$f(x) = x^3 - 3x^2 + \frac{1}{2\sqrt{x^5}} + 2$				
(a)	f(2) = and $f(3) =$	Attempts both f(2) and f(3)	M1		
	f(2) = -1.9116, $f(3) = 2.032Sign change (and f(x) is continuous) thereforea root \alpha exists between x = 2 and x = 3$	Both values correct : $f(2) = -1.9116$ (awrt -1.9), and $f(3) = 2.032$ (awrt 2.0 or e.g. $2 + \frac{\sqrt{3}}{54}$), sign change (or equivalent) and conclusion	A1		
			(2		
(b)	$f'(x) = 3x^2 - 6x - \frac{5}{4}x^{-3.5}$	M1: $x^n \rightarrow x^{n-1}$ A1: $3x^2 - 6x$ A1: $-\frac{5}{4}x^{-3.5}$ or equivalent un-simplified and no other terms (+ c loses this mark)	M1A1A1		
	$\alpha = 3 - \frac{2.032075015}{8.973270821}$	Correct attempt at Newton-Raphson using their values of $f(3)$ and $f'(3)$.	M1		
	$\alpha = 2.774$	Cao (Ignore any subsequent applications)	A1		
	Correct derivative followed by correct answer scores full marks in (b) Correct answer with <u>no</u> working scores <u>no</u> marks in (b)				
	ND if the ensurer is incompatity must be also	$\frac{1}{2}$	(5		
	NB if the answer is incorrect it must be clear that both $f(3)$ and $f'(3)$ are being used in the Newton-Raphson process. So that just $3 - \frac{f(3)}{f'(3)}$ with an incorrect answer and no				
	other evidence scores M0.				
			Total 7		

Winter 20	· - · · · · · · · · · · · · · · · · · ·		ematics F1
Question Number	(Mark Scheme) This resource was created and owned by Pearson Edexcel Scheme Notes		
3	$(z-2i)(z^*-2i) = 21-12i$		
-	$z^* = x - iy$		B1
	$(x+iy-2i)(x-iy-2i) = \dots$	Substitutes for z and their z^* and attempts to expand	M1
	$= x^{2} - x(y+2)i + x(y-2)i + y^{2} - 4$		
	$=x^2+y^2-4-4x\mathbf{i}$		
-	$x^{2} + y^{2} - 4 = 21$ and $4x = 12$	Compares real and imaginary parts (allow sign errors only)	M1
	$4x = 12 \Longrightarrow x = \dots$	Solves real and imaginary parts to obtain at least one value of x or y	M1
	$x = 3, y = \pm 4$	$x = 3 \operatorname{cso}$ $y = \pm 4 \operatorname{cso}$	- A1, A1
			(6)
Way 2			Total 6
way 2	$\frac{(z-2i)(z^*-2i) = zz^*-2i(z+z^*)-4}{(z-2i)(z+z^*)-4}$	Attempt to expand	M1
	=(x+iy)(x-iy)-2i(x+iy+x-iy)-4	$z^* = x - iy$ (may be implied)	B1
	$=x^2 + y^2 - 4xi - 4$		
	$x^{2} + y^{2} - 4 = 21$ and $4x = 12$	Compares real and imaginary parts (allow sign errors only)	M1
	$4x = 12 \Longrightarrow x = \dots$	Solves real and imaginary parts to obtain at least one value of x or y	M1
	$x = 3, y = \pm 4$	$\frac{x = 3 \operatorname{cso}}{y = \pm 4 \operatorname{cso}}$	A1, A1
			Total 6
Way 3	(z-2i)(z*-2i) = zz*-2i(z+z*)-4	Attempt to expand	M1
	zz*-2i(z+z*)-4=21-12i		
	zz*-4 = 21, 2(z+z*) = 12	Compares real and imaginary parts (allow sign errors only)	M1
	$z^{2}-6z+25=0\left(\operatorname{or}\left(z^{*}\right) ^{2}-6z^{*}+25=0 ight)$	Correct quadratic	B1
	$z^{2} - 6z + 25 = 0 \left(\operatorname{or} \left(z^{*} \right)^{2} - 6z^{*} + 25 = 0 \right)$ $\Rightarrow z = \dots, \text{ or } z^{*} = \dots$	Solves to obtain at least one value of z or z^*	M1
		$x = 3 \operatorname{cso}$	
	$z = 3, \pm 4i$	$y = \pm 4 \operatorname{cso}$	A1, A1
			Total 6

Winter 2015

Past Paper (Mark Scheme)

Question Number	Scheme	Notes	Marks
4(a)	$y^2 = 12x \Longrightarrow y = \sqrt{12}x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\sqrt{12}x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-\frac{1}{2}}$	
	$y^{2} = 12x \Rightarrow y = \sqrt{12}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2}\sqrt{12}x^{-\frac{1}{2}}$ $y^{2} = 12x \Rightarrow 2y\frac{dy}{dx} = 12$	$\alpha y \frac{\mathrm{d}y}{\mathrm{d}x} = \beta$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \cdot \frac{\mathrm{d}p}{\mathrm{d}x} = 6 \cdot \frac{1}{6p}$	their $\frac{dy}{dp} \times \left(\frac{1}{\text{their}\frac{dx}{dp}}\right)$	- M1
	$\frac{dy}{dx} = \frac{1}{2}\sqrt{12}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 12 \text{ or } \frac{dy}{dx} = 6.\frac{1}{6p}$ or equivalent expressions	Correct differentiation	A1
	$m_T = \frac{1}{p} \Longrightarrow m_N = -p$	Correct perpendicular gradient rule	M1
	$y-6p=-p(x-3p^2)$	$y-6p = \text{their } m_N (x-3p^2) \text{ or}$ $y = mx + c \text{ with their } m_N \text{ and } (3p^2, 6p) \text{ in}$ an attempt to find 'c'. Their m_N must have come from calculus and should be a function of <i>p</i> which is not their tangent gradient.	M1
	$y + px = 6p + 3p^3 *$	Achieves printed answer with no errors	A1*
(b)	$p = 2 \Longrightarrow y + 2x = 12 + 24$	Substitutes the given value of <i>p</i> into the normal	(* M1
	$y + \frac{y^2}{6} = 36$	Substitutes to obtain an equation in one variable $(x, y \text{ or } "q")$	M1
	$y^2 + 6y - 216 = 0$		
	$(y+18)(y-12)=0 \Rightarrow y=$	Solves their 3TQ	M1
	$y = -18 \Rightarrow x = 27$	A1: One correct coordinate A1: Both coordinates correct	A1, A1
	Focus is (3, 0) or $a = 3$ or OS = 3 $y = 0 \Rightarrow x = 18$	Must be seen or used in (c)	B1
(c)	$A = \frac{1}{2}(18-3)(12) + \frac{1}{2}(18-3)(18)$	M1: Correct attempt at area A1: Correct expression	M1A1
	A = 225	Correct area	A1 (4
			(4 Total 1

Winter 2015

Past Paper (Mark Scheme)

Question Number	Scheme		Notes	Marks
5(a)	$\alpha + \beta = -\frac{3}{4}, \ \alpha\beta = \frac{1}{4}$			B1, B1
				(2)
(b)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \frac{9}{16} - \frac{1}{2} = \frac{1}{16}$	M1:Use	of $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	- M1 A1
	16 2 16	A1: $\frac{1}{16}$ cs	so (allow 0.0625)	
(-)		0		(2)
(c)	Sum $4\alpha - \beta + 4\beta - \alpha = 3(\alpha + \beta) = -$		Attempt numerical sum	M1
	Product $(4\alpha - \beta)(4\beta - \alpha) = 17\alpha\beta - 4(\alpha)$ $= \frac{17}{4} - \frac{1}{4} = 4$	$(\beta^2 + \beta^2)$	Attempt numerical product	M1
	$x^2 - \left(-\frac{9}{4}\right)x + 4\left(=0\right)$		Uses $x^2 - (sum)x + (prod)$ with sum, prod numerical (= 0 not reqd.)	M1
	$4x^2 + 9x + 16 = 0$		Any multiple (including = 0)	A1
				(4)
				Total 8
(a)	Alternative: Fin		explicitly	
(a)	$x = -\frac{3}{8} \pm \frac{\sqrt{7}}{8}i$			
	$x = -\frac{3}{8} \pm \frac{\sqrt{7}}{8}i$ $\alpha + \beta = -\frac{3}{8} \pm \frac{\sqrt{7}}{8}i - \frac{3}{8} \pm \frac{\sqrt{7}}{8}i = -\frac{3}{2}i$	<u>3</u> 1		B1
	$\alpha\beta = \left(-\frac{3}{8} + \frac{\sqrt{7}}{8}i\right)\left(-\frac{3}{8} - \frac{\sqrt{7}}{8}i\right) = -\frac{1}{8}i$	$\frac{1}{4}$		B1
				(2)
(b)	$\alpha^{2} + \beta^{2} = \left(-\frac{3}{8} + \frac{\sqrt{7}}{8}i\right)^{2} + \left(-\frac{3}{8} - \frac{\sqrt{7}}{8}i\right)^{2}$	$^{2} = \frac{1}{16}$	M1: Substitutes their α and β and attempt to square and add both brackets A1: $\frac{1}{16}$ cso (allow 0.0625)	M1 A1
			10 , ,	(2)
(c)	$4\alpha - \beta = -\frac{9}{8} + \frac{5\sqrt{7}}{8}i, 4\beta - \alpha = -\frac{9}{8} - \frac{1}{8}i$	$\frac{5\sqrt{7}}{8}$ i		
	$f(x) = \left(x - \left(-\frac{9}{8} + \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \left(-\frac{9}{8} - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \frac{9}{8}i\right)\right) \left(x - \left(-\frac{9}{8} - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \left(-\frac{9}{8} - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \left(-\frac{9}{8} - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \frac{5\sqrt{7}}{8}i\right)\right) \left(x - \frac{5\sqrt{7}}{8}i\right)$	$\left(\frac{5\sqrt{7}}{8}i\right)$	Uses $(x-(4\alpha-\beta))(x-(4\beta-\alpha))$ With numerical values (May expand first)	M1
	$f(x) = x^{2} + x\left(-\frac{9}{8} - \frac{5\sqrt{7}}{8}i\right) - x\left(-\frac{9}{8}\right)$			M1
	Attempt to expand (may occur in terms of = $x^2 + \frac{9}{4}x + 4(=0)$	α and β by		M1
			Collects terms (= 0 not reqd.)	
	$4x^2 + 9x + 16 = 0$		Any multiple (including = 0)	A1 (4)
				Total 8

Question	Scheme	Notes	Marks
Number			
6(i)(a)	A: Stretch scale factor 3 parallel to the <i>x</i> -axis	B1: StretchB1: SF 3 parallel to (or along) x-axisAllow e.g. horizontal stretch SF 3(Ignore any reference to the origin)	B1B1
			(2)
(b)	B : Rotation 210 degrees (anticlockwise) about (0, 0) or about O	B1: Rotation about (0, 0)B1: 210 degrees (anticlockwise) (orequivalent e.g150° or 150° clockwise).Allow equivalents in radians.	B1B1
			(2)
(c)	$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$	Attempts BA (This statement is sufficient)	M1
	$= \begin{pmatrix} -\frac{3\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	A1
			(2)
(ii)	det M = $(2k+5).k-1\times(-4)(=2k^2+5k+4)$	M1: Correct attempt at determinant A1: Correct determinant (allow un- simplified)	M1A1
	$b^2 - 4ac = 25 - 32$	Attempts discriminant or uses quadratic formula	M1
	$b^2 - 4ac < 0$ So no real roots so det $\mathbf{M} \neq 0$	Convincing explanation and conclusion with no previous errors	A1
			(4)
			Total 10
(ii) Way 2	$(2k+5).k-1\times(-4)(=2k^2+5k+4)$	M1: Correct attempt at determinant A1: Correct determinant (allow un- simplified)	M1A1
	$=2(k+\frac{5}{4})^{2}+\frac{7}{8}$	Attempts to complete the square:	M1
	$detM > 0 \forall k$ Therefore $detM \neq 0$	Convincing explanation and conclusion with no previous errors	A1
(ii) Way 3	$(2k+5).k-1\times(-4)(=2k^2+5k+4)$	M1: Correct attempt at determinant A1: Correct determinant (allow un- simplified)	M1A1
	$\frac{\mathrm{d}(\det\mathbf{M})}{\mathrm{d}k} = 4k + 5 = 0 \Longrightarrow k = -\frac{5}{4}$		
	$k = -\frac{5}{4} \Longrightarrow det \mathbf{M} = \frac{7}{8}$	Attempts coordinates of turning point	M1
	Minimum det M is $\frac{7}{8}$ therefore	Convincing explanation and conclusion with no previous errors	A1
	detM ≠ 0	L	

Question Number	Scheme	Notes	Marks
7	$\sum_{r=1}^{n} (r+a)(r+b) =$	$\frac{1}{6}n(2n+11)(n-1)$	
(a)	$(r+a)(r+b) = r^2 + ra + rb + ab$		B1
	$\sum_{r=1}^{n} (r+a)(r+b) = \frac{1}{6}n(n+1)(2)$	$(2n+1)+(a+b)\frac{1}{2}n(n+1)+abn$	M1A1B1
	M1: Attempt to use one of th	e standard formulae correctly	
	A1: $\frac{1}{6}n(n+1)(2n+1)$	$1) + (a+b)\frac{1}{2}n(n+1)$	
	B1:	abn	
	$\frac{1}{6}n[(n+1)(2n+1)+3(a+b)(n+1)+6ab] = \frac{1}{6}n(2n+11)(n-1)$		
	$(n+1)(2n+1)+3(a+b)(n+1)+6ab = 2n^2+9n-11$		
	$2n^{2} + 3n + 1 + 3(a+b)(n+1) + 6ab = 2n^{2} + 9n - 11$		
	3+3a+3b=9, $3a+3b+1+6ab=-11$	M1: Compares coefficients to obtain at least one equation in <i>a</i> and <i>b</i>	NA1NA1NA1
	(a+b=2, ab=-3)	M1: One correct equation M1: Both equations correct	M1M1M1
	b = -1, a = 3	Both values correct. This can be withheld if $b = 3$, $a = -1$ is not rejected.	A1
			(8
(b)	$\sum_{r=9}^{20} (r+a)(r+b)$		
	$\sum_{r=9}^{20} (r+a)(r+b) = f(20) - f(8 \text{ or } 9)$	$\underline{\mathbf{Use}} \text{ of } f(20) - f(8 \text{ or } 9)$	M1
	$=\frac{1}{6}(20)(51)(19)-\frac{1}{6}(8)(27)(7)$	Correct (possibly un-simplified) numerical expression	A1
	=3230 - 252 = 2978	cao	A1
			Total 11

www.mystudybro.com This resource was created and owned by Pearson Edexcel

el

Mathematics F1 WFM01

Question Number	Scheme		Notes	Marks	
8(i)	When $n = 1$ $u_1 = 2^1 + 3^1 = 5$				
	When $n = 2$ $u_2 = 2^2 + 3^2 = 13$	Both		B1	
	True for $n = 1$ a	and $n = 1$	2		
	Assume $u_k = 2^k + 3^k$ and $u_{k+1} = 2^k$		$2^{k+1} + 3^{k+1}$		
	$u_{k+2} = 5u_{k+1} - 6u_k = 5(2^{k+1} + 3^{k+1}) - 6(2^k + 3^k)$)	M1: Attempts u_{k+2} in terms of u_{k+1} and u_k A1: Correct expression	M1A1	
	$=5.2^{k+1}+5.3^{k+1}-6.2^k-6.3^k$				
	$=5.2^{k+1}-3.2^{k+1}+5.3^{k+1}-2.3^{k+1}$		Attempt u_{k+2} in terms of $2^{f(k)}$ and $3^{f(k)}$ only	M1	
	So $u_{k+2} = 2.2^{k+1} + 3.3^{k+1}$				
	$=2^{(k+1)+1}+3^{(k+1)+1} \text{ or } 2^{k+2}+3^{k+2}$		Correct expression with no errors	A1	
	If true for k and $k + 1$ then shown true for $k + as$ true for $n = 1$ and $n = 2$, true for $n \in \mathbb{Z}$		Full conclusion with all previous marks scored	A1	
			-	(6	
(ii)	$f(2) = 7^4 - 48(2) - 1 = 2304$		Shows true for $n = 2$	B1	
	So true for $n = 2$				
	Assume $5(k) = 5^{2k} + 10k = 1 - 2004$				
	$f(k) = 7^{2k} - 48k - 1 = 2304p$				
	$\frac{\text{for some integer } p}{f(k+1) - f(k) = 7^{2k+2} - 48(k+1) - 1 - (7^{2k} - 48k - 1)}$		Attempt $f(k+1) - f(k)$	M1	
	$=7^{2k+2}-7^{2k}-48$				
	$= 7^{2k} (49-1) - 48$				
			M1: Attempt rhs in terms of $f(k)$ or $7^{2k} - 48k - 1$		
	$=48f(k)+48^2k$		A1: Correct expression which is a multiple of 2304	- M1A1	
	$=48 \times 2304 p + 2304 k$				
	$f(k+1) = 49 \times 2304 p + 2304 k$		Obtains f(<i>k</i> +1) as a correct multiple of 2304 with no errors	A1	
	If true for <i>k</i> then shown true for $k + 1$ and as true for		Full conclusion with all	A 1	
	$n = 2$, true for $n \ge 2$ $(n \in \mathbb{Z})$		previous marks scored	A1	
				(6	
				Total 12	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE